Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2803-2811.DOI: 10.3969/j.issn.1004-1524.20231177
• Food Science • Previous Articles Next Articles
LU Xinbo1(), YUAN Ying2, WANG Jun1, WANG Huawen1, XIA Jun1, WU Dan2, TIAN Jinhu2, YE Xingqian2, YIN Jie1, JIANG Jian1,*(
)
Received:
2023-10-08
Online:
2024-12-25
Published:
2024-12-27
CLC Number:
LU Xinbo, YUAN Ying, WANG Jun, WANG Huawen, XIA Jun, WU Dan, TIAN Jinhu, YE Xingqian, YIN Jie, JIANG Jian. Effect of extrusion treatment on chemical composition and aroma of flue-cured tobacco leaves for heat-not-burn cigarettes[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2803-2811.
处理 Treatment | 温度Temperature/℃ | 模头压力 Die pressure/ MPa | 模头转速 Die speed/ (r·min-1) | |||||
---|---|---|---|---|---|---|---|---|
料筒1区 Barrel zone 1 | 料筒2区 Barrel zone 2 | 料筒3区 Barrel zone 3 | 料筒4区 Barrel zone 4 | 过渡1区 Transition Zone 1 | 模头1区 Diezone 1 | |||
P80 | 60 | 60 | 70 | 70 | 80 | 80 | 1.3 | 80 |
P100 | 80 | 80 | 90 | 90 | 100 | 100 | 1.2 | 80 |
P120 | 100 | 100 | 110 | 110 | 120 | 120 | 0.6 | 80 |
P140 | 120 | 120 | 130 | 130 | 140 | 140 | 0.4 | 80 |
P160 | 80 | 80 | 100 | 120 | 160 | 160 | 0.6 | 80 |
Table 1 Parameter settings of extrusion processing for treatments
处理 Treatment | 温度Temperature/℃ | 模头压力 Die pressure/ MPa | 模头转速 Die speed/ (r·min-1) | |||||
---|---|---|---|---|---|---|---|---|
料筒1区 Barrel zone 1 | 料筒2区 Barrel zone 2 | 料筒3区 Barrel zone 3 | 料筒4区 Barrel zone 4 | 过渡1区 Transition Zone 1 | 模头1区 Diezone 1 | |||
P80 | 60 | 60 | 70 | 70 | 80 | 80 | 1.3 | 80 |
P100 | 80 | 80 | 90 | 90 | 100 | 100 | 1.2 | 80 |
P120 | 100 | 100 | 110 | 110 | 120 | 120 | 0.6 | 80 |
P140 | 120 | 120 | 130 | 130 | 140 | 140 | 0.4 | 80 |
P160 | 80 | 80 | 100 | 120 | 160 | 160 | 0.6 | 80 |
处理 Treatment | 水溶性糖 含量 Water-soluble sugar content/% | 总植物碱 含量 Total plant alkaloids content/% | 还原糖 含量 Reducing sugar content/% | 氯含量 Chlorine content/% | 钾含量 Potassium content/% | 总氮含量 Total nitrogen content/% | 水溶性糖与总 植物碱的比值 Ratio of water- soluble sugar to total plant alkaloids | 还原糖与水溶性 糖的比值 Ratio of reducing sugar to water- soluble sugar | 总氮与总植物 碱的比值 Ratio of total nitrogen to total plant alkaloids |
---|---|---|---|---|---|---|---|---|---|
CK | 25.48± 0.19 a | 2.48± 0.01 c | 23.05± 0.03 a | 0.44± 0.01 a | 1.55± 0.02 a | 1.89± 0.01 b | 9.30± 0.01 a | 0.90± 0.01 a | 0.76± 0.01 d |
