Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (10): 2364-2377.DOI: 10.3969/j.issn.1004-1524.20221324
• Horticultural Science • Previous Articles Next Articles
PENG Dandan1(), CHEN Dagang1, XU Kaiwei1, YOU Haoyu1, YANG Ran1, LIAO Huiping2, CHEN Yuanxue1,*(
)
Received:
2022-09-13
Online:
2023-10-25
Published:
2023-10-31
CLC Number:
PENG Dandan, CHEN Dagang, XU Kaiwei, YOU Haoyu, YANG Ran, LIAO Huiping, CHEN Yuanxue. Effects of coconut-bran compound substrate on the growth and root characteristics of kiwifruit rootstock seedlings[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2364-2377.
供试原料 Material | 容重 Bulk density/ (g· cm-3) | 总孔隙度 Total porosity/% | 通气孔隙 Aeration porosity/ % | 持水孔隙 Water- holding porosity/ % | 气水比 Air water ratio | 有机质 含量 Organic matter content/ % | 全氮 含量 Total nitrogen content/ % | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷 含量 Available phosphorus content/ (mg·kg-1) | 速效钾 含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
椰糠 | 0.12 | 73.16 | 29.93 | 43.24 | 0.69 | 82.36 | 0.42 | 358.57 | 161.52 | 8 854.48 | 5.88 | 1.60 |
Coconut-bran | ||||||||||||
泥炭Peat | 0.15 | 80.32 | 5.85 | 74.47 | 0.08 | 67.99 | 0.77 | 1 125.82 | 302.28 | 1 619.90 | 5.23 | 0.73 |
珍珠岩 | 0.07 | 64.65 | 31.40 | 33.24 | 0.95 | 0.84 | 0 | 3.44 | 14.18 | 688.63 | 7.80 | 0 |
Pearlite |
Table 1 Physical and chemical properties of substrate materials
供试原料 Material | 容重 Bulk density/ (g· cm-3) | 总孔隙度 Total porosity/% | 通气孔隙 Aeration porosity/ % | 持水孔隙 Water- holding porosity/ % | 气水比 Air water ratio | 有机质 含量 Organic matter content/ % | 全氮 含量 Total nitrogen content/ % | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷 含量 Available phosphorus content/ (mg·kg-1) | 速效钾 含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
椰糠 | 0.12 | 73.16 | 29.93 | 43.24 | 0.69 | 82.36 | 0.42 | 358.57 | 161.52 | 8 854.48 | 5.88 | 1.60 |
Coconut-bran | ||||||||||||
泥炭Peat | 0.15 | 80.32 | 5.85 | 74.47 | 0.08 | 67.99 | 0.77 | 1 125.82 | 302.28 | 1 619.90 | 5.23 | 0.73 |
珍珠岩 | 0.07 | 64.65 | 31.40 | 33.24 | 0.95 | 0.84 | 0 | 3.44 | 14.18 | 688.63 | 7.80 | 0 |
Pearlite |
处理 Treatment | 物料构成Material composition/% | ||
---|---|---|---|
椰糠Coconut bran | 泥炭Peat | 珍珠岩Perlite | |
T1 | 100 | 0 | 0 |
T2 | 80 | 10 | 10 |
T3 | 60 | 20 | 20 |
T4 | 40 | 30 | 30 |
T5 | 20 | 40 | 40 |
T6 | 0 | 50 | 50 |
T7 | 33.33 | 33.33 | 33.33 |
Table 2 The compound substrate in different volume ratio
处理 Treatment | 物料构成Material composition/% | ||
---|---|---|---|
椰糠Coconut bran | 泥炭Peat | 珍珠岩Perlite | |
T1 | 100 | 0 | 0 |
T2 | 80 | 10 | 10 |
T3 | 60 | 20 | 20 |
T4 | 40 | 30 | 30 |
T5 | 20 | 40 | 40 |
T6 | 0 | 50 | 50 |
T7 | 33.33 | 33.33 | 33.33 |
Fig.1 Physical properties of different compound substrate Different lowercase letters indicate significant differences among the different treatment at the 0.05 probability level. The same as below.
