Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (9): 1872-1880.DOI: 10.3969/j.issn.1004-1524.20240696
• Animal Science • Previous Articles Next Articles
ZHOU Dan1(
), LIU Mei1, ZHANG Zheng1,2, ZOU Songbao1, NI Meng1, YUAN Julin1,*(
)
Received:2024-08-01
Online:2025-09-25
Published:2025-10-15
Contact:
YUAN Julin
CLC Number:
ZHOU Dan, LIU Mei, ZHANG Zheng, ZOU Songbao, NI Meng, YUAN Julin. Greenhouse gases emission flux and impact factors in shrimp and crab mixed culture pond[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1872-1880.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240696
| 池塘 Pond | 月份 Month | CODCr/ (mg· L-1) | TP/ (mg· L-1) | TN/ (mg· L-1) | AN/ (mg· L-1) | NN/ (mg· L-1) | pH | DO/ (mg· L-1) | WT/℃ | WS/ (km· h-1) | AT/℃ | RH/% | AP/ HPa |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Q1 | 6 | 32.2 ±1.3 | 0.50 ±0.03 | 1.90 ±0.13 | 0.07 ±0.01 | 0.015 ±0.002 | 9.50 ±0.21 | 7.61 ±0.14 | 29.9 ±1.3 | 3.2 ±0.5 | 31.2 ±1.4 | 61.8 ±1.2 | 994.4 ±3.2 |
| 7 | 34.1 ±2.0 | 0.51 ±0.02 | 1.80 ±0.12 | 0.01 ±0.01 | 0.005 ±0.001 | 8.50 ±0.27 | 7.28 ±0.13 | 32.7 ±2.1 | 4.8 ±0.4 | 34.2 ±1.6 | 63.8 ±1.7 | 1 001.7 ±3.6 | |
| 8 | 23.1 ±0.9 | 0.41 ±0.02 | 0.71 ±0.06 | 0.02 ±0.01 | 0.001 ±0.000 | 7.83 ±0.19 | 7.02 ±0.12 | 35.1 ±2.0 | 3.3 ±0.6 | 36.2 ±2.1 | 65.3 ±2.1 | 1 007.7 ±3.1 | |
| 9 | 28.4 ±1.6 | 0.43 ±0.03 | 1.30 ±0.09 | 0.07 ±0.02 | 0.013 ±0.003 | 8.41 ±0.31 | 7.65 ±0.14 | 26.8 ±1.7 | 4.6 ±0.3 | 29.2 ±1.3 | 77.0 ±1.9 | 1 014.3 ±3.4 | |
| 10 | 32.6 ±2.3 | 1.70 ±0.07 | 0.20 ±0.06 | 0.13 ±0.03 | 0.030 ±0.007 | 7.76 ±0.18 | 7.07 ±0.16 | 17.8 ±1.6 | 8.0 ±0.6 | 17.8 ±0.9 | 40.0 ±1.3 | 1 028.8 ±4.3 | |
| Q2 | 6 | 40.3 ±2.2 | 0.52 ±0.04 | 1.50 ±0.14 | 0.08 ±0.02 | 0.022 ±0.009 | 8.77 ±0.31 | 6.14 ±0.13 | 28.7 ±1.4 | 3.7 ±0.4 | 31.1 ±1.3 | 62.8 ±1.7 | 996.8 ±2.7 |
| 7 | 37.2 ±3.1 | 0.83 ±0.07 | 2.80 ±0.21 | 0.05 ±0.01 | 0.002 ±0.000 | 8.76 ±0.24 | 7.39 ±0.12 | 31.7 ±1.7 | 4.5 ±0.3 | 34.7 ±1.4 | 61.6 ±1.3 | 1 002.3 ±3.1 | |
| 8 | 34.6 ±1.7 | 1.64 ±0.11 | 0.90 ±0.09 | 0.21 ±0.06 | 0.013 ±0.004 | 7.76 ±0.19 | 6.18 ±0.14 | 35.2 ±2.3 | 3.1 ±0.5 | 35.8 ±1.9 | 64.7 ±2.0 | 1 007.2 ±3.0 | |
| 9 | 55.0 ±3.4 | 0.72 ±0.09 | 1.91 ±0.13 | 0.14 ±0.04 | 0.021 ±0.003 | 8.13 ±0.22 | 8.17 ±0.18 | 25.7 ±1.6 | 4.8 ±0.4 | 29.7 ±0.9 | 76.4 ±2.1 | 1 016.2 ±3.7 | |
| 10 | 34.7 ±2.6 | 0.46 ±0.06 | 1.41 ±0.17 | 0.33 ±0.08 | 0.061 ±0.009 | 7.52 ±0.16 | 6.52 ±0.16 | 17.8 ±1.4 | 8.3 ±0.7 | 17.6 ±1.1 | 40.3 ±1.4 | 1 027.3 ±3.1 | |
| Q3 | 6 | 35.3 ±2.7 | 0.54 ±0.06 | 2.40 ±0.19 | 0.08 ±0.03 | 0.015 ±0.004 | 9.58 ±0.32 | 7.81 ±0.17 | 28.3 ±1.2 | 4.8 ±0.4 | 30.1 ±1.4 | 60.4 ±1.2 | 997.5 ±2.0 |
