Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (7): 1521-1532.DOI: 10.3969/j.issn.1004-1524.20240733
• Environmental Science • Previous Articles Next Articles
JIANG Zhenlan1(), CHEN Fuxun1, LUO Shuangfei1, LUO Yeqin1, SHA Jinming2,*(
)
Received:
2024-08-12
Online:
2025-07-25
Published:
2025-08-20
CLC Number:
JIANG Zhenlan, CHEN Fuxun, LUO Shuangfei, LUO Yeqin, SHA Jinming. Inversion of soil total iron content using random forest model based on multi-spectral transformation and principle compoment analysis[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1521-1532.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240733
样本集 Data set | 样本数 Sample size | 最小值 Minimum/ (g·kg-1) | 最大值 Maximum/ (g·kg-1) | 平均值 Mean/ (g·kg-1) | 标准差 Standard deviation/ (g·kg-1) | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|---|
总集Whole set | 132 | 5.54 | 106.35 | 24.14 | 14.62 | 60.56 |
建模集Modeling set | 88 | 7.89 | 106.35 | 24.53 | 15.45 | 62.98 |
验证集Validation set | 44 | 5.54 | 66.36 | 23.35 | 12.91 | 55.29 |
Table 1 Statistical characteristics of soil total iron content
样本集 Data set | 样本数 Sample size | 最小值 Minimum/ (g·kg-1) | 最大值 Maximum/ (g·kg-1) | 平均值 Mean/ (g·kg-1) | 标准差 Standard deviation/ (g·kg-1) | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|---|
总集Whole set | 132 | 5.54 | 106.35 | 24.14 | 14.62 | 60.56 |
建模集Modeling set | 88 | 7.89 | 106.35 | 24.53 | 15.45 | 62.98 |
验证集Validation set | 44 | 5.54 | 66.36 | 23.35 | 12.91 | 55.29 |
Fig.1 Pearson correlation coefficient between soil spectra and total iron content SR, Raw spectra (soil reflectance); FD, Spectra after FD (first derivative) transformation; SD, Spectra after SD (second derivative) transformation; RT, Spectra after RT (reciprocal transformation) transformation; RTFD, Spectra after RTFD (first derivative of reciprocal) transformation; RTSD, Spectra after RTSD (second derivative of reciprocal) transformation; AT, Spectra after AT (absorbance transformation) transformation; ATFD, Spectra after ATFD (first derivative of absorbance) transformation; ATSD, Spectra after ATSD (second derivative of absorbance) transformation; CR, Spectra after CR (continuum removal) transformation; DT, Spectra after DT (detrending) transformation; MSC, Spectra after MSC (multiplicative scatter correction) transformation; SNV, Spectra after SNV (standard normal variate) transformation; WT, Spectra after WT (wavelet transformation) transformation. The same as below.r,Correlation coefficient.
光谱 Spectra | 特征波长 Characteristic wavelengths/nm | 相关系数 Correlation coefficient |
---|---|---|
SR | 350~359 | -0.523** |
RT | 380~389 | 0.651** |
RTFD | 530~539 | -0.716** |
RTSD | 450~459 | 0.703** |
AT | 350~359 | 0.589** |
ATFD | 540~549 | -0.596** |
ATSD | 740~749 | 0.592** |
CR | 490~499 | -0.606** |
FD | 1 150~1 159 | 0.453** |
SD | 860~869 | 0.486** |
SNV | 1 440~1 449 | 0.477** |
MSC | 1 440~1 449 | 0.480** |
DT | 1 430~1 439 | 0.438** |
2 150~2 159 | -0.438** | |
WT | 350~359 | -0.523** |
Table 2 Characteristic bands with the strongest correlation between soil spectra and total iron content
光谱 Spectra | 特征波长 Characteristic wavelengths/nm | 相关系数 Correlation coefficient |
---|---|---|
SR | 350~359 | -0.523** |
RT | 380~389 | 0.651** |
RTFD | 530~539 | -0.716** |
RTSD | 450~459 | 0.703** |
AT | 350~359 | 0.589** |
ATFD | 540~549 | -0.596** |
ATSD | 740~749 | 0.592** |
CR | 490~499 | -0.606** |
FD | 1 150~1 159 | 0.453** |
SD | 860~869 | 0.486** |
SNV | 1 440~1 449 | 0.477** |
MSC | 1 440~1 449 | 0.480** |
DT | 1 430~1 439 | 0.438** |
2 150~2 159 | -0.438** | |
WT | 350~359 | -0.523** |
Fig.2 Pearson correlation coefficients among variables ATSD_740~749 denotes the 740-749 nm band data of the spectra after ATSD (second derivative of absorbance) transformation. The rest may be deduced from this example. “*” and “**” indicate significant correlation at P<0.05 and P<0.01, respectively.
