Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (9): 1860-1871.DOI: 10.3969/j.issn.1004-1524.20240563
• Crop Science • Previous Articles Next Articles
YANG Chun1(
), LIANG Sihui1, WANG Anran1, CHEN Juan1, LI Yan1, LIN Kaiqin1, MI Xiaozeng1, QIAO Dahe1,2, CHEN Zhengwu1,2, GUO Yan1,*(
)
Received:2024-06-28
Online:2025-09-25
Published:2025-10-15
Contact:
GUO Yan
CLC Number:
YANG Chun, LIANG Sihui, WANG Anran, CHEN Juan, LI Yan, LIN Kaiqin, MI Xiaozeng, QIAO Dahe, CHEN Zhengwu, GUO Yan. Characteristic metabolite content and cold resistance of 54 tea germplasms[J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1860-1871.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240563
| 种质名称 Name | 种质来源 Origin | 种质名称 Name | 种质来源 Origin |
|---|---|---|---|
| GT-AS-19 | 安顺市Anshun City | GT-AS-80 | 安顺市Anshun City |
| GT-AS-37 | 安顺市Anshun City | GT-AS-81 | 安顺市Anshun City |
| GT-AS-38 | 安顺市Anshun City | GT-AS-82 | 安顺市Anshun City |
| GT-AS-41 | 安顺市Anshun City | GT-AS-83 | 安顺市Anshun City |
| GT-AS-54 | 安顺市Anshun City | GT-AS-94 | 安顺市Anshun City |
| GT-AS-55 | 安顺市Anshun City | GT-DY-08 | 都匀市Duyun City |
| GT-AS-56 | 安顺市Anshun City | GT-DZ-02 | 道真县Daozhen County |
| GT-AS-57 | 安顺市Anshun City | GT-DZ-06 | 道真县Daozhen County |
| GT-AS-58 | 安顺市Anshun City | HY | 道真县Daozhen County |
| GT-AS-60 | 安顺市Anshun City | GT-LP-03 | 黎平县Liping County |
| GT-AS-62 | 安顺市Anshun City | GT-LP-13 | 黎平县Liping County |
| GT-AS-63 | 安顺市Anshun City | GT-LP-14 | 黎平县Liping County |
| GT-AS-64 | 安顺市Anshun City | GT-LP-15 | 黎平县Liping County |
| GT-AS-65 | 安顺市Anshun City | GT-LP-22 | 黎平县Liping County |
| GT-AS-66 | 安顺市Anshun City | GT-SQ-10 | 石阡县Shiqian County |
| GT-AS-67 | 安顺市Anshun City | GT-SQ-13 | 石阡县Shiqian County |
| GT-AS-68 | 安顺市Anshun City | GT-SQ-14 | 石阡县Shiqian County |
| GT-AS-69 | 安顺市Anshun City | GT-GY-05 | 贵阳市Guiyang City |
| GT-AS-70 | 安顺市Anshun City | SCB | 湄潭县Meitan County |
| GT-AS-71 | 安顺市Anshun City | SLL | 湄潭县Meitan County |
| GT-AS-72 | 安顺市Anshun City | HJY-F1-64 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-73 | 安顺市Anshun City | HJY-F1-73 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-74 | 安顺市Anshun City | HJY-F1-76 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-75 | 安顺市Anshun City | HJY-F1-8 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-76 | 安顺市Anshun City | HJY-F1-102 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-77 | 安顺市Anshun City | HJY-F1-23 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-79 | 安顺市Anshun City | HJY-F1-55 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
Table 1 Information of 54 tea germplasms
| 种质名称 Name | 种质来源 Origin | 种质名称 Name | 种质来源 Origin |
|---|---|---|---|
| GT-AS-19 | 安顺市Anshun City | GT-AS-80 | 安顺市Anshun City |
| GT-AS-37 | 安顺市Anshun City | GT-AS-81 | 安顺市Anshun City |
| GT-AS-38 | 安顺市Anshun City | GT-AS-82 | 安顺市Anshun City |
| GT-AS-41 | 安顺市Anshun City | GT-AS-83 | 安顺市Anshun City |
| GT-AS-54 | 安顺市Anshun City | GT-AS-94 | 安顺市Anshun City |