| 7 | 46.2 ±2.4 | 0.97 ±0.12 | 2.10 ±0.17 | 0.05 ±0.01 | 0.006 ±0.001 | 9.62 ±0.34 | 7.27 ±0.16 | 32.8 ±1.3 | 5.2 ±0.5 | 34.5 ±1.3 | 58.2 ±1.4 | 1 001.8 ±3.3 | |
| 8 | 50.1 ±3.4 | 0.34 ±0.06 | 0.98 ±0.09 | 0.03 ±0.01 | 0.001 ±0.000 | 8.73 ±0.31 | 6.96 ±0.09 | 35.6 ±1.9 | 4.0 ±0.6 | 38.1 ±2.1 | 55.7 ±1.3 | 1 007.4 ±3.4 | |
| 9 | 57.0 ±3.7 | 1.08 ±0.14 | 1.71 ±0.21 | 0.09 ±0.02 | 0.014 ±0.003 | 8.91 ±0.29 | 7.59 ±0.19 | 25.7 ±1.4 | 2.0 ±0.2 | 33.4 ±1.9 | 65.9 ±2.1 | 1 014.5 ±2.9 | |
| 10 | 26.7 ±1.9 | 0.77 ±0.05 | 3.21 ±0.29 | 0.61 ±0.12 | 0.033 ±0.012 | 8.09 ±0.18 | 9.51 ±0.22 | 17.6 ±1.0 | 8.9 ±0.7 | 18.3 ±1.6 | 35.0 ±1.9 | 1 028.3 ±3.6 |
Table 1 Dynamics of environmental factors during culture process
| 池塘 Pond | 月份 Month | CODCr/ (mg· L-1) | TP/ (mg· L-1) | TN/ (mg· L-1) | AN/ (mg· L-1) | NN/ (mg· L-1) | pH | DO/ (mg· L-1) | WT/℃ | WS/ (km· h-1) | AT/℃ | RH/% | AP/ HPa |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Q1 | 6 | 32.2 ±1.3 | 0.50 ±0.03 | 1.90 ±0.13 | 0.07 ±0.01 | 0.015 ±0.002 | 9.50 ±0.21 | 7.61 ±0.14 | 29.9 ±1.3 | 3.2 ±0.5 | 31.2 ±1.4 | 61.8 ±1.2 | 994.4 ±3.2 |
| 7 | 34.1 ±2.0 | 0.51 ±0.02 | 1.80 ±0.12 | 0.01 ±0.01 | 0.005 ±0.001 | 8.50 ±0.27 | 7.28 ±0.13 | 32.7 ±2.1 | 4.8 ±0.4 | 34.2 ±1.6 | 63.8 ±1.7 | 1 001.7 ±3.6 | |
| 8 | 23.1 ±0.9 | 0.41 ±0.02 | 0.71 ±0.06 | 0.02 ±0.01 | 0.001 ±0.000 | 7.83 ±0.19 | 7.02 ±0.12 | 35.1 ±2.0 | 3.3 ±0.6 | 36.2 ±2.1 | 65.3 ±2.1 | 1 007.7 ±3.1 | |
| 9 | 28.4 ±1.6 | 0.43 ±0.03 | 1.30 ±0.09 | 0.07 ±0.02 | 0.013 ±0.003 | 8.41 ±0.31 | 7.65 ±0.14 | 26.8 ±1.7 | 4.6 ±0.3 | 29.2 ±1.3 | 77.0 ±1.9 | 1 014.3 ±3.4 | |
| 10 | 32.6 ±2.3 | 1.70 ±0.07 | 0.20 ±0.06 | 0.13 ±0.03 | 0.030 ±0.007 | 7.76 ±0.18 | 7.07 ±0.16 | 17.8 ±1.6 | 8.0 ±0.6 | 17.8 ±0.9 | 40.0 ±1.3 | 1 028.8 ±4.3 | |
| Q2 | 6 | 40.3 ±2.2 | 0.52 ±0.04 | 1.50 ±0.14 | 0.08 ±0.02 | 0.022 ±0.009 | 8.77 ±0.31 | 6.14 ±0.13 | 28.7 ±1.4 | 3.7 ±0.4 | 31.1 ±1.3 | 62.8 ±1.7 | 996.8 ±2.7 |
| 7 | 37.2 ±3.1 | 0.83 ±0.07 | 2.80 ±0.21 | 0.05 ±0.01 | 0.002 ±0.000 | 8.76 ±0.24 | 7.39 ±0.12 | 31.7 ±1.7 | 4.5 ±0.3 | 34.7 ±1.4 | 61.6 ±1.3 | 1 002.3 ±3.1 | |
| 8 | 34.6 ±1.7 | 1.64 ±0.11 | 0.90 ±0.09 | 0.21 ±0.06 | 0.013 ±0.004 | 7.76 ±0.19 | 6.18 ±0.14 | 35.2 ±2.3 | 3.1 ±0.5 | 35.8 ±1.9 | 64.7 ±2.0 | 1 007.2 ±3.0 | |
| 9 | 55.0 ±3.4 | 0.72 ±0.09 | 1.91 ±0.13 | 0.14 ±0.04 | 0.021 ±0.003 | 8.13 ±0.22 | 8.17 ±0.18 | 25.7 ±1.6 | 4.8 ±0.4 | 29.7 ±0.9 | 76.4 ±2.1 | 1 016.2 ±3.7 | |
| 10 | 34.7 ±2.6 | 0.46 ±0.06 | 1.41 ±0.17 | 0.33 ±0.08 | 0.061 ±0.009 | 7.52 ±0.16 | 6.52 ±0.16 | 17.8 ±1.4 | 8.3 ±0.7 | 17.6 ±1.1 | 40.3 ±1.4 | 1 027.3 ±3.1 | |
| Q3 | 6 | 35.3 ±2.7 | 0.54 ±0.06 | 2.40 ±0.19 | 0.08 ±0.03 | 0.015 ±0.004 | 9.58 ±0.32 | 7.81 ±0.17 | 28.3 ±1.2 | 4.8 ±0.4 | 30.1 ±1.4 | 60.4 ±1.2 | 997.5 ±2.0 |