变量选择 方法 Variable selection method | 变量数量 Number of variables | 输入变量 Input variables | 在建模集上的效果 Performance on the modeling set | 在验证集上的效果 Performance on the validation set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE/ (g·kg-1) | R2 | RMSE/ (g·kg-1) | RPD | |||
CSV | 15 | SR_350~359, FD_1 150~1 159, SD_860~869, AT_350~359, ATFD_540~549, ATSD_740~749, RT_380~389, RTFD_530~539, RTSD_450~459, CR_490~499, SNV_1 440~1 449, MSC_1 440~1 449, DT_1 430~1 439, DT_2 150~2 159, WT_350~359 | 0.918 | 4.463 | 0.444 | 9.744 | 1.325 |
MLR | 6 | SR_350~359, ATFD_540~549, ATSD_740~749, RTSD_450~459, MSC_1 440~1 449, DT_1 430~1 439 | 0.915 | 4.531 | 0.526 | 8.998 | 1.435 |
CARS | 12 | SR_350~359, SD_860~869, AT_350~359, ATFD_540~549, ATSD_740~749, RT_380~389, CR_490~499, SNV_1 440~1 449, MSC_1 440~1 449, DT_1 430~1 439, DT_2 150~2 159, WT_350~359 | 0.917 | 4.468 | 0.443 | 9.750 | 1.324 |
GA | 7 | SR_350~359, ATFD_540~549, ATSD_740~749, RTSD_450~459, MSC_1 440~1 449, DT_1 430~1 439, WT_350~359 | 0.919 | 4.419 | 0.539 | 8.871 | 1.455 |
SPA | 5 | FD_1150~1159, ATSD_740~749, RTSD_450~459, SNV_1 440~1 449, DT_2 150~2 159 | 0.908 | 4.719 | 0.369 | 10.377 | 1.244 |
UVE | 10 | SR_350~359, ATFD_540~549, ATSD_740~749, RT_370~389, RTSD_450~459, CR_490~499, SNV_1 440~1 449, MSC_1 440~1 449, DT_1 430~1 439, DT_2 150~2 159 | 0.919 | 4.425 | 0.440 | 9.780 | 1.320 |
Table 3 Parameters of RF model for soil total iron content inversion before principle component analysis (PCA) optimization
变量选择 方法 Variable selection method | 变量数量 Number of variables | 输入变量 Input variables | 在建模集上的效果 Performance on the modeling set | 在验证集上的效果 Performance on the validation set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE/ (g·kg-1) | R2 | RMSE/ (g·kg-1) | RPD | |||
CSV | 15 | SR_350~359, FD_1 150~1 159, SD_860~869, AT_350~359, ATFD_540~549, ATSD_740~749, RT_380~389, RTFD_530~539, RTSD_450~459, CR_490~499, SNV_1 440~1 449, MSC_1 440~1 449, DT_1 430~1 439, DT_2 150~2 159, WT_350~359 | 0.918 | 4.463 | 0.444 | 9.744 | 1.325 |
MLR | 6 | SR_350~359, ATFD_540~549, ATSD_740~749, RTSD_450~459, MSC_1 440~1 449, DT_1 430~1 439 | 0.915 | 4.531 | 0.526 | 8.998 | 1.435 |
CARS | 12 | SR_350~359, SD_860~869, AT_350~359, ATFD_540~549, ATSD_740~749, RT_380~389, CR_490~499, SNV_1 440~1 449, MSC_1 440~1 449, DT_1 430~1 439, DT_2 150~2 159, WT_350~359 | 0.917 | 4.468 | 0.443 | 9.750 | 1.324 |
GA | 7 | SR_350~359, ATFD_540~549, ATSD_740~749, RTSD_450~459, MSC_1 440~1 449, DT_1 430~1 439, WT_350~359 | 0.919 | 4.419 | 0.539 | 8.871 | 1.455 |
SPA | 5 | FD_1150~1159, ATSD_740~749, RTSD_450~459, SNV_1 440~1 449, DT_2 150~2 159 | 0.908 | 4.719 | 0.369 | 10.377 | 1.244 |
UVE | 10 | SR_350~359, ATFD_540~549, ATSD_740~749, RT_370~389, RTSD_450~459, CR_490~499, SNV_1 440~1 449, MSC_1 440~1 449, DT_1 430~1 439, DT_2 150~2 159 | 0.919 | 4.425 | 0.440 | 9.780 | 1.320 |