| GT-AS-55 | 安顺市Anshun City | GT-DY-08 | 都匀市Duyun City |
| GT-AS-56 | 安顺市Anshun City | GT-DZ-02 | 道真县Daozhen County |
| GT-AS-57 | 安顺市Anshun City | GT-DZ-06 | 道真县Daozhen County |
| GT-AS-58 | 安顺市Anshun City | HY | 道真县Daozhen County |
| GT-AS-60 | 安顺市Anshun City | GT-LP-03 | 黎平县Liping County |
| GT-AS-62 | 安顺市Anshun City | GT-LP-13 | 黎平县Liping County |
| GT-AS-63 | 安顺市Anshun City | GT-LP-14 | 黎平县Liping County |
| GT-AS-64 | 安顺市Anshun City | GT-LP-15 | 黎平县Liping County |
| GT-AS-65 | 安顺市Anshun City | GT-LP-22 | 黎平县Liping County |
| GT-AS-66 | 安顺市Anshun City | GT-SQ-10 | 石阡县Shiqian County |
| GT-AS-67 | 安顺市Anshun City | GT-SQ-13 | 石阡县Shiqian County |
| GT-AS-68 | 安顺市Anshun City | GT-SQ-14 | 石阡县Shiqian County |
| GT-AS-69 | 安顺市Anshun City | GT-GY-05 | 贵阳市Guiyang City |
| GT-AS-70 | 安顺市Anshun City | SCB | 湄潭县Meitan County |
| GT-AS-71 | 安顺市Anshun City | SLL | 湄潭县Meitan County |
| GT-AS-72 | 安顺市Anshun City | HJY-F1-64 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-73 | 安顺市Anshun City | HJY-F1-73 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-74 | 安顺市Anshun City | HJY-F1-76 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-75 | 安顺市Anshun City | HJY-F1-8 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-76 | 安顺市Anshun City | HJY-F1-102 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-77 | 安顺市Anshun City | HJY-F1-23 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| GT-AS-79 | 安顺市Anshun City | HJY-F1-55 | 黄金芽自然杂交后代Natural hybridization offspring of tea cultivar Huangjinya |
| 类别 Category | 组分 Component | 含量Content/(mg·g-1) | 变异系数 Coefficient of variation/% | 遗传多样性指数 Genetic diversity index | |||
|---|---|---|---|---|---|---|---|
| 最小值 Minimum | 最大值 Maximum | 平均值 Average value | 标准差 Standard deviation | ||||
| 生物碱类Alkaloids | TB | 3.95 | 17.18 | 8.32 | 2.24 | 26.86 | 1.91 |
| TP | 0.06 | 0.87 | 0.17 | 0.14 | 82.28 | 1.40 | |
| Caf | 24.88 | 44.71 | 32.96 | 4.05 | 12.28 | 2.03 | |
| 酚酸类Phenolic acids | GA | 0.07 | 0.97 | 0.45 | 0.18 | 39.18 | 1.86 |
| 儿茶素类Catechins | EGC | 10.99 | 32.39 | 17.93 | 4.53 | 25.26 | 1.93 |
| C | 0.33 | 2.05 | 0.54 | 0.23 | 43.61 | 1.26 | |
| EC | 3.82 | 13.89 | 8.36 | 2.41 | 28.83 | 2.04 | |
| EGCG | 32.69 | 90.34 | 54.89 | 11.05 | 20.14 | 1.99 | |
| GCG | 6.34 | 14.46 | 7.18 | 1.32 | 18.37 | 1.37 | |
| ECG | 8.39 | 27.64 | 17.73 | 4.80 | 27.09 | 2.02 | |
| 氨基酸类Amino acids | Thea | 4.37 | 42.03 | 24.17 | 9.02 | 37.30 | 1.98 |
| Asp | 1.12 | 4.83 | 2.51 | 0.84 | 33.30 | 1.84 | |
| Ser | 0.61 | 1.73 | 1.15 | 0.27 | 23.39 | 1.90 | |
| Glu | 2.85 | 10.06 | 5.75 | 1.75 | 30.44 | 1.81 | |
| Gly | 0.02 | 0.26 | 0.10 | 0.05 | 51.53 | 1.74 | |
| His | 1.50 | 10.60 | 4.87 | 2.53 | 51.92 | 1.88 | |
| Arg | 1.05 | 11.79 | 6.95 | 2.81 | 40.49 | 2.04 | |
| Thr | — | 0.36 | 0.13 | 0.11 | 87.78 | 1.92 | |
| Ala | — | 0.76 | 0.26 | 0.18 | 68.66 | 1.77 | |
| Pro | 0.57 | 1.85 | 1.04 | 0.39 | 37.58 | 1.79 | |
| Cys | — | 0.02 | 0.01 | 0.01 | 101.42 | 1.64 | |
| Tyr | 0.01 | 0.15 | 0.07 | 0.04 | 57.16 | 2.01 | |