| 7 | 46.2 ±2.4 | 0.97 ±0.12 | 2.10 ±0.17 | 0.05 ±0.01 | 0.006 ±0.001 | 9.62 ±0.34 | 7.27 ±0.16 | 32.8 ±1.3 | 5.2 ±0.5 | 34.5 ±1.3 | 58.2 ±1.4 | 1 001.8 ±3.3 | |
| 8 | 50.1 ±3.4 | 0.34 ±0.06 | 0.98 ±0.09 | 0.03 ±0.01 | 0.001 ±0.000 | 8.73 ±0.31 | 6.96 ±0.09 | 35.6 ±1.9 | 4.0 ±0.6 | 38.1 ±2.1 | 55.7 ±1.3 | 1 007.4 ±3.4 | |
| 9 | 57.0 ±3.7 | 1.08 ±0.14 | 1.71 ±0.21 | 0.09 ±0.02 | 0.014 ±0.003 | 8.91 ±0.29 | 7.59 ±0.19 | 25.7 ±1.4 | 2.0 ±0.2 | 33.4 ±1.9 | 65.9 ±2.1 | 1 014.5 ±2.9 | |
| 10 | 26.7 ±1.9 | 0.77 ±0.05 | 3.21 ±0.29 | 0.61 ±0.12 | 0.033 ±0.012 | 8.09 ±0.18 | 9.51 ±0.22 | 17.6 ±1.0 | 8.9 ±0.7 | 18.3 ±1.6 | 35.0 ±1.9 | 1 028.3 ±3.6 |
| 环境因子 Environmental factors | CO2排放通量 Emission flux of CO2 | CH4排放通量 Emission flux of CH4 | N2O排放通量 Emission flux of N2O |
|---|---|---|---|
| CODCr | -0.036 | 0.038 | 0.090 |
| TP | 0.161 | -0.280 | -0.150 |
| TN | -0.301 | 0.049 | 0.236 |
| AN | 0.307 | -0.529* | -0.579* |
| NN | 0.123 | -0.537* | -0.794** |
| pH | -0.716** | 0.322 | 0.515* |
| DO | 0.024 | -0.508 | -0.704** |
| WT | 0.006 | 0.517* | 0.712** |
| WS | 0.123 | -0.359 | -0.349 |
| AT | -0.001 | 0.471 | 0.614* |
| RH | -0.056 | 0.352 | 0.312 |
| AP | 0.558* | -0.439 | -0.748** |
Table 2 Correlations between greenhouse gases emission flux and environmental factors
| 环境因子 Environmental factors | CO2排放通量 Emission flux of CO2 | CH4排放通量 Emission flux of CH4 | N2O排放通量 Emission flux of N2O |
|---|---|---|---|
| CODCr | -0.036 | 0.038 | 0.090 |
| TP | 0.161 | -0.280 | -0.150 |
| TN | -0.301 | 0.049 | 0.236 |
| AN | 0.307 | -0.529* | -0.579* |
| NN | 0.123 | -0.537* | -0.794** |
| pH | -0.716** | 0.322 | 0.515* |
| DO | 0.024 | -0.508 | -0.704** |
| WT | 0.006 | 0.517* | 0.712** |
| WS | 0.123 | -0.359 | -0.349 |
| AT | -0.001 | 0.471 | 0.614* |
| RH | -0.056 | 0.352 | 0.312 |
| AP | 0.558* | -0.439 | -0.748** |
| 池塘 Pond | 中华绒螯蟹产量 Yield of E. sinensis/ (kg·hm-2) | 罗氏沼虾产量 Yield of M. rosenbergii/ (kg·hm-2) | 经济产值 Economic output/ (yuan·hm-2) | 毛利润 Gross profit/(yuan·hm-2) |
|---|---|---|---|---|
| Q1 | 1 519.5 | 0 | 182 340 | 92 340 |
| Q2 | 1 531.5 | 624.0 | 258 660 | 128 160 |
| Q3 | 1 566.0 | 183.0 | 209 880 | 110 880 |
Table 3 Economic benefits of ponds
| 池塘 Pond | 中华绒螯蟹产量 Yield of E. sinensis/ (kg·hm-2) | 罗氏沼虾产量 Yield of M. rosenbergii/ (kg·hm-2) | 经济产值 Economic output/ (yuan·hm-2) | 毛利润 Gross profit/(yuan·hm-2) |
|---|---|---|---|---|
| Q1 | 1 519.5 | 0 | 182 340 | 92 340 |
| Q2 | 1 531.5 | 624.0 | 258 660 | 128 160 |
| Q3 | 1 566.0 | 183.0 | 209 880 | 110 880 |