P80 | 22.65± 0.04 d | 2.47± 0.01 c | 19.84± 0.03 d | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.01 a | 8.04± 0.01 d | 0.88± 0.01 b | 0.81± 0.01 ab |
P100 | 23.15± 0.03 c | 2.48± 0.01 c | 20.46± 0.06 c | 0.44± 0.01 a | 1.56± 0.01 a | 2.04± 0.01 a | 8.26± 0.05 c | 0.88± 0.01 b | 0.83± 0.01 a |
P120 | 23.74± 0.13 b | 2.51± 0.02 b | 21.00± 0.02 b | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.02 a | 8.38± 0.04 b | 0.88± 0.01 b | 0.80± 0.01 bc |
P140 | 18.03± 0.03 f | 2.55± 0.01 a | 15.33± 0.05 f | 0.44± 0.01 a | 1.58± 0.01 a | 2.03± 0.01 a | 6.01± 0.03 f | 0.85± 0.01 d | 0.79± 0.01 c |
P160 | 21.17± 0.12 e | 2.48± 0.02 c | 18.30± 0.24 e | 0.44± 0.01 a | 1.56± 0.02 a | 2.02± 0.01 a | 7.38± 0.04 e | 0.86± 0.01 c | 0.81± 0.01 ab |
Table 2 Effects of treatments on contents of conventional chemical components in flue-cured tobacco
处理 Treatment | 水溶性糖 含量 Water-soluble sugar content/% | 总植物碱 含量 Total plant alkaloids content/% | 还原糖 含量 Reducing sugar content/% | 氯含量 Chlorine content/% | 钾含量 Potassium content/% | 总氮含量 Total nitrogen content/% | 水溶性糖与总 植物碱的比值 Ratio of water- soluble sugar to total plant alkaloids | 还原糖与水溶性 糖的比值 Ratio of reducing sugar to water- soluble sugar | 总氮与总植物 碱的比值 Ratio of total nitrogen to total plant alkaloids |
---|---|---|---|---|---|---|---|---|---|
CK | 25.48± 0.19 a | 2.48± 0.01 c | 23.05± 0.03 a | 0.44± 0.01 a | 1.55± 0.02 a | 1.89± 0.01 b | 9.30± 0.01 a | 0.90± 0.01 a | 0.76± 0.01 d |
P80 | 22.65± 0.04 d | 2.47± 0.01 c | 19.84± 0.03 d | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.01 a | 8.04± 0.01 d | 0.88± 0.01 b | 0.81± 0.01 ab |
P100 | 23.15± 0.03 c | 2.48± 0.01 c | 20.46± 0.06 c | 0.44± 0.01 a | 1.56± 0.01 a | 2.04± 0.01 a | 8.26± 0.05 c | 0.88± 0.01 b | 0.83± 0.01 a |
P120 | 23.74± 0.13 b | 2.51± 0.02 b | 21.00± 0.02 b | 0.43± 0.01 a | 1.56± 0.01 a | 2.01± 0.02 a | 8.38± 0.04 b | 0.88± 0.01 b | 0.80± 0.01 bc |
P140 | 18.03± 0.03 f | 2.55± 0.01 a | 15.33± 0.05 f | 0.44± 0.01 a | 1.58± 0.01 a | 2.03± 0.01 a | 6.01± 0.03 f | 0.85± 0.01 d | 0.79± 0.01 c |
P160 | 21.17± 0.12 e | 2.48± 0.02 c | 18.30± 0.24 e | 0.44± 0.01 a | 1.56± 0.02 a | 2.02± 0.01 a | 7.38± 0.04 e | 0.86± 0.01 c | 0.81± 0.01 ab |
Fig.1 Contents of petroleum ether extract and volatile bases in flue-cured tobacco under treatments Bars marked without the same letters indicate signfiicant difference at P<0.05. The same as below.