| Val | 1.57 | 5.06 | 3.63 | 0.99 | 27.40 | 1.95 | |
| Met | 0.01 | 0.30 | 0.12 | 0.07 | 59.64 | 1.93 | |
| Lys | — | 0.27 | 0.08 | 0.06 | 78.36 | 1.74 | |
| Leu | 0.04 | 0.30 | 0.14 | 0.05 | 37.25 | 1.66 | |
| Phe | 0.12 | 0.38 | 0.25 | 0.06 | 24.35 | 1.87 | |
Table 2 Biochemical components contents of 54 tea germplasms
| 类别 Category | 组分 Component | 含量Content/(mg·g-1) | 变异系数 Coefficient of variation/% | 遗传多样性指数 Genetic diversity index | |||
|---|---|---|---|---|---|---|---|
| 最小值 Minimum | 最大值 Maximum | 平均值 Average value | 标准差 Standard deviation | ||||
| 生物碱类Alkaloids | TB | 3.95 | 17.18 | 8.32 | 2.24 | 26.86 | 1.91 |
| TP | 0.06 | 0.87 | 0.17 | 0.14 | 82.28 | 1.40 | |
| Caf | 24.88 | 44.71 | 32.96 | 4.05 | 12.28 | 2.03 | |
| 酚酸类Phenolic acids | GA | 0.07 | 0.97 | 0.45 | 0.18 | 39.18 | 1.86 |
| 儿茶素类Catechins | EGC | 10.99 | 32.39 | 17.93 | 4.53 | 25.26 | 1.93 |
| C | 0.33 | 2.05 | 0.54 | 0.23 | 43.61 | 1.26 | |
| EC | 3.82 | 13.89 | 8.36 | 2.41 | 28.83 | 2.04 | |
| EGCG | 32.69 | 90.34 | 54.89 | 11.05 | 20.14 | 1.99 | |
| GCG | 6.34 | 14.46 | 7.18 | 1.32 | 18.37 | 1.37 | |
| ECG | 8.39 | 27.64 | 17.73 | 4.80 | 27.09 | 2.02 | |
| 氨基酸类Amino acids | Thea | 4.37 | 42.03 | 24.17 | 9.02 | 37.30 | 1.98 |
| Asp | 1.12 | 4.83 | 2.51 | 0.84 | 33.30 | 1.84 | |
| Ser | 0.61 | 1.73 | 1.15 | 0.27 | 23.39 | 1.90 | |
| Glu | 2.85 | 10.06 | 5.75 | 1.75 | 30.44 | 1.81 | |
| Gly | 0.02 | 0.26 | 0.10 | 0.05 | 51.53 | 1.74 | |
| His | 1.50 | 10.60 | 4.87 | 2.53 | 51.92 | 1.88 | |
| Arg | 1.05 | 11.79 | 6.95 | 2.81 | 40.49 | 2.04 | |
| Thr | — | 0.36 | 0.13 | 0.11 | 87.78 | 1.92 | |
| Ala | — | 0.76 | 0.26 | 0.18 | 68.66 | 1.77 | |
| Pro | 0.57 | 1.85 | 1.04 | 0.39 | 37.58 | 1.79 | |
| Cys | — | 0.02 | 0.01 | 0.01 | 101.42 | 1.64 | |
| Tyr | 0.01 | 0.15 | 0.07 | 0.04 | 57.16 | 2.01 | |
| Val | 1.57 | 5.06 | 3.63 | 0.99 | 27.40 | 1.95 | |
| Met | 0.01 | 0.30 | 0.12 | 0.07 | 59.64 | 1.93 | |
| Lys | — | 0.27 | 0.08 | 0.06 | 78.36 | 1.74 | |
| Leu | 0.04 | 0.30 | 0.14 | 0.05 | 37.25 | 1.66 | |
| Phe | 0.12 | 0.38 | 0.25 | 0.06 | 24.35 | 1.87 | |
Fig.2 Contents of alkaloids, phenolic acids, and catechins in tea germplasms with different cold resistance levels TB, Theobromine; TP, Theophylline; Caf, Caffeine; GA, Gallic acid; EGC, Epigallocatechin; C, Catechin; EC, Epicatechin; EGCG, Epigallocatechin gallate; GCG, Gallocatechin gallate; ECG, Epicatechin gallate. * and ** indicate significant differences at p<0.05 and p<0.01 levels, respectively. HR, R, M, and HS respectively represent highly cold resistance, cold resistance, moderate cold resistance, and higly cold sensitivity. The same as below.
Fig.3 Content of amino acids in tea germplasms with different cold resistance levels Thea, L-theanine; Asp, Aspartic acid; Ser, Serine; Glu, Glutamic acid; Gly, Glycine; His, Histidine; Arg, Arginine; Thr, Threonine; Ala, Alanine; Pro, Proline; Cys, Cysteine; Tyr, Tyrosine; Val, Valine; Met, Methionine; Lys, Lysine; Leu, Leucine; Phe, Phenylalanine. The same as below.