| 池塘 Pond | CO2排放强度 Emission intensity of CO2/ (g·m-2) | CH4排放强度 Emission intensity of CH4/ (g·m-2) | N2O排放强度 Emission intensity of N2O/ (g·m-2) | GWP/ (g·m-2) | UWP/ (g·kg-1) |
|---|---|---|---|---|---|
| Q1 | 69.66 | 9.76 | 0.02 | 348.61 | 2 294.24 |
| Q2 | 205.11 | 0.43 | -0.03 | 209.29 | 970.97 |
| Q3 | 105.28 | 4.39 | -0.01 | 226.81 | 1 296.80 |
Table 4 Emission intensity of greenhouse gases of ponds
| 池塘 Pond | CO2排放强度 Emission intensity of CO2/ (g·m-2) | CH4排放强度 Emission intensity of CH4/ (g·m-2) | N2O排放强度 Emission intensity of N2O/ (g·m-2) | GWP/ (g·m-2) | UWP/ (g·kg-1) |
|---|---|---|---|---|---|
| Q1 | 69.66 | 9.76 | 0.02 | 348.61 | 2 294.24 |
| Q2 | 205.11 | 0.43 | -0.03 | 209.29 | 970.97 |
| Q3 | 105.28 | 4.39 | -0.01 | 226.81 | 1 296.80 |
| [1] | RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359. |
| [2] | 沈贝蓓, 宋帅峰, 张丽娟, 等. 1981—2019年全球气温变化特征[J]. 地理学报, 2021, 76(11): 2660-2672. |
| SHEN B B, SONG S F, ZHANG L J, et al. Changes in global air temperature from 1981 to 2019[J]. Acta Geographica Sinica, 2021, 76(11): 2660-2672. (in Chinese with English abstract) | |
| [3] | 刘燕华, 李宇航, 王文涛. 中国实现“双碳” 目标的挑战、机遇与行动[J]. 中国人口·资源与环境, 2021, 31(9): 1-5. |
| LIU Y H, LI Y H, WANG W T. Challenges, opportunities and actions for China to achieve the targets of carbon peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 1-5. (in Chinese with English abstract) | |
| [4] | CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198-209. |
| [5] | BARTOSIEWICZ M, MARANGER R, PRZYTULSKA A, et al. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake[J]. Water Research, 2021, 196: 116985. |
| [6] | PICKARD A, WHITE S, BHATTACHARYYA S, et al. Greenhouse gas budgets of severely polluted urban lakes in India[J]. Science of the Total Environment, 2021, 798: 149019. |
| [7] | SUN H Y, LU X X, YU R H, et al. Eutrophication decreased CO2 but increased CH4 emissions from lake: a case study of a shallow Lake Ulansuhai[J]. Water Research, 2021, 201: 117363. |
| [8] | YANG P, LAI D Y F, YANG H, et al. Methane dynamics of aquaculture shrimp ponds in two subtropical estuaries, southeast China: dissolved concentration, net sediment release, and water oxidation[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1430-1445. |
| [9] | ZHANG Y, BLEEKER A, LIU J G. Nutrient discharge from China’s aquaculture industry and associated environmental impacts[J]. Environmental Research Letters, 2015, 10(4): 045002. |
| [10] | XIAO X, AGUSTI S, LIN F, et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture[J]. Scientific Reports, 2017, 7: 46613. |
| [11] | 丁维新, 袁俊吉, 刘德燕, 等. 淡水养殖系统温室气体CH4和N2O排放量研究进展[J]. 农业环境科学学报, 2020, 39(4): 749-761. |