处理 Treatment | 总酚含量 Total phenols content | 新绿原酸含量 Neochlorogenic acid content | 绿原酸含量 Chlorogenic acid content | 隐绿原酸含量 Cryptochlorogenic acid content | 莨菪亭含量 Scopoletin content | 芸香苷含量 Rutin content |
---|---|---|---|---|---|---|
CK | 109.25±0.93 b | 6.34±0.01 a | 16.93±0.10 a | 9.64±0.04 a | 0.48±0.01 a | 4.62±0.02 a |
P80 | 104.70±6.18 b | 6.19±0.01 e | 16.42±0.01 d | 9.48±0.02 c | 0.47±0.01 ab | 3.94±0.02 d |
P100 | 105.64±1.35 b | 6.26±0.01 c | 16.59±0.02 c | 9.56±0.03 b | 0.48±0.01 a | 4.03±0.02 b |
P120 | 105.19±1.49 b | 6.22±0.01 d | 16.59±0.01 c | 9.48±0.03 c | 0.47±0.01 ab | 3.99±0.01 c |
P140 | 116.30±1.24 a | 6.33±0.01 ab | 16.14±0.01 e | 9.63±0.03 a | 0.46±0.01 b | 3.02±0.02 f |
P160 | 107.28±2.82 b | 6.32±0.01 b | 16.71±0.01 b | 9.62±0.03 a | 0.47±0.01 ab | 3.74±0.02 e |
Table 3 Effects of treatments on total phenols and phenolic substances in flue-cured tobacco mg·g-1
处理 Treatment | 总酚含量 Total phenols content | 新绿原酸含量 Neochlorogenic acid content | 绿原酸含量 Chlorogenic acid content | 隐绿原酸含量 Cryptochlorogenic acid content | 莨菪亭含量 Scopoletin content | 芸香苷含量 Rutin content |
---|---|---|---|---|---|---|
CK | 109.25±0.93 b | 6.34±0.01 a | 16.93±0.10 a | 9.64±0.04 a | 0.48±0.01 a | 4.62±0.02 a |
P80 | 104.70±6.18 b | 6.19±0.01 e | 16.42±0.01 d | 9.48±0.02 c | 0.47±0.01 ab | 3.94±0.02 d |
P100 | 105.64±1.35 b | 6.26±0.01 c | 16.59±0.02 c | 9.56±0.03 b | 0.48±0.01 a | 4.03±0.02 b |
P120 | 105.19±1.49 b | 6.22±0.01 d | 16.59±0.01 c | 9.48±0.03 c | 0.47±0.01 ab | 3.99±0.01 c |
P140 | 116.30±1.24 a | 6.33±0.01 ab | 16.14±0.01 e | 9.63±0.03 a | 0.46±0.01 b | 3.02±0.02 f |
P160 | 107.28±2.82 b | 6.32±0.01 b | 16.71±0.01 b | 9.62±0.03 a | 0.47±0.01 ab | 3.74±0.02 e |
Fig.2 Differential spectrum of gas chromatography-ion mobility spectrometry GC-IMS (a) and fingerprints (b) under treatments 1, Ethyl 2-phenylacetate; 2, 2-Methylpropanoic (D); 3, 2-Methylpropanoic (M); 4, 2-Hydroxybenzal dehyde; 5, 1-Butanoic acid (M); 6, 1-Butanoic acid (D); 7, γ-Butyrolactone (D); 8, γ-Butyrolactone (M); 9, (E)-2-deceal; 10, Unknown-1; 11, Unknown-2; 12, Unknown-3; 13, Propanediol (D); 14, Propanediol (M); 15, 2-Furaldehyde; 16, (E, E)-2, 4-Heptadienal (D); 17, (E, E)-2, 4-Heptadienal (M); 18, 2, 4-Heptadienal (M); 19, 2, 4-Heptadienal (D); 20, Unknown-4; 21, Unknown-5; 22, Unknown-6; 23, Unknown-7; 24, Benzaldehyde (M); 25, Benzaldehyde (D); 26, 2-Acetylfuran (D); 27, 2-Acetylfuran (M); 28, Unknown-8; 29, 2-Furanmethanethiol (D); 30, 2-Furanmethanethiol (M); 31, Unknown-9; 32, Unknown-10; 33, Unknown-11; 34, Unknown-12; 35, Dimethy trisulfide; 36, Unknown-13; 37, Unknown-14; 38, Methyl heptenone; 39, Unknown-15; 40, 2-Methyl-3-furanthiol; 41, Unknown-16; 42, Unknown-17; 43, 2,6-Dimethylpyridine (D); 44, 2,6-Dimethylpyridine (M); 45, 2-2-Pentyl furan; 46, Unknown-18; 47, Unknown-19; 48, Unknown-20; 49, (E)-2-Hexenal (D); 50, (E)-2-Hexenal (M); 51, Unknown-21; 52, Unknown-22; 53, Unknown-23; 54, 3-Methyl-2-butenal (D); 55, 3-Methyl-2-butenal (M); 56, 1-Butanol, 