Fig.4 Correlation coefficients between biochemical components and freezing injury index I means freezing injury index; * and ** indicate significant correlations at p<0.05 and p<0.01 levels, respectively.
| 生化组分 Biochemical component | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 贡献率 Contribution rate | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EGCG | Thea | Ser | Glu | His | Arg | Thr | Ala | Tyr | Val | Lys | Leu | ||||
| EGCG | -0.56 | -0.22 | -0.14 | -0.15 | -0.13 | -0.11 | -0.14 | -0.09 | -0.12 | -0.07 | -0.13 | -0.05 | -0.11 | 0.12 | |
| Thea | 0.59 | 0.34 | -0.22 | 0.22 | 0.24 | 0.27 | 0.23 | 0.20 | 0.22 | 0.11 | 0.14 | 0.10 | 0.15 | 0.20 | |
| Ser | 0.71 | 0.74 | -0.51 | 0.48 | 0.49 | 0.40 | 0.60 | 0.60 | 0.65 | 0.50 | 0.37 | 0.44 | 0.59 | 0.53 | |
| Glu | 0.57 | 0.88 | -0.52 | 0.62 | 0.58 | 0.74 | 0.54 | 0.50 | 0.54 | 0.24 | 0.26 | 0.12 | 0.27 | 0.50 | |
| His | 0.49 | 0.78 | -0.41 | 0.62 | 0.42 | 0.65 | 0.41 | 0.40 | 0.48 | 0.07 | 0.30 | 0.07 | 0.23 | 0.38 | |
| Arg | 0.58 | 0.37 | -0.23 | 0.25 | 0.30 | 0.22 | 0.19 | 0.25 | 0.25 | 0.22 | 0.16 | 0.25 | 0.23 | 0.21 | |
| Thr | 0.63 | 0.72 | -0.31 | 0.42 | 0.58 | 0.41 | 0.37 | 0.49 | 0.53 | 0.49 | 0.09 | 0.35 | 0.42 | 0.45 | |
| Ala | 0.72 | 0.25 | -0.14 | 0.17 | 0.22 | 0.15 | 0.15 | 0.17 | 0.18 | 0.15 | 0.13 | 0.15 | 0.19 | 0.18 | |
| Tyr | 0.47 | 0.52 | -0.16 | 0.17 | 0.35 | 0.14 | 0.05 | 0.31 | 0.35 | 0.30 | 0.08 | 0.40 | 0.34 | 0.24 | |
| Val | 0.46 | 0.21 | -0.13 | 0.09 | 0.10 | 0.06 | 0.08 | 0.09 | 0.03 | 0.11 | 0.03 | 0.08 | 0.11 | 0.10 | |
| Lys | 0.46 | 0.45 | -0.10 | 0.13 | 0.27 | 0.06 | 0.04 | 0.31 | 0.22 | 0.27 | 0.36 | 0.17 | 0.30 | 0.21 | |
| Leu | 0.67 | 0.49 | -0.25 | 0.22 | 0.39 | 0.15 | 0.14 | 0.31 | 0.28 | 0.37 | 0.32 | 0.25 | 0.33 | 0.33 | |
Table 3 Path analysis of the impact of significantly correlated biochemical components on freezing injury index
| 生化组分 Biochemical component | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 贡献率 Contribution rate | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EGCG | Thea | Ser | Glu | His | Arg | Thr | Ala | Tyr | Val | Lys | Leu | ||||
| EGCG | -0.56 | -0.22 | -0.14 | -0.15 | -0.13 | -0.11 | -0.14 | -0.09 | -0.12 | -0.07 | -0.13 | -0.05 | -0.11 | 0.12 | |
| Thea | 0.59 | 0.34 | -0.22 | 0.22 | 0.24 | 0.27 | 0.23 | 0.20 | 0.22 | 0.11 | 0.14 | 0.10 | 0.15 | 0.20 | |
| Ser | 0.71 | 0.74 | -0.51 | 0.48 | 0.49 | 0.40 | 0.60 | 0.60 | 0.65 | 0.50 | 0.37 | 0.44 | 0.59 | 0.53 | |
| Glu | 0.57 | 0.88 | -0.52 | 0.62 | 0.58 | 0.74 | 0.54 | 0.50 | 0.54 | 0.24 | 0.26 | 0.12 | 0.27 | 0.50 | |
| His | 0.49 | 0.78 | -0.41 | 0.62 | 0.42 | 0.65 | 0.41 | 0.40 | 0.48 | 0.07 | 0.30 | 0.07 | 0.23 | 0.38 | |
| Arg | 0.58 | 0.37 | -0.23 | 0.25 | 0.30 | 0.22 | 0.19 | 0.25 | 0.25 | 0.22 | 0.16 | 0.25 | 0.23 | 0.21 | |
| Thr | 0.63 | 0.72 | -0.31 | 0.42 | 0.58 | 0.41 | 0.37 | 0.49 | 0.53 | 0.49 | 0.09 | 0.35 | 0.42 | 0.45 | |
| Ala | 0.72 | 0.25 | -0.14 | 0.17 | 0.22 | 0.15 | 0.15 | 0.17 | 0.18 | 0.15 | 0.13 | 0.15 | 0.19 | 0.18 | |
| Tyr | 0.47 | 0.52 | -0.16 | 0.17 | 0.35 | 0.14 | 0.05 | 0.31 | 0.35 | 0.30 | 0.08 | 0.40 | 0.34 | 0.24 | |
| Val | 0.46 | 0.21 | -0.13 | 0.09 | 0.10 | 0.06 | 0.08 | 0.09 | 0.03 | 0.11 | 0.03 | 0.08 | 0.11 | 0.10 | |
| Lys | 0.46 | 0.45 | -0.10 | 0.13 | 0.27 | 0.06 | 0.04 | 0.31 | 0.22 | 0.27 | 0.36 | 0.17 | 0.30 | 0.21 | |
| Leu | 0.67 | 0.49 | -0.25 | 0.22 | 0.39 | 0.15 | 0.14 | 0.31 | 0.28 | 0.37 | 0.32 | 0.25 | 0.33 | 0.33 | |
| [1] | 周佰铨, 翟盘茂. 未来的极端天气气候与水文事件预估及其应对[J]. 气象, 2023, 49(3): 257-266. |