Fig.3 Scatter plot of the predicted and measured soil total iron content by using RF model before principle component analysis (PCA) optimization CSV, Combination of spectral variables; MLR, Multiple linear regression; CARS, Competitive adaptive reweighted sampling; GA, Genetic algorithm; SPA, Successive projections algorithm; UVE, Uninformative variable elimination. R2, Coefficient of determination. The same as below.
变量选择方法 Variable selection method | 主成分个数 Number of principal components | 累积贡献率 Cumulative contribution rate/% | 在建模集上的效果 Performance on the modeling set | 在验证集上的效果 Performance on the validation set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE/(g·kg-1) | R2 | RMSE/(g·kg-1) | RPD | |||
CSV-PCA | 6 | 95.83 | 0.908 | 4.713 | 0.888 | 4.375 | 2.951 |
MLR-PCA | 4 | 95.92 | 0.906 | 4.778 | 0.893 | 4.277 | 3.019 |
CARS-PCA | 5 | 96.14 | 0.936 | 3.925 | 0.910 | 3.922 | 3.292 |
GA-PCA | 4 | 96.36 | 0.912 | 4.614 | 0.896 | 4.219 | 3.060 |
SPA-PCA | 4 | 95.77 | 0.929 | 4.141 | 0.888 | 4.382 | 2.946 |
UVE-PCA | 5 | 96.16 | 0.907 | 4.742 | 0.876 | 4.609 | 2.801 |
Table 4 Parameters of RF model for soil total iron content inversion after principle component analysis (PCA) optimization
变量选择方法 Variable selection method | 主成分个数 Number of principal components | 累积贡献率 Cumulative contribution rate/% | 在建模集上的效果 Performance on the modeling set | 在验证集上的效果 Performance on the validation set | |||
---|---|---|---|---|---|---|---|
R2 | RMSE/(g·kg-1) | R2 | RMSE/(g·kg-1) | RPD | |||
CSV-PCA | 6 | 95.83 | 0.908 | 4.713 | 0.888 | 4.375 | 2.951 |
MLR-PCA | 4 | 95.92 | 0.906 | 4.778 | 0.893 | 4.277 | 3.019 |
CARS-PCA | 5 | 96.14 | 0.936 | 3.925 | 0.910 | 3.922 | 3.292 |
GA-PCA | 4 | 96.36 | 0.912 | 4.614 | 0.896 | 4.219 | 3.060 |
SPA-PCA | 4 | 95.77 | 0.929 | 4.141 | 0.888 | 4.382 | 2.946 |
UVE-PCA | 5 | 96.16 | 0.907 | 4.742 | 0.876 | 4.609 | 2.801 |
[1] | PENG Y P, ZHAO L, HU Y M, et al. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy[J]. ISPRS International Journal of Geo-Information, 2019, 8(10): 437. |
[2] | JIA X Y, O’CONNOR D, SHI Z, et al. VIRS based detection in combination with machine learning for mapping soil pollution[J]. Environmental Pollution, 2021, 268: 115845. |
[3] | BEN-DOR E, BANIN A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal, 1995, 59(2): 364-372. |
[4] | 何挺, 王静, 程烨, 等. 土壤氧化铁光谱特征研究[J]. 地理与地理信息科学, 2006, 22(2): 30-34. |
HE T, WANG J, CHENG Y, et al. Study on spectral features of soil Fe2O3[J]. Geography and Geo-Information Science, 2006, 22(2): 30-34. (in Chinese with English abstract) | |
[5] | 彭杰, 向红英, 周清, 等. 土壤氧化铁的高光谱响应研究[J]. 光谱学与光谱分析, 2013, 33(2): 502-506. |
PENG J, XIANG H Y, ZHOU Q, et al. Influence of soil iron oxide on VNIR diffuse reflectance spectroscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 502-506. (in Chinese with English abstract) | |
[6] | 熊俊峰, 郑光辉, 林晨. 基于反射光谱的土壤铁元素含量估算[J]. 光谱学与光谱分析, 2016, 36(11): 3615-3619. |