处理编号 Treatment | 有机质含量 Organic matter content/% | 全氮含量 Total nitrogen content/% | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
---|---|---|---|---|---|---|---|
T1 | 82.36±0.78 a | 0.42±0.01 e | 358.57±48.21 f | 161.52±3.42 e | 8 854.48±74.61 a | 5.88±0.08 b | 1.60±0.07 a |
T2 | 71.68±1.13 b | 0.46±0.01 d | 826.44±36.19 e | 228.15±1.95 d | 8 117.78±76.77 b | 5.78±0.16 b | 1.42±0.08 b |
T3 | 65.77±1.85 c | 0.48±0.01 cd | 907.15±23.90 d | 232.12±2.95 cd | 5 183.28±110.67 c | 5.58±0.04 c | 1.22±0.04 c |
T4 | 55.52±2.04 d | 0.49±0.02 bc | 962.54±28.38 c | 235.06±2.10 bc | 3 590.3±148.68 d | 5.48±0.08 cd | 0.92±0.04 d |
T5 | 47.12±2.04 f | 0.51±0.02 ab | 1 049.54±64.53 b | 239.61±3.92 b | 2 194.16±54.26 f | 5.42±0.08 d | 0.72±0.04 f |
T6 | 40.40±2.33 g | 0.52±0.01 a | 1 114.59±43.56 a | 247.74±9.34 a | 1 054.48±69.16 g | 5.38±0.11 d | 0.50±0.01 g |
T7 | 52.75±1.24 e | 0.50±0.02 ab | 1 003.60±29.75 bc | 237.13±2.04 bc | 2 748.1±68.76 e | 5.46±0.09 cd | 0.80±0.01 e |
CK | 1.77±0.20 h | 0.09±0.01 f | 115.16±3.46 g | 16.08±0.79 f | 172.73±6.14 h | 7.58±0.08 a | 0.12±0.04 h |
Table 3 Chemical properties of different compound substrates
处理编号 Treatment | 有机质含量 Organic matter content/% | 全氮含量 Total nitrogen content/% | 碱解氮含量 Alkali hydrolyzable nitrogen content/ (mg·kg-1) | 有效磷含量 Available phosphorus content/(mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | pH值 pH value | 电导率 Electrical conductivity/ (mS·cm-1) |
---|---|---|---|---|---|---|---|
T1 | 82.36±0.78 a | 0.42±0.01 e | 358.57±48.21 f | 161.52±3.42 e | 8 854.48±74.61 a | 5.88±0.08 b | 1.60±0.07 a |
T2 | 71.68±1.13 b | 0.46±0.01 d | 826.44±36.19 e | 228.15±1.95 d | 8 117.78±76.77 b | 5.78±0.16 b | 1.42±0.08 b |
T3 | 65.77±1.85 c | 0.48±0.01 cd | 907.15±23.90 d | 232.12±2.95 cd | 5 183.28±110.67 c | 5.58±0.04 c | 1.22±0.04 c |
T4 | 55.52±2.04 d | 0.49±0.02 bc | 962.54±28.38 c | 235.06±2.10 bc | 3 590.3±148.68 d | 5.48±0.08 cd | 0.92±0.04 d |
T5 | 47.12±2.04 f | 0.51±0.02 ab | 1 049.54±64.53 b | 239.61±3.92 b | 2 194.16±54.26 f | 5.42±0.08 d | 0.72±0.04 f |
T6 | 40.40±2.33 g | 0.52±0.01 a | 1 114.59±43.56 a | 247.74±9.34 a | 1 054.48±69.16 g | 5.38±0.11 d | 0.50±0.01 g |
T7 | 52.75±1.24 e | 0.50±0.02 ab | 1 003.60±29.75 bc | 237.13±2.04 bc | 2 748.1±68.76 e | 5.46±0.09 cd | 0.80±0.01 e |
CK | 1.77±0.20 h | 0.09±0.01 f | 115.16±3.46 g | 16.08±0.79 f | 172.73±6.14 h | 7.58±0.08 a | 0.12±0.04 h |
Fig.2 Changes of chlorophyll SPAD value of kiwifruit rootstock seedling leaves in different periods under different compound substrate treatments Different lowercase letters indicate the mean value of the same treatment were significantly different among different treatments at the 0.05 probability level.