| ZHOU B Q, ZHAI P M. The future projections of extreme weather, climate and water events and strategic responses[J]. Meteorological Monthly, 2023, 49(3): 257-266. (in Chinese with English abstract) | |
| [2] | 王培娟, 唐俊贤, 金志凤, 等. 中国茶树春霜冻害研究进展[J]. 应用气象学报, 2021, 32(2): 129-145. |
| WANG P J, TANG J X, JIN Z F, et al. Review on spring frost disaster for tea plant in China[J]. Journal of Applied Meteorological Science, 2021, 32(2): 129-145. (in Chinese with English abstract) | |
| [3] | WANG Y L, SAMARINA L, MALLANO A I, et al. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants[J]. Frontiers in Plant Science, 2023, 14: 1145609. |
| [4] | 阮建云, 季凌飞, 申瑞寒, 等. 茶树栽培研究“十三五”进展及“十四五”发展方向[J]. 中国茶叶, 2021, 43(9): 58-65. |
| RUAN J Y, JI L F, SHEN R H, et al. Tea cultivation research during the 13th Five-Year Plan period and development direction in the 14th Five-Year Plan period[J]. China Tea, 2021, 43(9): 58-65. (in Chinese with English abstract) | |
| [5] | 张波, 孙思思, 丁立国, 等. 贵州春茶霜冻害危险性分析及区划[J]. 气象与环境学报, 2023, 39(5): 99-105. |
| ZHANG B, SUN S S, DING L G, et al. Risk analysis and zoning of frost damage for spring tea in Guizhou province[J]. Journal of Meteorology and Environment, 2023, 39(5): 99-105. (in Chinese with English abstract) | |
| [6] | 高文波, 林正雨, 王明田, 等. 1971—2020年西南茶区灌木型茶树晚霜冻害危险性时空演变特征[J]. 应用生态学报, 2021, 32(11): 4029-4038. |
| GAO W B, LIN Z Y, WANG M T, et al. Spatiotemporal evolution characteristics of the late frost damage risk to shrubby tea trees in tea region, southwest China from 1971 to 2020[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4029-4038. (in Chinese with English abstract) | |
| [7] | 任义方, 王培娟, 钱半吨, 等. 江苏省不同风险区域春茶霜冻害特征分析[J]. 中国农业气象, 2023, 44(9): 820-833. |
| REN Y F, WANG P J, QIAN B D, et al. Analysis on characteristics of spring tea frost damage in different risk areas in Jiangsu Province[J]. Chinese Journal of Agrometeorology, 2023, 44(9): 820-833. (in Chinese with English abstract) | |
| [8] | 余跑兰, 孙永明, 吴艳, 等. 地表覆盖对茶树冻害及茶园地温时空变化的影响[J]. 河南农业科学, 2022, 51(3): 65-72. |
| YU P L, SUN Y M, WU Y, et al. Effects of overwintering mulching on freezing injury of tea plant and spatio-temporal variation of soil temperature in tea plantation[J]. Journal of Henan Agricultural Sciences, 2022, 51(3): 65-72. (in Chinese with English abstract) | |
| [9] | 孙永明, 雷礼文, 王永刚, 等. 基于气流屏障下的茶园低温冻害防控研究[J]. 茶叶学报, 2022, 63(1): 33-38. |
| SUN Y M, LEI L W, WANG Y G, et al. Deterrence of freeze-injury on tea bushes using airflow barriers at plantations[J]. Acta Tea Sinica, 2022, 63(1): 33-38. (in Chinese with English abstract) | |
| [10] | 李岩, 田维丽, 谢恩俊, 等. 低温胁迫及生理生化指标综合评价抗寒茶树[J]. 种子, 2020, 39(12): 38-43, 54. |
| LI Y, TIAN W L, XIE E J, et al. Comprehensive evaluation of cold-resistant Camellia sinensis(L.) O. Ktze. based on physiological and biochemical indexes under low temperature stress[J]. Seed, 2020, 39(12): 38-43, 54. (in Chinese with English abstract) | |
| [11] | 孙霞, 宋大鹏, 刘加英, 等. 冻害胁迫下水处理对茶树抗寒生理指标的影响[J]. 中国茶叶, 2022, 44(4): 41-49. |
| SUN X, SONG D P, LIU J Y, et al. Effects of water treatmenton cold-resistant physiological indexes of Camellia sinensis under freezing stress[J]. China Tea, 2022, 44(4): 41-49. (in Chinese with English abstract) | |
| [12] | 牛小军, 黄海涛, 李红莉, 等. 不同冷冻胁迫时间对茶鲜叶中酶活性和营养成分的影响[J]. 中国茶叶, 2023, 45(9): 37-42. |
| NIU X J, HUANG H T, LI H L, et al. Effects of different freezing stress times on the enzymatic activities and nutritional compositions in new tea shoots[J]. China Tea, 2023, 45(9): 37-42. (in Chinese with English abstract) | |