XIONG J F, ZHENG G H, LIN C. Estimating soil iron content based on reflectance spectra[J]. Spectroscopy and Spectral Analysis, 2016, 36(11): 3615-3619. (in Chinese with English abstract) | |
[7] | 谢文, 赵小敏, 郭熙, 等. 基于组合模型的庐山森林土壤有效铁光谱间接反演研究[J]. 土壤学报, 2017, 54(3): 601-612. |
XIE W, ZHAO X M, GUO X, et al. Composite-model-based indirect reversion of soil available iron spectrum of forest soil in Lushan[J]. Acta Pedologica Sinica, 2017, 54(3): 601-612. (in Chinese with English abstract) | |
[8] | 丁海宁, 陈玉, 陈芸芝. 黄土高原土壤铁元素含量遥感反演方法[J]. 遥感技术与应用, 2019, 34(2): 275-283. |
DING H N, CHEN Y, CHEN Y Z. Remote sensing inversion method of soil iron content in the Loess Plateau[J]. Remote Sensing Technology and Application, 2019, 34(2): 275-283. (in Chinese with English abstract) | |
[9] | 马驰. HJ-1A高光谱影像的表层土壤游离氧化铁含量反演[J]. 农业工程学报, 2020, 36(20): 164-170. |
MA C. Inversion of free ferric oxide content in surface soil based on HJ-1A hyperspectral images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 164-170. (in Chinese with English abstract) | |
[10] | 魏昌龙, 赵玉国, 邬登巍, 等. 基于光谱分析的土壤游离铁预测研究[J]. 土壤, 2014, 46(4): 678-683. |
WEI C L, ZHAO Y G, WU D W, et al. Prediction of soil free iron oxide content based on spectral analysis[J]. Soils, 2014, 46(4): 678-683. (in Chinese with English abstract) | |
[11] | 贺军亮, 崔军丽, 张淑媛, 等. 基于偏最小二乘的土壤重金属铜含量高光谱估算[J]. 遥感技术与应用, 2019, 34(5): 998-1004. |
HE J L, CUI J L, ZHANG S Y, et al. Hyperspectral estimation of heavy metal Cu content in soil based on partial least square method[J]. Remote Sensing Technology and Application, 2019, 34(5): 998-1004. (in Chinese with English abstract) | |
[12] | 任红艳, 庄大方, 邱冬生, 等. 矿区农田土壤砷污染的可见-近红外反射光谱分析研究[J]. 光谱学与光谱分析, 2009, 29(1): 114-118. |
REN H Y, ZHUANG D F, QIU D S, et al. Analysis of visible and near-infrared spectra of As-contaminated soil in croplands beside mines[J]. Spectroscopy and Spectral Analysis, 2009, 29(1): 114-118. (in Chinese with English abstract) | |
[13] | 张笑寒, 孟祥添, 唐海涛, 等. 优化光谱输入量的土壤有机质随机森林预测模型[J]. 农业工程学报, 2023, 39(2): 90-99. |
ZHANG X H, MENG X T, TANG H T, et al. Random forest prediction model for the soil organic matter with optimized spectral inputs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 90-99. (in Chinese with English abstract) | |
[14] | 郭颖, 郭治兴, 刘佳, 等. 亚热带典型区域水稻土氧化铁高光谱反演: 以珠江三角洲为例[J]. 应用生态学报, 2017, 28(11): 3675-3683. |
GUO Y, GUO Z X, LIU J, et al. Hyperspectral inversion of paddy soil iron oxide in typical subtropical area with Pearl River Delta, China as illustration[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3675-3683. (in Chinese with English abstract) | |
[15] | 高伟, 杨可明, 李孟倩, 等. 铁矿粉中全铁含量的SFIM-RFR高光谱预测模型[J]. 光谱学与光谱分析, 2020, 40(8): 2546-2551. |
GAO W, YANG K M, LI M Q, et al. Hyperspectral SFIM-RFR model on predicting the total iron contents of iron ore powders[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2546-2551. (in Chinese with English abstract) | |