Fig.3 Plant length, stem diameter, dry matter accumulation and root shoot ratio of kiwifruit rootstock seedlings under different compound substrate treatments
Fig.6 Correlation analysis between physical and chemical properties of substrate and growth characteristics of kiwifruit rootstock seedlings BD, Bulk density; TP, Total porosity; AP, Aeration porosity; WP, Water-holding porosity; AWR, The ratio of aeration porosity (AP) to water-holding porosity (WP); OM, Organic matter; TN, Total nitrogen; AN, Alkali hydrolyzable nitrogen; AP, Available phosphorus; AK, Available potassium; PH, Plant height; SD, Stem diameter; DW, Dry matter weight; RSR, Root shoot ratio; SPAD, Chlorophyll SPAD value; ChTRL, Total root length; TRSA, Total root surface area; TRV, Total root volume; ARD, Average root diameter; RN, The nitrogen content in roots; RP, The phosphorus content in roots; LK, The potassium content in leaves. The same as below.
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累积贡献率 Cumulative contribution rate/% |
---|---|---|---|
PC1 | 8.756 | 72.966 | 72.966 |
PC2 | 2.135 | 17.788 | 90.754 |
PC3 | 0.424 | 3.536 | 94.290 |
PC4 | 0.277 | 2.310 | 96.600 |
PC5 | 0.130 | 1.079 | 97.679 |
PC6 | 0.084 | 0.701 | 98.381 |
PC7 | 0.072 | 0.596 | 98.977 |
PC8 | 0.053 | 0.446 | 99.423 |
PC9 | 0.025 | 0.205 | 99.628 |
PC10 | 0.021 | 0.171 | 99.799 |
PC11 | 0.018 | 0.147 | 99.946 |
PC12 | 0.006 | 0.054 | 100.000 |
Table 4 Principal component variance contribution of growth characteristics of kiwifruit rootstock seedlings under different compound substrate treatments
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution rate/% | 累积贡献率 Cumulative contribution rate/% |
---|---|---|---|
PC1 | 8.756 | 72.966 | 72.966 |
PC2 | 2.135 | 17.788 | 90.754 |
PC3 | 0.424 | 3.536 | 94.290 |
PC4 | 0.277 | 2.310 | 96.600 |
PC5 | 0.130 | 1.079 | 97.679 |
PC6 | 0.084 | 0.701 | 98.381 |
PC7 | 0.072 | 0.596 | 98.977 |
PC8 | 0.053 | 0.446 | 99.423 |
PC9 | 0.025 | 0.205 | 99.628 |
PC10 | 0.021 | 0.171 | 99.799 |
PC11 | 0.018 | 0.147 | 99.946 |
PC12 | 0.006 | 0.054 | 100.000 |
指标 Index | 主成分载荷矩阵 Principal component loading matrix | 主成分特征向量 Principal component feature vector | ||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
株高PH (X1) | 0.860 | 0.435 | 0.087 | 0.079 |
茎粗SD (X2) | 0.746 | 0.613 | 0.047 | 0.167 |
干物质积累量DW(X3) | 0.959 | 0.223 | 0.128 | -0.023 |
根冠比RSR (X4) | 0.118 | -0.871 | 0.125 | -0.381 |
叶绿素含量 | 0.906 | 0.322 | 0.108 | 0.025 |
SPAD (X5) | ||||
总根长RL (X6) | 0.967 | -0.131 | 0.173 | -0.172 |
总根表面积 | 0.984 | -0.008 | 0.161 | -0.123 |
RAS (X7) | ||||
总根体积RV (X8) | 0.983 | 0.101 | 0.147 | -0.077 |
平均根直径 | 0.568 | 0.647 | 0.014 | 0.203 |
ARD (X9) | ||||
根氮含量RN (X10) | 0.817 | 0.480 | 0.074 | 0.103 |
根磷含量RP (X11) | 0.961 | 0.163 | 0.136 | -0.048 |
叶钾含量LK (X12) | -0.164 | -0.923 | 0.085 | -0.368 |
Table 5 Principal component loading matrix and eigenvector of growth characteristics of kiwifruit rootstock seedlings under different compound substrate treatments
指标 Index | 主成分载荷矩阵 Principal component loading matrix | 主成分特征向量 Principal component feature vector | ||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
株高PH (X1) | 0.860 | 0.435 | 0.087 | 0.079 |
茎粗SD (X2) | 0.746 | 0.613 | 0.047 | 0.167 |