| [13] | 毕彩虹, 范开业, 沈凌言, 等. 8个无性系茶树品种的抗寒性鉴定与评价[J]. 茶叶, 2014, 40(3): 146-147. |
| BI C H, FAN K Y, SHEN L Y, et al. Assessment of cold resistance of 8 tea clonal cultivars[J]. Journal of Tea, 2014, 40(3): 146-147. (in Chinese with English abstract) | |
| [14] | 邢瑶, 李松, 唐锁海, 等. 茶树品种抗寒性试验[J]. 茶叶, 2022, 48(1): 34-38. |
| XING Y, LI S, TANG S H, et al. Investigation on extreme low temperature freezing injury of different tea varieties during overwintering[J]. Journal of Tea, 2022, 48(1): 34-38. (in Chinese with English abstract) | |
| [15] | 李佼, 李豆豆, 王令, 等. 43份汉中茶树种质资源叶片解剖结构分析[J]. 西北农业学报, 2023, 32(1): 62-71. |
| LI J, LI D D, WANG L, et al. Analysis of leaf anatomical structure of 43 tea plant(Camellia sinensis) germplasm resources in Hanzhong[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(1): 62-71. (in Chinese with English abstract) | |
| [16] | 董方, 涂娟, 杨菲颖, 等. 基于叶片解剖结构性状的17份江西茶树种质资源综合评价[J]. 江西农业大学学报, 2024, 46(2): 328-339. |
| DONG F, TU J, YANG F Y, et al. Comprehensive evaluation of 17 tea germplasm resources in Jiangxi based on leaf anatomical structure characteristics[J]. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(2): 328-339. (in Chinese with English abstract) | |
| [17] | 杨春, 苏胜峰, 杨代星, 等. 贵州两地野生茶树叶片解剖结构比较及抗逆性分析[J]. 河南农业科学, 2024, 53(1): 48-61. |
| YANG C, SU S F, YANG D X, et al. Comparison of leaf anatomical atructure and stress resistance analysis of wild tea plants in Panzhou City and Sandu County, Guizhou Province[J]. Journal of Henan Agricultural Sciences, 2024, 53(1): 48-61. (in Chinese with English abstract) | |
| [18] | 黄海涛, 余继忠, 王贤波, 等. 不同抗寒性茶树品种秋季新梢的生理特性研究[J]. 浙江农业学报, 2014, 26(4): 925-928. |
| HUANG H T, YU J Z, WANG X B, et al. Study on physiological characters of new shoot in different cold-resistant tea varieties in autumn[J]. Acta Agriculturae Zhejiangensis, 2014, 26(4): 925-928. (in Chinese with English abstract) | |
| [19] | 薄晓培, 王梦馨, 崔林, 等. 茶树3类渗透调节物质与冬春低温相关性及其品种间的差异评价[J]. 中国农业科学, 2016, 49(19): 3807-3817. |
| BO X P, WANG M X, CUI L, et al. Evaluation on correlations of three kinds of osmoregulation substances in tea fresh leaves with low temperature during winter and spring respectively and their difference among cultivars[J]. Scientia Agricultura Sinica, 2016, 49(19): 3807-3817. (in Chinese with English abstract) | |
| [20] | 杨春, 孟泽洪, 李帅, 等. 十二个茶树品种对茶棍蓟马、茶小绿叶蝉抗性表现及抗性成分初步鉴定[J]. 浙江农业学报, 2022, 34(8): 1713-1724. |
| YANG C, MENG Z H, LI S, et al. Resistance of 12 tea cultivars to Dendrothrips minowai Priesner and Empoasca onukii Matsuda and a preliminary identification of resistant components[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1713-1724. (in Chinese with English abstract) | |
| [21] | 程鸿浩, 陈诗燕, 吴筱萌, 等. 茶园花蓟马种群数量与茶叶中生化物质关系的数学分析[J]. 中国农业大学学报, 2022, 27(12): 148-157. |
| CHENG H H, CHEN S Y, WU X M, et al. Mathematical analysis of the relationship between the population number of Frankliniella intonsa in tea garden and biochemical substances in tea[J]. Journal of China Agricultural University, 2022, 27(12): 148-157. (in Chinese with English abstract) | |
| [22] | 徐悦, 吴筱萌, 王国庆, 等. 茶园广翅蜡蝉数量与茶叶中生化物质关系分析[J]. 浙江农业学报, 2023, 35(8): 1834-1843. |
| XU Y, WU X M, WANG G Q, et al. Analysis of relationship between number of Ricanidae in tea plantations and biochemical substances in tea leaves[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1834-1843. (in Chinese with English abstract) | |
| [23] | 靖翠翠, 杨秀芳, 谭蓉, 等. 微波制样对茶叶内质成分的影响[J]. 食品安全质量检测学报, 2015, 6(4): 1265-1270. |