[16] | 白宗璠, 韩玲, 姜旭海, 等. 微分光谱变换方法对土壤重金属含量反演精度的影响研究[J]. 光谱学与光谱分析, 2024, 44(5): 1449-1456. |
BAI Z F, HAN L, JIANG X H, et al. Effect of differential spectral transformation on soil heavy metal content inversion accuracy[J]. Spectroscopy and Spectral Analysis, 2024, 44(5): 1449-1456. (in Chinese with English abstract) | |
[17] | 包青岭, 丁建丽, 王敬哲, 等. 基于随机森林算法的土壤有机质含量高光谱检测[J]. 干旱区地理, 2019, 42(6): 1404-1414. |
BAO Q L, DING J L, WANG J Z, et al. Hyperspectral detection of soil organic matter content based on random forest algorithm[J]. Arid Land Geography, 2019, 42(6): 1404-1414. (in Chinese with English abstract) | |
[18] | 郭飞, 许镇, 马宏宏, 等. 基于PCA的土壤Cd含量高光谱反演模型对比研究[J]. 光谱学与光谱分析, 2021, 41(5): 1625-1630. |
GUO F, XU Z, MA H H, et al. A comparative study of the hyperspectral inversion models based on the PCA for retrieving the Cd content in the soil[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1625-1630. (in Chinese with English abstract) | |
[19] | 秦倩如, 齐雁冰, 吴娟, 等. 基于高光谱的土壤游离铁随机森林模型估算研究[J]. 土壤通报, 2018, 49(6): 1286-1293. |
QIN Q R, QI Y B, WU J, et al. Estimation of random forest model of soil free iron based on hyperspectral data[J]. Chinese Journal of Soil Science, 2018, 49(6): 1286-1293. (in Chinese with English abstract) | |
[20] | 江振蓝, 杨玉盛, 沙晋明. 福州市土壤铬含量高光谱预测的GWR模型研究[J]. 生态学报, 2017, 37(23): 8117-8127. |
JIANG Z L, YANG Y S, SHA J M. Study on GWR model applied for hyperspectral prediction of soil chromium in Fuzhou City[J]. Acta Ecologica Sinica, 2017, 37(23): 8117-8127. (in Chinese with English abstract) | |
[21] | 江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报, 2017, 72(3): 533-544. |
JIANG Z L, YANG Y S, SHA J M. Application of GWR model in hyperspectral prediction of soil heavy metals[J]. Acta Geographica Sinica, 2017, 72(3): 533-544. (in Chinese with English abstract) | |
[22] | 贺军亮, 韩超山, 韦锐, 等. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019, 31(4): 96-103. |
HE J L, HAN C S, WEI R, et al. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land & Resources, 2019, 31(4): 96-103. (in Chinese with English abstract) | |
[23] | 王文才, 赵刘, 李绍稳, 等. 基于特征波长选择和建模的高光谱土壤总氮含量估测方法研究[J]. 浙江农业学报, 2018, 30(9): 1576-1584. |
WANG W C, ZHAO L, LI S W, et al. Prediction of soil total nitrogen content from hyperspectral data based on charateristic wave-length selection and modelling[J]. Acta Agriculturae Zhejiangensis, 2018, 30(9): 1576-1584. (in Chinese with English abstract) | |
[24] | LEARDI R, LUPIÁÑEZ GONZÁLEZ A. Genetic algorithms applied to feature selection in PLS regression: how and when to use them[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 41(2): 195-207. |
[25] | 钟翔君, 杨丽, 张东兴, 等. 砂壤潮土有机质含量可见-近红外光谱预测[J]. 光谱学与光谱分析, 2022, 42(9): 2924-2930. |
ZHONG X J, YANG L, ZHANG D X, et al. Prediction of organic matter content in sandy fluvo-aquic soil by visible-near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2924-2930. (in Chinese with English abstract) | |