干物质积累量DW(X3) | 0.959 | 0.223 | 0.128 | -0.023 |
根冠比RSR (X4) | 0.118 | -0.871 | 0.125 | -0.381 |
叶绿素含量 | 0.906 | 0.322 | 0.108 | 0.025 |
SPAD (X5) | ||||
总根长RL (X6) | 0.967 | -0.131 | 0.173 | -0.172 |
总根表面积 | 0.984 | -0.008 | 0.161 | -0.123 |
RAS (X7) | ||||
总根体积RV (X8) | 0.983 | 0.101 | 0.147 | -0.077 |
平均根直径 | 0.568 | 0.647 | 0.014 | 0.203 |
ARD (X9) | ||||
根氮含量RN (X10) | 0.817 | 0.480 | 0.074 | 0.103 |
根磷含量RP (X11) | 0.961 | 0.163 | 0.136 | -0.048 |
叶钾含量LK (X12) | -0.164 | -0.923 | 0.085 | -0.368 |
处理编号 Tratment | PC1 | PC2 | 综合评分 Composite score | 排名 Ranking |
---|---|---|---|---|
T1 | -0.921 | -1.118 | -0.871 | 7 |
T2 | -0.296 | -1.218 | -0.433 | 6 |
T3 | 0.211 | -0.968 | -0.018 | 5 |
T4 | 0.419 | -0.187 | 0.272 | 4 |
T5 | 1.194 | 0.275 | 0.920 | 1 |
T6 | 0.844 | 0.999 | 0.794 | 2 |
T7 | 0.572 | 0.905 | 0.578 | 3 |
CK | -2.023 | 1.310 | -1.243 | 8 |
Table 6 Comprehensive evaluation of growth characteristics of kiwifruit rootstock seedlings under different compound substrate treatments
处理编号 Tratment | PC1 | PC2 | 综合评分 Composite score | 排名 Ranking |
---|---|---|---|---|
T1 | -0.921 | -1.118 | -0.871 | 7 |
T2 | -0.296 | -1.218 | -0.433 | 6 |
T3 | 0.211 | -0.968 | -0.018 | 5 |
T4 | 0.419 | -0.187 | 0.272 | 4 |
T5 | 1.194 | 0.275 | 0.920 | 1 |
T6 | 0.844 | 0.999 | 0.794 | 2 |
T7 | 0.572 | 0.905 | 0.578 | 3 |
CK | -2.023 | 1.310 | -1.243 | 8 |
[1] | WARRINGTON I J, WESTON G C. Kiwifruits: science and management[M]. Auckland: Ray Richards Publisher, 1990: 183-204. |
[2] | 黄诚, 周长春, 李伟. 猕猴桃的营养保健功能与开发利用研究[J]. 食品科技, 2007, 32(4): 51-55. |
HUANG C, ZHOU C C, LI W. Nutrition and health care function of kiwi fruit and its processing technique[J]. Food Science and Technology, 2007, 32(4): 51-55. (in Chinese with English abstract) | |
[3] | 齐秀娟, 郭丹丹, 王然, 等. 我国猕猴桃产业发展现状及对策建议[J]. 果树学报, 2020, 37(5): 754-763. |
QI X J, GUO D D, WANG R, et al. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of Fruit Science, 2020, 37(5): 754-763. (in Chinese with English abstract) | |
[4] | WEBSTER A D. Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity[J]. New Zealand Journal of Crop and Horticultural Science, 1995, 23(4): 373-382. |
[5] | 陈锦永, 方金豹, 齐秀娟, 等. 猕猴桃砧木研究进展[J]. 果树学报, 2015, 32(5): 959-968. |
CHEN J Y, FANG J B, QI X J, et al. Research progress on rootstock of kiwifruit[J]. Journal of Fruit Science, 2015, 32(5): 959-968. (in Chinese with English abstract) | |
[6] | GJELOSHI G, THOMAI T, VRAPI H. Influence of supporter substrate on the rooting percentage of kiwifruit cuttings (Actinide Delicious Cv. Hayward)[J]. International Refereed Journal of Engineering and Science, 2014, 3 (12): 10-14. |
[7] | 李雪, 李红莉, 逄宏扬. 不同基质对软枣猕猴桃扦插育苗的影响[J]. 中国林副特产, 2021(6): 6-7. |
LI X, LI H L, PANG H Y. Effects of different substrates on cutting seedling of Actinidia arguta Siet.et Zucc[J]. Forest by-Product and Speciality in China, 2021(6): 6-7. (in Chinese with English abstract) | |
[8] | 朱世东, 徐文娟, 赵国荣. 多功能营养型蔬菜无土栽培基质的特性研究[J]. 应用生态学报, 2002, 13(4): 425-428. |
ZHU S D, XU W J, ZHAO G R. Characteristics of functional and nutritious soilless culture substrate for vegetables[J]. Chinese Journal of Applied Ecology, 2002, 13(4): 425-428. (in Chinese with English abstract) | |
[9] | 邵兴华, 熊佳文, 季天委. 无土栽培常用营养液及应用综述[J]. 东北农业科学, 2018, 43(2): 40-43. |