3-methyl (M); 57, 1-Butanol, 3-methyl (D); 58, Unknown-24; 59, Unknown-25; 60, Heptaldehyde (M); 61, Heptaldehyde (D); 62, Unknown-26; 63, Pyridine; 64, Unknown-27; 65, Unknown-28; 66, Unknown-29; 67, Unknown-30; 68, Unknown-31; 69, Cyclopentanone (M); 70, Cyclopentanone (D); 71, (E)-2-Pentenal (D); 72, (E)-2-Pentenal (M); 73, Unknown-32; 74, Unknown-33; 75, 2-Methylpropanol (M); 76, 2-Methylpropanol (D); 77, Unknown-34; 78, Unknown-35; 79, Unknown-36; 80, Dimethyl disulfide; 81, Unknown-37; 82, o-Cresol; 83, Unknown-38; 84, 1-Penten-3-one (D); 85, 1-Penten-3-one (M); 86, Unknown-39; 87, Unknown-40; 88, Unknown-41; 89, 4-Methyl-2-pentanone (M); 90, 4-Methyl-2-pentanone (D); 91, Unknown-42; 92, Unknown-43; 93, 2, 3-Butanedione; 94, Unknown-44; 95, Unknown-45; 96, Ethyl acetate; 97, 2-Ethyl furan; 98, Unknown-46; 99, Unknown-47; Ⅰ, Unknown-48; Ⅱ, Unknown-49; Ⅲ, Unknown-50; Ⅳ, 2-Methylpyrazine (M); Ⅴ, 2-Methylpyrazine (D); Ⅵ, Unknown-51; Ⅶ, Unknown-52; Ⅷ, 2-Methyl-2-propenal (D); Ⅸ, 2-Methyl-2-propenal (M); Ⅹ, Unknown-53; Ⅺ, Unknown-54.
[1] | 吴键, 张贾宝, 周国俊, 等. 加热状态下云南烤烟的热失重特性及动力学分析[J]. 河南农业科学, 2022, 51(10):151-160. |
WU J, ZHANG J B, ZHOU G J, et al. Thermogravimetric characteristics and kinetic analysis of Yunnan flue-cured tobacco materials under heating[J]. Journal of Henan Agricultural Sciences, 2022, 51(10):151-160. (in Chinese with English abstract) | |
[2] | 张博, 杜文, 王志国, 等. 滤嘴通风率对加热卷烟气溶胶主要成分释放量的影响[J]. 烟草科技, 2023, 56(8):54-62. |
ZHANG B, DU W, WANG Z G, et al. Effects of filter ventilation rate on releases of main aerosol components from heated tobacco products[J]. Tobacco Science & Technology, 2023, 56(8):54-62. (in Chinese with English abstract) | |
[3] | 郑峰洋, 尹献忠, 李耀光, 等. 加热卷烟中6种烤甜香单体香料的逐口转移行为[J]. 烟草科技, 2021, 54(12):46-52. |
ZHENG F Y, YIN X Z, LI Y G, et al. Puff-by-puff transfer behaviors of six single flavors with roasted sweet aroma in heated tobacco products[J]. Tobacco Science & Technology, 2021, 54(12):46-52. (in Chinese with English abstract) | |
[4] | 朱龙杰, 曹毅, 秦艳华, 等. 甘油施加比例对加热卷烟薄片热性能及热解产物的影响[J]. 中国烟草学报, 2022, 28(5):8-16. |
ZHU L J, CAO Y, QIN Y H, et al. Effect of glycerol addition ratio on thermal properties and pyrolysis products of tobacco sheet of heated cigarette[J]. Acta Tabacaria Sinica, 2022, 28(5):8-16. (in Chinese with English abstract) | |
[5] | 陈芝飞, 蔡莉莉, 郑峰洋, 等. 加热卷烟中6种酮类单体香料的转移行为[J]. 中国烟草学报, 2022, 28(4):1-7. |
CHEN Z F, CAI L L, ZHENG F Y, et al. Transfer behavior of 6 ketone flavor components in heated tobacco products[J]. Acta Tabacaria Sinica, 2022, 28(4):1-7. (in Chinese with English abstract) | |
[6] | 邓其馨, 陈辉, 林艳, 等. 温度对加热卷烟酸性成分释放的影响[J]. 烟草科技, 2022, 55(8):49-56. |
DENG Q X, CHEN H, LIN Y, et al. Effects of heating temperature on releases of acidic aerosol components from heated tobacco products[J]. Tobacco Science & Technology, 2022, 55(8):49-56. (in Chinese with English abstract) | |
[7] | 任举, 谢焰, 张锁慧, 等. 加热模式对薄荷型加热卷烟中主要成分的转移率及逐口释放行为的影响[J]. 中国烟草学报, 2022, 28(6):1-10. |