| JING C C, YANG X F, TAN R, et al. Effect of microwave fixation on tea chemical components[J]. Journal of Food Safety & Quality, 2015, 6(4): 1265-1270. (in Chinese with English abstract) | |
| [24] | 杨春, 梁思慧, 陈正武, 等. 黄色芽叶茶树新品种黄金芽自然杂交后代的生化品质分析[J]. 西南农业学报, 2023, 36(9): 1859-1868. |
| YANG C, LIANG S H, CHEN Z W, et al. Biochemical quality analysis and evaluation of natural hybrid progenies from new tea variety with yellow bud leaf ‘Huangjinya’[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(9): 1859-1868. (in Chinese with English abstract) | |
| [25] | 张婷, 王雪艳, 郭勤卫, 等. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
| ZHANG T, WANG X Y, GUO Q W, et al. Genetic diversity of pepper germplasm resources based on agronomic traits[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 325-333. (in Chinese with English abstract) | |
| [26] | WANG L, DI T M, PENG J, et al. Comparative metabolomic analysis reveals the involvement of catechins in adaptation mechanism to cold stress in tea plant (Camellia sinensis var. sinensis)[J]. Environmental and Experimental Botany, 2022, 201: 104978. |
| [27] | 李洋, 刘凯, 魏吉鹏, 等. 不同浓度EGCG对NaCl胁迫下黄瓜种子萌发及其抗性的影响[J]. 浙江农业学报, 2018, 30(7): 1160-1167. |
| LI Y, LIU K, WEI J P, et al. Effects of various concentrations of EGCG on seed germination and resistance in cucumber under NaCl stress[J]. Acta Agriculturae Zhejiangensis, 2018, 30(7): 1160-1167. (in Chinese with English abstract) | |
| [28] | 方明雅, 余宏伟, 武雅娴, 等. 外源表没食子儿茶素没食子酸酯对甜瓜幼苗白粉病抗性的影响[J]. 浙江农业学报, 2023, 35(1): 138-145. |
| FANG M Y, YU H W, WU Y X, et al. Effects of exogenous epigallocatechin gallate on resistance of melon seedlings to powdery mildew[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 138-145. (in Chinese with English abstract) | |
| [29] | ROMANENKO K O, BABENKO L M, KOSAKIVSKA I V. Amino acids in regulation of abiotic stress tolerance in cereal crops: a review[J]. Cereal Research Communications, 2024, 52(2): 333-356. |
| [30] | YANG X X, LIU C, LI M D, et al. Integrated transcriptomics and metabolomics analysis reveals key regulatory network that response to cold stress in common Bean (Phaseolus vulgaris L.)[J]. BMC Plant Biology, 2023, 23(1): 85. |
| [31] | MAO C L, LI L, YANG T, et al. Transcriptomics integrated with widely targeted metabolomics reveals the cold resistance mechanism in Hevea brasiliensis[J]. Frontiers in Plant Science, 2023, 13: 1092411. |
| [32] | JIANG C K, HU W J, LU H L, et al. Alterations of phenotype, physiology, and functional substances reveal the chilling-tolerant mechanism in two common Olea europaea cultivars[J]. Frontiers in Plant Science, 2023, 14: 1046719. |
| [33] | CHENG Y H, BAN Q Y, MAO J L, et al. Integrated metabolomic and transcriptomic analysis reveals that amino acid biosynthesis may determine differences in cold-tolerant and cold-sensitive tea cultivars[J]. International Journal of Molecular Sciences, 2023, 24(3): 1907. |
| [1] | ZHANG Shunchang, XU Jigen, FU Chengyue, PU Zhanxu, HU Lipeng, WU Hao, LI Junbing, XIN Liang, LEI Yuanjun. Effect of amino acid calcium spraying on peel cracking and quality of citrus hybrid Hongmeiren [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1706-1715. |
| [2] | LIU Yuexuan, CHEN Yanling, ZHANG Peiqiang, YAN Peng. Research progress on soil acidification and its regulation in tea plantations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 245-254. |