SHAO X H, XIONG J W, JI T W. A review on soilless culture solutions and their application[J]. Journal of Northeast Agricultural Sciences, 2018, 43(2): 40-43. (in Chinese with English abstract) | |
[10] | BOLDRIN A, HARTLING K R, LAUGEN M, et al. Environmental inventory modelling of the use of compost and peat in growth media preparation[J]. Resources, Conservation and Recycling, 2010, 54(12): 1250-1260. |
[11] | 张婧, 吴慧, 程云霞, 等. 椰糠复合基质对番茄穴盘幼苗生长效应的综合评价[J]. 土壤通报, 2021, 52(5): 1156-1164. |
ZHANG J, WU H, CHENG Y X, et al. Comprehensive evaluation of the growth effect of coconut-bran compound substrate on tomato plug seedling[J]. Chinese Journal of Soil Science, 2021, 52(5): 1156-1164. (in Chinese with English abstract) | |
[12] | ABAD M, NOGUERA P, PUCHADES R, et al. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants[J]. Bioresource Technology, 2002, 82(3): 241-245. |
[13] | 代惠洁, 纪祥龙, 杜迎刚. 椰糠替代草炭作番茄穴盘育苗基质的研究[J]. 北方园艺, 2015(9): 46-48. |
DAI H J, JI X L, DU Y G. Study on substitution of peat with coconut chaff as substrates on growth of tomato seedlings[J]. Northern Horticulture, 2015(9): 46-48. (in Chinese with English abstract) | |
[14] | 汪佳维, 王华磊, 王灿彬, 等. 蚯蚓粪、椰糠复配基质对三七种苗生长的影响[J]. 中国土壤与肥料, 2022(5): 107-115. |
WANG J W, WANG H L, WANG C B, et al. Effects of earthworm dung and coconut bran composite substrate on the growth of Panax notoginseng seedlings[J]. Soil and Fertilizer Sciences in China, 2022(5): 107-115. (in Chinese with English abstract) | |
[15] | 张天天, 赵远方, 韩莹琰, 等. 椰糠和蛭石混配基质对生菜幼苗生长的影响[J]. 北京农学院学报, 2019, 34(2): 42-46. |
ZHANG T T, ZHAO Y F, HAN Y Y, et al. Effects of coir and vermiculite mixed substrate on the growth of lettuce seedlings[J]. Journal of Beijing University of Agriculture, 2019, 34(2): 42-46. (in Chinese with English abstract) | |
[16] | 邱志豪, 汤柔颖, 韩莹琰, 等. 椰糠与蛭石混配基质理化性状及其对生菜生长的影响[J]. 北京农学院学报, 2019, 34(4): 62-65. |
QIU Z H, TANG R Y, HAN Y Y, et al. Physicochemical properties of coir dust and vermiculite mixed substrate and its effect on lettuce growth[J]. Journal of Beijing University of Agriculture, 2019, 34(4): 62-65. (in Chinese with English abstract) | |
[17] | 任志雨, 郜永博. 椰糠珍珠岩基质的体积对黄瓜幼苗生长和质量的影响[J]. 江苏农业科学, 2018, 46(15): 87-89. |
REN Z Y, GAO Y B. Effects of coir dust and perlite substrate volume on growth and quality of cucumber seedlings[J]. Jiangsu Agricultural Sciences, 2018, 46(15): 87-89. (in Chinese) | |
[18] | 曾斌, 何科佳, 龚碧涯, 等. 栽培基质添加椰糠和锯末对盆栽蓝莓生长的影响[J]. 中国南方果树, 2019, 48(4): 87-90. |
ZENG B, HE K J, GONG B Y, et al. Effects of adding coir and saw dust to culture medium on growth of ‘Legacy’ blueberry in pot[J]. South China Fruits, 2019, 48(4): 87-90. (in Chinese) | |
[19] | 张真真, 邱立军, 郭卫东. 不同栽培基质对蓝莓果实品质的影响[J]. 浙江农业科学, 2022, 63(2): 310-317. |
ZHANG Z Z, QIU L J, GUO W D. Effect of different culture medium on blueberry fruit quality[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(2): 310-317. (in Chinese) | |
[20] | 田河, 师校欣, 杜国强, 等. 基质及营养液对苹果矮砧组培苗移栽后生长的影响[J]. 北方园艺, 2013(6): 8-11. |
TIAN H, SHI X X, DU G Q, et al. Effect of substrate and nutrient solution supplied on growth of plantlets of apple dwarf rootstocks in vitro[J]. Northern Horticulture, 2013(6): 8-11. (in Chinese with English abstract) | |