REN J, XIE Y, ZHANG S H, et al. Effects of heating mode on the transfer rate and puff-by-puff release of main components in mentholated heated tobacco products[J]. Acta Tabacaria Sinica, 2022, 28(6):1-10. (in Chinese with English abstract) | |
[8] | 朱红琴, 崔洪亮, 胡世龙, 等. 再造烟叶浆料中添加负载颗粒工艺参数优化[J]. 西南农业学报, 2022, 35(3):685-691. |
ZHU H Q, CUI H L, HU S L, et al. Optimization of processing parameters for adding loaded granules in reconstituted tobacco pulp[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(3):685-691. (in Chinese with English abstract) | |
[9] | ZHANG Y Y, HE Z J, XU M J, et al. Physicochemical properties and protein structure of extruded corn gluten meal: implication of temperature[J]. Food Chemistry, 2023, 399:133985. |
[10] | 张文刚, 兰永丽, 党斌. 不同加工方式对藜麦挥发性风味物质的影响[J]. 中国粮油学报, 2022, 37(12):51-58. |
ZHANG W G, LAN Y L, DANG B. Effects of different processing methods on volatile flavor substances of quinoa[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(12):51-58. (in Chinese with English abstract) | |
[11] | 陈焱芳, 张雁, 邓媛元, 等. 挤压膨化糙米香气物质的顶空固相微萃取条件优化[J]. 食品研究与开发, 2020, 41(12):117-125. |
CHEN Y F, ZHANG Y, DENG Y Y, et al. Optimization of extraction conditions of compounds of extruded brown rice aroma by HS-SPME[J]. Food Research and Development, 2020, 41(12):117-125. (in Chinese with English abstract) | |
[12] | FEITOSA B S, FERREIRA O O, MALI S N, et al. Chemical composition, preliminary toxicity, and antioxidant potential of Piper marginatum sensu lato essential oils and molecular modeling study[J]. Molecules, 2023, 28(15):5814. |
[13] | 张献忠. 废次烟末中烟草香味物质提取、应用及生物活性[D]. 杭州: 浙江大学, 2013. |
ZHANG X Z. Extraction of tobacco flavor compounds from discarded tobacco leaves and their application in cigarettes and in vitro bioactivities[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract) | |
[14] | 季舜华, 苏明亮, 张烨, 等. 不同叶片结构烤烟化学成分的差异[J]. 烟草科技, 2022, 55(9):57-64. |
JI S H, SU M L, ZHANG Y, et al. Chemical compositions in flue-cured tobacco of different leaf structures[J]. Tobacco Science & Technology, 2022, 55(9):57-64. (in Chinese with English abstract) | |
[15] | 王瑞新. 烟草化学[M]. 北京: 中国农业出版社, 2003. |
[16] | 貊志杰, 邓帅军, 史素娟, 等. 烤烟品种中烟特香301烤后烟叶石油醚提取物分析[J]. 中国烟草科学, 2022, 43(3):71-77. |
MO Z J, DENG S J, SHI S J, et al. Analysis of petroleum ether extracts from the characteristic fragrant fluecured tobacco variety Zhongyantexiang301[J]. Chinese Tobacco Science, 2022, 43(3):71-77. (in Chinese with English abstract) | |
[17] | 李晓. 山东烤烟烟叶石油醚提取物的对比分析[J]. 烟草科技, 2006, 39(6):35-38. |
LI X. Petroleum ether extract of flue-cured tobacco grown in Shandong Province[J]. Tobacco Science & Technology, 2006, 39(6):35-38. (in Chinese with English abstract) | |
[18] | 张友杰, 王以慧, 胡延奇, 等. 雪茄烟叶pH、总挥发酸和总挥发碱含量及相关性分析[J]. 农业科技通讯, 2022(2):124-127. |
ZHANG Y J, WANG Y H, HU Y Q, et al. Analysis of pH, total volatile acid and total volatile base contents and correlation analysis in cigar tobacco leaves[J]. Bulletin of Agricultural Science and Technology, 2022(2):124-127. (in Chinese) | |