[26] | 于雷, 洪永胜, 周勇, 等. 高光谱估算土壤有机质含量的波长变量筛选方法[J]. 农业工程学报, 2016, 32(13): 95-102. |
YU L, HONG Y S, ZHOU Y, et al. Wavelength variable selection methods for estimation of soil organic matter content using hyperspectral technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 95-102. (in Chinese with English abstract) | |
[27] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. |
[28] | SHERMAN D M, WAITE T D. Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV[J]. American Mineralogist, 1985, 70(11/12): 1262-1269. |
[29] | SHEN Q, XIA K, ZHANG S W, et al. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 222: 117191. |
[30] | 郭云开, 张思爱, 谢晓峰, 等. 基于GA-SVM的耕地土壤重金属含量高光谱反演方法的研究[J]. 土壤通报, 2021, 52(4): 968-974. |
GUO Y K, ZHANG S A, XIE X F, et al. The hyperspectral inversion method of heavy metal contents in cultivated soils based on GA-SVM[J]. Chinese Journal of Soil Science, 2021, 52(4): 968-974. (in Chinese with English abstract) | |
[31] | 王丽爱, 马昌, 周旭东, 等. 基于随机森林回归算法的小麦叶片SPAD值遥感估算[J]. 农业机械学报, 2015, 46(1): 259-265. |
WANG L A, MA C, ZHOU X D, et al. Estimation of wheat leaf SPAD value using RF algorithmic model and remote sensing data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 259-265. (in Chinese with English abstract) | |
[32] | 冯海宽, 杨福芹, 杨贵军, 等. 基于特征光谱参数的苹果叶片叶绿素含量估算[J]. 农业工程学报, 2018, 34(6): 182-188. |
FENG H K, YANG F Q, YANG G J, et al. Estimation of chlorophyll content in apple leaves base(d) on spectral feature parameters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6): 182-188. (in Chinese with English abstract) | |
[33] | 张文钧, 蒋良孝, 张欢, 等. 一种基于偏差-方差权衡的贝叶斯分类学习框架[J]. 中国科学: 信息科学, 2023, 53(6): 1078-1095. |
ZHANG W J, JIANG L X, ZHANG H, et al. Bayesian classification learning framework based on bias-variance trade-off[J]. Scientia Sinica(Informationis), 2023, 53(6): 1078-1095. (in Chinese with English abstract) | |
[34] | 崔禹, 韩玲, 韩霁昌, 等. 基于PCA-PLS的土壤重金属高光谱反演研究[J]. 甘肃科学学报, 2022, 34(2): 15-22. |
CUI Y, HAN L, HAN J C, et al. Hyperspectral inversion study of soil heavy metals based on PCA-PLS[J]. Journal of Gansu Sciences, 2022, 34(2): 15-22. (in Chinese with English abstract) |
[1] | TAN Yali, GAO Mengxiang, LI Xiaojie, ZHOU Yingjie, XIONG Jian, ZENG Ziqi, LI Xiao, YANG Hua. Quality of mainly cultivated walnuts in Hubei Province of China at different harvest periods [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1459-1468. |
[2] | YUE Li, ZHUANG Hongmei, ZULIPIYA· Maimaiti, WANG Jiamin, MAO Hongyan, ZHANG Yingxian, NIGARY· Yadikar, YU Ming. Comprehensive evaluation of the texture quality of turnip succulent root based on principal component analysis and cluster analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1057-1071. |
[3] | LIU Sitong, HOU Yu, PAN Jiaquan, ZHOU Huanan, CUI Liang, WAN Bo, YU Tao. Physiological response of sweetpotato to the low temperature and evaluation of cold tolerance [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 767-778. |