[21] | VERŠIČ S, KOCSIS L, PULKO B. Influence of substrate pH on root growth, biomass and leaf mineral contents of grapevine rootstocks grown in pots[J]. Journal of Agricultural Science and Technology, 2016, 18: 483-490. |
[22] | SONNEVELD C, VOOGT W. Nutrient solutions for soilless cultures[M]// Plant Nutrition of Greenhouse Crops. Dordrecht: Springer Netherlands, 2009: 257-275. |
[23] | 郭世荣. 无土栽培学[M]. 2版. 北京: 中国农业出版社, 2011. |
[24] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[25] | 李志辉, 罗平. SPSS常用统计分析教程: SPSS 22.0中英文版[M]. 4版. 北京: 电子工业出版社, 2015. |
[26] | 吴澎, 贾朝爽, 范苏仪, 等. 樱桃品种果实品质因子主成分分析及模糊综合评价[J]. 农业工程学报, 2018, 34(17): 291-300. |
WU P, JIA C S, FAN S Y, et al. Principal component analysis and fuzzy comprehensive evaluation of fruit quality in cultivars of cherry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 291-300. (in Chinese with English abstract) | |
[27] | 王斌会. 多元统计分析及R语言建模[M]. 4版. 广州: 暨南大学出版社, 2016. |
[28] | 周璐瑶, 赵士文, 杜清洁, 等. 不同花生壳基质配比对西瓜生长、产量和品质的影响[J]. 中国瓜菜, 2022, 35(6): 29-34. |
ZHOU L Y, ZHAO S W, DU Q J, et al. Peanut shell substrate ratio affects growth, yield and quality of watermelon[J]. China Cucurbits and Vegetables, 2022, 35(6): 29-34. (in Chinese with English abstract) | |
[29] | 张莹莹, 孙周平, 刘广晶, 等. 根区通气方式对番茄根际气体环境及基质理化性质的影响[J]. 西北农业学报, 2011, 20(4): 106-110. |
ZHANG Y Y, SUN Z P, LIU G J, et al. Effect of different root-zone aeration methods on tomato media characteristic[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(4): 106-110. (in Chinese with English abstract) | |
[30] | 郭世荣. 固体栽培基质研究、开发现状及发展趋势[J]. 农业工程学报, 2005, 21(S2): 1-4. |
GUO S R. Research progress, current exploitations and developing trends of solid cultivation medium[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(S2): 1-4. (in Chinese with English abstract) | |
[31] | 张硕, 余宏军, 蒋卫杰. 发酵玉米芯或甘蔗渣基质的黄瓜育苗效果[J]. 农业工程学报, 2015, 31(11): 236-242. |
ZHANG S, YU H J, JIANG W J. Seedling effects of corncob and bagasse composting substrates in cucumber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 236-242. (in Chinese with English abstract) | |
[32] | 李彩霞, 林碧英, 杨玉凯, 等. 椰糠、蚯蚓粪复合基质对茄幼苗生长的影响[J]. 江苏农业科学, 2019, 47(2): 145-148. |
LI C X, LIN B Y, YANG Y K, et al. Effect of coconut bran and earthworm feces compound matrix on growth of eggplant seedlings[J]. Jiangsu Agricultural Sciences, 2019, 47(2): 145-148. (in Chinese) | |
[33] | 李谦盛, 郭世荣, 李式军. 基质EC值与作物生长的关系及其测定方法比较[J]. 中国蔬菜, 2004 (1): 70 - 71. |
LI Q S, GUO S R, LI S J. Relationship between matrix EC value and crop growth and the comparison of determination methods[J]. China Vegetables, 2004 (1): 70-71. (in Chinese) | |
[34] | 康红梅, 张启翔, 唐菁. 栽培基质的研究进展[J]. 土壤通报, 2005, 36(1): 124-127. |
KANG H M, ZHANG Q X, TANG J. Research advances on growth media[J]. Chinese Journal of Soil Science, 2005, 36(1): 124-127. (in Chinese with English abstract) | |
[35] | 黄春辉, 曲雪艳, 刘科鹏, 等. ‘金魁’猕猴桃园土壤理化性状、叶片营养与果实品质状况分析[J]. 果树学报, 2014, 31(6): 1091-1099. |
HUANG C H, QU X Y, LIU K P, et al. Analysis of soil physicochemical properties, leaf nutrients and fruit qualities in the orchards of ‘Jinkui’ kiwifruit (Actinidia deliciosa)[J]. Journal of Fruit Science, 2014, 31(6): 1091-1099. (in Chinese with English abstract) | |
[36] | 王保平, 周静, 史向远, 等. 不同配比杏鲍菇渣基质对西瓜生长及光合特性的影响[J]. 北方园艺, 2021(21): 8-15. |