| DING W X, YUAN J J, LIU D Y, et al. CH4 and N2O emissions from freshwater aquaculture[J]. Journal of Agro-Environment Science, 2020, 39(4): 749-761. (in Chinese with English abstract) | |
| [12] | 胡涛, 黄健, 丁颖, 等. 基于漂浮箱法和扩散模型法测定淡水养殖鱼塘甲烷排放通量的比较[J]. 环境科学, 2020, 41(2): 941-951. |
| HU T, HUANG J, DING Y, et al. Comparison of floating chamber and diffusion model methods for measuring methane emissions from inland fish-aquaculture ponds[J]. Environmental Science, 2020, 41(2): 941-951. (in Chinese with English abstract) | |
| [13] | WU S, HU Z Q, HU T, et al. Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China[J]. Atmospheric Environment, 2018, 175: 135-144. |
| [14] | 祝少华. 沿黄低洼盐碱地池塘养殖罗氏沼虾技术[J]. 中国水产, 2006(5): 34-36. |
| ZHU S H. Technique of pond farming Macrobrachium rosenbergii in low-lying saline-alkali lands along the Yellow River[J]. China Fisheries, 2006(5): 34-36. (in Chinese) | |
| [15] | 蒋巧丽, 许永久, 郑基, 等. 浙江披山海域主要虾蟹类时空生态位及种间联结性[J]. 应用生态学报, 2021, 32(7): 2604-2614. |
| JIANG Q L, XU Y J, ZHENG J, et al. Niches and interspecific association of major shrimp and crab species in Pishan waters of Zhejiang Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2604-2614. (in Chinese with English abstract) | |
| [16] | 房伟平, 范慧慧, 沈伟棋, 等. 河蟹塘套养大规格罗氏沼虾模式分析[J]. 科学养鱼, 2021(8): 34-35. |
| FANG W P, FAN H H, SHEN W Q, et al. Analysis of the polyculture mode of large-sized Macrobrachium rosenbergii in river crab ponds[J]. Scientific Fish Farming, 2021(8): 34-35. (in Chinese) | |
| [17] | 周聃, 刘梅, 房伟平, 等. 中华绒螯蟹-日本沼虾池塘套养大规格罗氏沼虾模式氮磷收支及养殖效果研究[J]. 淡水渔业, 2022, 52(5): 76-82. |
| ZHOU D, LIU M, FANG W P, et al. Study on nitrogen and phosphorus budget and aquaculture effect of large-scale Macrobrachium rosenbergii in Eriocheir sinensis-Japan M. nipponens pond[J]. Freshwater Fisheries, 2022, 52(5): 76-82. (in Chinese with English abstract) | |
| [18] | KESSAVALOU A, MOSIER A R, DORAN J W, et al. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management[J]. Journal of Environmental Quality, 1998, 27(5): 1094-1104. |
| [19] | LAMBERT M, FRÉCHETTE J L. Analytical techniques for measuring fluxes of CO2and CH4from hydroelectric reservoirs and natural water bodies[M]// Greenhouse gas emissions:fluxes and processes. Berlin: Springer-Verlag, 2005: 37-60. |
| [20] | Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: the physical science basis:contribution of working group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013. |
| [21] | 张东旭. 三疣梭子蟹、日本囊对虾和菲律宾蛤仔不同混养系统水-气界面CO2和CH4通量及系统碳收支的研究[D]. 青岛: 中国海洋大学, 2015. |