[19] | 金明珂. 变色期温湿度对雪茄晾制过程中主要氮素转化及晾后品质的影响[D]. 郑州: 河南农业大学, 2022. |
JIN M K. Effects of temperature and humidity during color change stage on the transformation of main nitrogen during the airing process of cigars and the quality of cigars after airing[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese with English abstract) | |
[20] | 席元肖, 宋纪真, 杨军, 等. 不同颜色及成熟度烤烟香气前体物及降解产物含量的差异分析[J]. 中国烟草学报, 2011, 17(4):23-30. |
XI Y X, SONG J Z, YANG J, et al. Analysis of flavor precursors and degradation products content in flue-cured tobacco of different color and maturity[J]. Acta Tabacaria Sinica, 2011, 17(4):23-30. (in Chinese with English abstract) | |
[21] | 过伟民, 蔡宪杰, 魏春阳, 等. 豫中浓香型烤烟感官质量与部分质量指标的关系[J]. 烟草科技, 2010, 43(6):22-27. |
GUO W M, CAI X J, WEI C Y, et al. Relationship between smoking quality and some quality indexes of full flavor flue-cured tobacco grown in central Henan[J]. Tobacco Science & Technology, 2010, 43(6):22-27. (in Chinese with English abstract) | |
[22] | 穆童. 烤烟香气特性的变异及与烟叶化学成分的关系[D]. 郑州: 河南农业大学, 2018. |
MU T. Variation of aroma characteristics of flue-cured tobacco and its relationship with chemical components of tobacco leaves[D]. Zhengzhou: Henan Agricultural University, 2018. (in Chinese with English abstract) | |
[23] | YANG Y, WANG B, FU Y, et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu[J]. Food Chemistry, 2021,346:128880. |
[24] | 李经伟, 张小飞, 周宇宁, 等. 烘烤、挤压膨化对苦荞全粉挥发性物质的影响[J]. 粮食与油脂, 2023, 36(12):48-53. |
LI J W, ZHANG X F, ZHOU Y N, et al. Effects of baking and extrusion on volatile substances of whole Tartary buckwheat flour[J]. Cereals & Oils, 2023, 36(12):48-53. (in Chinese with English abstract) | |
[25] | 朱秀清, 张宾洋, 孙冰玉, 等. 大豆蛋白素肉风味影响研究进展[J]. 食品科学, 2023, 44(5):18-28. |
ZHU X Q, ZHANG B Y, SUN B Y, et al. Research progress on flavor formation in soy protein-based meat analogs[J]. Food Science, 2023, 44(5):18-28. (in Chinese with English abstract) | |
[26] | 王玉华, 褚建忠, 徐丙升, 等. 烤烟自然醇化过程美拉德反应产物变化及与感官质量的关系[J]. 中国烟草科学, 2015, 36(4):85-90. |
WANG Y H, CHU J Z, XU B S, et al. Study on changes of Maillard reaction compounds during natural aging of flue-cured tobacco and their impact on smoking quality[J]. Chinese Tobacco Science, 2015, 36(4):85-90. (in Chinese with English abstract) | |
[27] | POISSON L, AUZANNEAU N, MESTDAGH F, et al. New insight into the role of sucrose in the generation of α-diketones upon coffee roasting[J]. Journal of Agricultural and Food Chemistry, 2018, 66(10):2422-2431. |
[1] | LIU Chunkui, LI Zilin, WEI Xiaoling, JIA Lin, XIA Yang, LONG Lijin, HE Yuan, LI Bo, YAN Hongyang, ZHNAG Boying. Effects of foliar application of molybdenum fertilizer at different growth stages on aroma components of flue-cured tobacco [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 481-493. |
[2] | SUN Jian, REN Jiangjian, WANG Haige, JIANG Jianming, WANG Zhi’an, YU Xuping. Tissue culture and breeding of Pleione formosana Hayata and chemical composition analysis of its pseudobulbs [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 358-364. |