WANG B P, ZHOU J, SHI X Y, et al. Effects of different proportion of Pleurotus eryngii residue substrates on growth and photosynthetic characteristics of watermelon[J]. Northern Horticulture, 2021(21): 8-15. (in Chinese with English abstract) | |
[37] | HARTUNG W, ZHANG J H, DAVIES W J. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil?[J]. Journal of Experimental Botany, 1994, 45(2): 221-226. |
[38] | 刘晚苟, 何泳怡, 谢海容, 等. 设施砂壤土容重对番茄幼苗生长和根系构型的影响[J]. 园艺学报, 2015, 42(7): 1313-1320. |
LIU W G, HE Y Y, XIE H R, et al. Effects of bulk density of sandy loam soil on seedling growth and root architecture of tomato plants in greenhouse[J]. Acta Horticulturae Sinica, 2015, 42(7): 1313-1320. (in Chinese with English abstract) | |
[39] | 朱根海, 张荣铣. 叶片含氮量与光合作用[J]. 植物生理学通讯, 1985, 21(2): 9-12. |
ZHU G H, ZHANG R X. Leaf nitrogen content and photosynthesis[J]. Plant Physiology Communications, 1985, 21(2): 9-12. (in Chinese) | |
[40] | 杨虎, 戈长水, 应武, 等. 遮荫对水稻冠层叶片SPAD值及光合、形态特性参数的影响[J]. 植物营养与肥料学报, 2014, 20(3): 580-587. |
YANG H, GE C S, YING W, et al. Effect of shading on leaf SPAD values and the characteristics of photosynthesis and morphology of rice canopy[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 580-587. (in Chinese with English abstract) | |
[41] | FARRISH K W. Spatial and temporal fine-root distribution in three Louisiana forest soils[J]. Soil Science Society of America Journal, 1991, 55(6): 1752-1757. |
[42] | FAN J W, DU Y L, TURNER N C, et al. Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil[J]. Plant and Soil, 2015, 392(1/2): 215-226. |
[43] | 韦兰英, 上官周平. 黄土高原白羊草、沙棘和辽东栎细根比根长特性[J]. 生态学报, 2006, 26(12): 4164-4170. |
WEI L Y, SHANGGUAN Z P. Specific root length characteristics of three plant species, Bothriochloa ischaemum, Hippophae rhamnoidess and Quercus liaotungensis in the Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(12): 4164-4170. (in Chinese with English abstract) | |
[44] | TRACY S R, BLACK C R, ROBERTS J A, et al. Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.)[J]. Environmental and Experimental Botany, 2013, 91: 38-47. |
[45] | 崔晓明, 张亚如, 张晓军, 等. 土壤紧实度对花生根系生长和活性变化的影响[J]. 华北农学报, 2016, 31(6): 131-136. |
CUI X M, ZHANG Y R, ZHANG X J, et al. Effects of soil compaction on root growth and activity of peanut[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(6): 131-136. (in Chinese with English abstract) | |
[46] | PETICILA A, SCAETEANU G V, MADJAR R, et al. Fertilization effect on mineral nutrition of Actinidia deliciosa(kiwi) cultivated on different substrates[J]. Agriculture and Agricultural Science Procedia, 2015, 6: 132-138. |
[47] | 王建. 猕猴桃树体生长发育,养分吸收利用与累积规律[D]. 杨凌: 西北农林科技大学, 2008. |
WANG J. The growth, nutrients uptake, utilization and accumulation in kiwifruit tree[D]. Yangling: Northwest A & F University, 2008. (in Chinese with English abstract) |
[1] | FU Hongfei, GUO Saisai, ZHENG Jirong. Effects of compound substrate with residues of Solanaceous vegetables on cucumber seedling [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1805-1813. |
[2] | ZHANG Ning, TAO Ronghao, LIU Peishi, HU Hanxiu, GAO Linlin, GUO Long, ZHU Zunyou, MA Youhua. Effects of organic fertilizer coupled with chemical fertilizer on growth and quality of tea and soil fertility [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1844-1852. |