| ZHANG D X. Studies on CH4 and CO2 fluxes at water-air interface and carbon budgets of different culture systems with Portunus trituberculatus, Marsupenaeus japonicas and Ruditapes philippinarum[D]. Qingdao: Ocean University of China, 2015. (in Chinese with English abstract) | |
| [22] | 林海, 周刚, 李旭光, 等. 夏季池塘养殖中华绒螯蟹生态系统温室气体排放及综合增温潜势[J]. 水产学报, 2013, 37(3): 417-424. |
| LIN H, ZHOU G, LI X G, et al. Greenhouse gases emissions from pond culture ecosystem of Chinese mitten crab and their comprehensive global warming potentials in summer[J]. Journal of Fisheries of China, 2013, 37(3): 417-424. (in Chinese with English abstract) | |
| [23] | FRENZEL P, THEBRATH B, CONRAD R. Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance)[J]. FEMS Microbiology Ecology, 1990, 6(2): 149-158. |
| [24] | 程炳红, 郝庆菊, 江长胜. 水库温室气体排放及其影响因素研究进展[J]. 湿地科学, 2012, 10(1): 121-128. |
| CHENG B H, HAO Q J, JIANG C S. Research progress on the emission of greenhouse gases from reservoir and its influence factors[J]. Wetland Science, 2012, 10(1): 121-128. (in Chinese with English abstract) | |
| [25] | ZOU J W, HUANG Y, JIANG J Y, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochemical Cycles, 2005, 19(2): 2004GB002401. |
| [26] | FREEMAN C, NEVISON G B, KANG H, et al. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland[J]. Soil Biology and Biochemistry, 2002, 34(1): 61-67. |
| [27] | 邓晓, 廖晓兰, 黄璜. 稻-鸭复合生态系统产甲烷细菌数量[J]. 生态学报, 2004, 24(8): 1696-1700. |
| DENG X, LIAO X L, HUANG H. Studies on amount of methanogens in the rice-duck agroecosystem[J]. Acta Ecologica Sinica, 2004, 24(8): 1696-1700. (in Chinese with English abstract) | |
| [28] | 刘永茂, 付卫国, 沈明星, 等. 水生植物对蟹塘NH3挥发和N2O排放的影响[J]. 浙江农业科学, 2023, 64(3): 710-714. |
| LIU Y M, FU W G, SHEN M X, et al. Effects of aquatic plants on NH3 volatilization and N2O emission in crab pond[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(3): 710-714. (in Chinese with English abstract) | |
| [29] | 罗国芝, 邵李娜. 水产养殖活动中N2O的排放研究进展[J]. 中国水产科学, 2019, 26(3): 604-619. |
| LUO G Z, SHAO L N. Analysis of current research status and prospects of N2O emission from aquaculture production[J]. Journal of Fishery Sciences of China, 2019, 26(3): 604-619. (in Chinese with English abstract) | |
| [30] | EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1/2/3/4): 346-358. |
| [1] | REN Jindong, CHEN Honglin, NIU Baolong, XU Xiaojun, LOU Bao. Mining new housekeeping genes of Macrobrachium rosenbergii based on transcriptome analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1424-1429. |
| [2] | MI Songhua1, HUANG Zuhui2,*, ZHU Qibiao1, HUANG HExiao1, LI Baozhi1. Costbenefit assessment for greenhouse gas mitigation in ricebased agriculture [J]. , 2016, 28(4): 707-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||