| [3] | PAN Zhihong, WEN Xueting, YANG Hua, LYU Wentao, ZHANG Junjie, XIAO Yingping. Study on developmental changes of amino acid spectrum in Muscovy duck muscle [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2010-2019. |
| [4] | LI Hui, TAN Xiaoqin, TANG Qian, YANG Yang, CHEN Wei. Effects of flower thinning on yield and quality components of Zi Yan tea plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1602-1615. |
| [5] | YANG Chun, YANG Daixing, SU Shengfeng, LIANG Sihui, LI Yan, GUO Yan, QIAO Dahe, MI Xiaozeng, CHEN Zhengwu. Comparison of purine alkaloids and catechin components of wild Camellia tachangensis in Pu’an County and Panzhou County, Guizhou Province, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1232-1244. |
| [6] | XIAO Jiachang, LEI Fengyun, GE Sang, MA Junying, HE Maolin, LI Yanwen, ZHENG Yangxia. Effects of exogenous spraying of amino acid fertilizer on growth and selenium uptake of watercress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1638-1647. |
| [7] | YE Lei, ZHANG Bo, YANG Xuezhen, LI Xiaolin, ZHANG Xiaoping, TAN Wei. Feasibility of Auricularia cornea cultivation with bamboo sawdust instead of wood sawdust and comprehensive evaluation of quality [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1416-1426. |
| [8] | YANG Chun, QIAO Dahe, GUO Yan, LIANG Sihui, LIN Kaiqin, CHEN Zhengwu. Analysis into amino acids and theanine contents of 115 tea germplasms and special germplasm resource screening in Guizhou, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1351-1360. |
| [9] | HU Kaibo, YANG Qingxia, LI Yang, WU Kaixian, ZHAO Ping, LONG Guangqiang. Effect of application of amino acid fertilizer on spring maize cultivation under nitrogen reduction [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 661-670. |
| [10] | LI Jingshang, ZHANG Xiaojun, CHEN Shengchang, JIANG Jinhua, XIANG Yun, TU Pingguang, LOU Fangfang, YANG Hua, XIAO Yingping. Developmental changes of amino acid profiles in muscle and serum and their correlation with muscle growth of Jinhua pigs [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 687-694. |
| [11] | GE Shibei, JIN Didi, YANG Minglai, WANG Hui, ZHANG Lan, HAN Wenyan, LI Xin. Effects and regulation mechanism of different proportions of red and blue light on quality components in tea (Camellia sinensis L.) plant [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2105-2111. |
| [12] | XIE Wengang, CHEN Wei, TAN Liqiang, YANG Yang, TANG Qian. Analysis of main biochemical components in new shoots of tea cultivars Emeiwenchun and Chuancha No. 2 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1592-1601. |
| [13] | ZHANG Ting, LIU Huiqin, GUO Qinwei, LI Chaosen, ZHANG Xinhui, XIANG Xiaomin, ZHAO Dongfeng, WAN Hongjian. Principal component analysis and cluster analysis for evaluating free amino acids of 16 pepper materials [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 640-650. |
| [14] | WANG Zhihui, PENG Hua, YANG Puxiang, JIANG Xinfeng, LI Wenjin, YUE Cuinan, LI Chen, LI Yansheng. Phenotypic variation and resource value evaluation of natural hybrid progenies of seventeen Huangjinju tea plants [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 298-307. |
| [15] | MAO Qi, YANG Youxin, FAN Feijun, WAN Hongjian, ZHOU Guozhi, YAO Zhuping, RUAN Meiying, WANG Rongqing, YE Qingjing, LI Zhimiao, CHEN Shuangchen, CHENG Yuan. Effect of different light-emitting diode (LED) light treatments on postharvest quality of chili pepper (Capsicum annum L.) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2059-2067. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||