[3] | LU Lanfei, ZHAO Xueping, MA Zheng, FANG Nan, LUO Yuqin, WANG Xiaomei, YE Hui, LEI Yuan, WANG Qiang, ZHANG Changpeng. Determination of 2, 4-epibrassinolide residues in Dendrobium officinale by solid phase extraction-high performance liquid chromatography-mass spectrometry [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1896-1903. |
[4] | LEI Lian. Effects of regulated deficit drip irrigation under film on plant growth, yield and water use of seed-producing maize [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1542-1549. |
[5] | ZHU Yan, WEI Jia, XU Zilong, LIN Tianbao, YANG Sheng, LIU Yan, LYU Zhiqiang, LIU Peigang. Effects of growth promoting hormones on physiological and biochemical indexes of mulberry leaves during senescence [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1278-1285. |
[6] | YE Lei, ZHANG Bo, YANG Xuezhen, LI Xiaolin, ZHANG Xiaoping, TAN Wei. Feasibility of Auricularia cornea cultivation with bamboo sawdust instead of wood sawdust and comprehensive evaluation of quality [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1416-1426. |
[7] | XIA Lunbin, MA Longlong, QIAO Deliang, HE Yanfei, JIANG Ping. Effects of Hyriopsis cumingii polysaccharides on growth performance, antioxidant activity and immune function in growing broiler [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 547-555. |
[8] | FAN Chuang, ZHAO Zihao, ZHANG Xuesong, YANG Shenbin. Prediction model of one season rice development period based on BP neural network [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. |
[9] | XU Shenping, YUAN Xiuyun, ZHANG Yan, LIANG Fang, JIANG Suhua, NIU Suyan, CUI Bo. Effects of temperature and light intensity on photosynthetic physiology and axillary bud development of flower stalk in Phalaenopsis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2389-2397. |
[10] | YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22. |
[11] | YANG Shengling, HUANG Xingcheng, LI Yu, LIU Yanling, ZHANG Yarong, ZHANG Yan, ZHANG Wen’an, JIANG Taiming. Effects of long-term organic and inorganic fertilizer application on growth, dry matter accumulation and yield of rice [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1815-1825. |
[12] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[13] | LI Wangxiong, ZHANG Yang, TANG Zhongqi, YU Jihua. Effects of balanced fertilization on growth, quality, mineral elements contents and yield of tomato cultivated in substrate in greenhouse [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1648-1660. |
[14] | WANG Feng, LIU Haitian, YU Qiaogang, YE Jing, HE Xinhua, ZHOU Yang, MA Junwei. Dry matter and nutrients accumulation characteristics of high-yield and conventional daylily varieties [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1669-1678. |
[15] | YANG Xiaofang, LI Yunduan, SUN Yunfan, LI Shaojia, MIAO Lixiang, ZHANG Yuchao, JIANG Guihua. Influence of substrate cultivation and soil cultivation on sucrose and citric acid accumulation of Yuexin strawberry [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1423-1430. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 528
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 221
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||