[3] | ZHAO Han, XIANG Kexin, LIU Chunju, LI Bin, LI Dajing, LI Yue, NIU Liying, YU Rui. Relationship between chemical composition, microstructure and texture of different varieties of peach fruits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2705-2718. |
[4] | ZHAI Xiuming, LI Jie, TANG Min, HU Fangjie, ZHANG Jun, HOU Yujia, XU Ze. Diversity analysis of 30 tea (Camelia sinensis) germplasm resources in Chongqing based on agronomic traits and biochemical components [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1244-1255. |
[5] | WANG Yuxin, DENG Yanli, YAO Songlin, WANG Ying, WANG Jihong. Comparison of quality of Hawk tea (Litsea coreana var. sinensis) in four counties of Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 142-149. |
[6] | CAO Yan, XIA Qile, CHEN Jianbing, SHAN Zhichu. Production of bacterial cellulose by Gluconacetobacter xylinus using rice milk [J]. , 2019, 31(11): 1918-1925. |
[7] | LU Liming, ZENG Xiaomin, GU Huizhan, ZHANG Qili, YU Xiao, WANG Dong, HE Jixian, LI Liqin. Effects of nitrogen application on key enzymes gene expression and yield of nitrogen metabolism in flue-cured tobacco [J]. , 2018, 30(3): 454-460. |
[8] | CAI Xue\|jiao;CHEN Jian\|jun;LYU Yong\|hua;DENG Shi\|yuan;CHEN Ze\|peng;CHEN Yong\|ming;WANG Wei;*. Comparison of leaf tissue structure and chemical composition of taboccos cultivated in different soil types [J]. , 2013, 25(6): 0-1182. |
[9] | YAN Hong-yang;LIU Chun-kui;YAN Hong-xi;JIA Lin;YAN Ke-yu;*;KONG Xyu. Comparison and cluster analysis of sensory quality of flue-cured tobacco leaves from Henan main tobacco-growing areas [J]. , 2013, 25(4): 0-700. |
[10] | QI Fei;LIU Guo-shun;*;DU Shao-ming;WANG Jian-an;SHI Hong-zhi;ZHANG Rui;GAO Wei-kai. Adaptability of different genotypic flue-cured tobacco materials in Lincang [J]. , 2011, 23(4): 0-675. |
[11] | LI Zhong-min;YANG Tie-zhao*;DUAN Wang-jun;LI Ya-pei. Effects of different genotypes of flue-cured tobacco on nitrogen metabolism\|related enzyme activity [J]. , 2011, 23(3): 0-474. |
[12] | ZHANG Chao-hui;WANG Bao-xiang;XI Shu-ya;LIU Tian-xiang;CAO Yu-bo;QIU Li-you;*. Identification of a silicate bacterium from flue-cured tobacco rhizosphere and application in flue-cured tobacco production [J]. , 2011, 23(3): 0-558. |
[13] | YU Jian-jun;YAN Ding;YE Xian-wen;MA Yun-ming;WEI Pan-pan;LIU Qian. Analysis between primary chemical components of flue-cured tobacco and their smoking quality in Chongqing Area [J]. , 2010, 22(5): 669-672. |
[14] | YU Jian-jun;LIU Qian;WANG Peng;SONG Wen-feng;MA Fei-yue. Analysis on neutral aroma components of flue-cured tobacco from Shennongjia region of Hubei Province [J]. , 2010, 22(4): 0-494. |
[15] | LIU Pei-yu;WANG Xin-fa;WANG Jian;YAN Qi-feng;SHI Gang;YANG Tie-zhao;*. Changes of aroma constituents of different flue-cured tobacco genotypes in different ecoregions [J]. , 2010, 22(2): 0-243. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 281
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||