[4] | TAN Jingru, HU Qizan, YUE Zhichen, TAO Peng, LEI Juanli, LI Biyuan, ZHAO Yanting, ZANG Yunxiang. Comprehensive evaluation system for heat tolerance of seedling-edible Chinese cabbage (Brassica rapa L. ssp.) based on chlorophyll fluorescence parameters [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 288-299. |
[5] | PAN Zhihong, WEN Xueting, YANG Hua, LYU Wentao, ZHANG Junjie, XIAO Yingping. Study on developmental changes of amino acid spectrum in Muscovy duck muscle [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2010-2019. |
[6] | XUE Xianbin, JIA Qiong, CHEN Zhengfeng, LI Ruiyuan, CHEN Qingfu, SHI Taoxiong. Comprehensive evaluation of agronomic characteristics of recombinant inbred lines of Tartary buckwheat based on principal component analysis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 748-759. |
[7] | WANG Yu, WANG Hong, XIAO Jiujun, LI Kexiang, XING Dan, ZHANG Yongliang, CHEN Yang, ZHANG Lanyue. Numerical estimation of chlorophyll in pepper leaves based on optimized vegetation index combination [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2109-2120. |
[8] | YE Lei, ZHANG Bo, YANG Xuezhen, LI Xiaolin, ZHANG Xiaoping, TAN Wei. Feasibility of Auricularia cornea cultivation with bamboo sawdust instead of wood sawdust and comprehensive evaluation of quality [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1416-1426. |
[9] | ZHANG Hongmei, WANG Baojun, SHEN Yaqiang, CHENG Wangda. Response of yield and quality of high-quality japonica rice with different grain shapes to regulation of sowing date in northern Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2751-2762. |
[10] | WANG Ruyue, LUO Shasha, ZHEN Ziyi, WU Jialong, XU Yeyong, SUN Yali, HU Xiaojing, HU Haifang. Study on the characteristics of different maturity of apricot plum Flavor Queen fruit [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2865-2877. |
[11] | ZHAI Yilan, ZHANG Chulei, CHU Aixiang, GAO Junge, XIA Qingqing, LU Zhichang. Phenotypic diversity in 27 Acer species [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2621-2635. |
[12] | PENG Dandan, CHEN Dagang, XU Kaiwei, YOU Haoyu, YANG Ran, LIAO Huiping, CHEN Yuanxue. Effects of coconut-bran compound substrate on the growth and root characteristics of kiwifruit rootstock seedlings [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2364-2377. |
[13] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[14] | MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216. |
[15] | ZHAO Yuhong, HE Wen, LI Gen, WANG Qiang, XIE Rui, WANG Yan, CHEN Qing, WANG Xiaorong. Fruit quality of Citrus maxima (Burm.) Merrill and its bud mutants varieties in Sichuan area [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 995-1004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||