Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (12): 2563-2573.DOI: 10.3969/j.issn.1004-1524.20240710
• Plant Protection • Previous Articles Next Articles
YANG Xueyu1,2(
), NIU Li1, TAN Lin3, DENG Yulian1, BAO Qiang4,*(
), HU Qiulong1,*(
)
Received:2024-08-06
Online:2025-12-25
Published:2026-01-09
CLC Number:
YANG Xueyu, NIU Li, TAN Lin, DENG Yulian, BAO Qiang, HU Qiulong. Optimization of the culture conditions of Bacillus subtilis subsp. inaquosorum kc-16[J]. Acta Agriculturae Zhejiangensis, 2025, 37(12): 2563-2573.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240710
| 水平Level | A/% | B/% | C/% | D/% | E/% | F | G/(r·min-1) | H/℃ | I/% |
|---|---|---|---|---|---|---|---|---|---|
| 高水平 | 1.0 | 5 | 0.2 | 0.8 | 0.4 | 8 | 220 | 32 | 1.0 |
| 低水平 | 0.5 | 3 | 0.1 | 0.4 | 0.1 | 7 | 180 | 28 | 0.5 |
Table 1 Factors and levels for the Plackett-Burman design
| 水平Level | A/% | B/% | C/% | D/% | E/% | F | G/(r·min-1) | H/℃ | I/% |
|---|---|---|---|---|---|---|---|---|---|
| 高水平 | 1.0 | 5 | 0.2 | 0.8 | 0.4 | 8 | 220 | 32 | 1.0 |
| 低水平 | 0.5 | 3 | 0.1 | 0.4 | 0.1 | 7 | 180 | 28 | 0.5 |
Fig.1 Selection of carbon source types and mass fractions The absence of the same lowercase letters on the column indicates a significant (p<0.05) difference in the corresponding indicators among different treatments. The same as below.
| 组别Group | A/% | B/% | C/% | D/% | E/% | F | G/(r·min-1) | H/℃ | I/% | D600 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1.0 | 5 | 0.1 | 0.8 | 0.4 | 8 | 180 | 28 | 0.5 | 1.68 |
| 2 | 0.5 | 5 | 0.2 | 0.4 | 0.4 | 8 | 220 | 28 | 0.5 | 0.32 |
| 3 | 1.0 | 3 | 0.2 | 0.8 | 0.1 | 8 | 220 | 32 | 0.5 | 0.10 |
| 4 | 0.5 | 5 | 0.1 | 0.8 | 0.4 | 7 | 220 | 32 | 1.0 | 0.16 |
| 5 | 0.5 | 3 | 0.2 | 0.4 | 0.4 | 8 | 180 | 32 | 1.0 | 0.80 |
| 6 | 0.5 | 3 | 0.1 | 0.8 | 0.1 | 8 | 220 | 28 | 1.0 | 0.18 |
| 7 | 1.0 | 3 | 0.1 | 0.4 | 0.4 | 7 | 220 | 32 | 0.5 | 1.90 |
| 8 | 1.0 | 5 | 0.1 | 0.4 | 0.1 | 8 | 180 | 32 | 1.0 | 0.33 |
| 9 | 1.0 | 5 | 0.2 | 0.4 | 0.1 | 7 | 220 | 28 | 1.0 | 1.98 |
| 10 | 0.5 | 5 | 0.2 | 0.8 | 0.1 | 7 | 180 | 32 | 0.5 | 1.97 |
| 11 | 1.0 | 3 | 0.2 | 0.8 | 0.4 | 7 | 180 | 28 | 1.0 | 1.89 |
| 12 | 0.5 | 3 | 0.1 | 0.4 | 0.1 | 7 | 180 | 28 | 0.5 | 1.77 |
Table 2 Plackett-Burman (PB) experiment design and results
| 组别Group | A/% | B/% | C/% | D/% | E/% | F | G/(r·min-1) | H/℃ | I/% | D600 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1.0 | 5 | 0.1 | 0.8 | 0.4 | 8 | 180 | 28 | 0.5 | 1.68 |
| 2 | 0.5 | 5 | 0.2 | 0.4 | 0.4 | 8 | 220 | 28 | 0.5 | 0.32 |
| 3 | 1.0 | 3 | 0.2 | 0.8 | 0.1 | 8 | 220 | 32 | 0.5 | 0.10 |
| 4 | 0.5 | 5 | 0.1 | 0.8 | 0.4 | 7 | 220 | 32 | 1.0 | 0.16 |
| 5 | 0.5 | 3 | 0.2 | 0.4 | 0.4 | 8 | 180 | 32 | 1.0 | 0.80 |
| 6 | 0.5 | 3 | 0.1 | 0.8 | 0.1 | 8 | 220 | 28 | 1.0 | 0.18 |
| 7 | 1.0 | 3 | 0.1 | 0.4 | 0.4 | 7 | 220 | 32 | 0.5 | 1.90 |
| 8 | 1.0 | 5 | 0.1 | 0.4 | 0.1 | 8 | 180 | 32 | 1.0 | 0.33 |
| 9 | 1.0 | 5 | 0.2 | 0.4 | 0.1 | 7 | 220 | 28 | 1.0 | 1.98 |
| 10 | 0.5 | 5 | 0.2 | 0.8 | 0.1 | 7 | 180 | 32 | 0.5 | 1.97 |
| 11 | 1.0 | 3 | 0.2 | 0.8 | 0.4 | 7 | 180 | 28 | 1.0 | 1.89 |
| 12 | 0.5 | 3 | 0.1 | 0.4 | 0.1 | 7 | 180 | 28 | 0.5 | 1.77 |
| 方差来源 Soruce | 平方和 Sum of squares | 自由度 Degree of freedom | 均方差 Mean square | F值 F value | p | 标准化效应 Standardization effect | 系数 Coefficient | 贡献率 Contribution rate/% | 重要性排序 Importance rank |
|---|---|---|---|---|---|---|---|---|---|
| A | 0.145 200 | 1 | 0.145 200 | 256.235 300 | 0.003 880 | -0.220 000 | -0.110 000 | 14.508 390 | 4 |
| B | 0.003 333 | 1 | 0.003 333 | 5.882 353 | 0.136 132 | -0.033 330 | -0.016 670 | 0.333 067 | 8 |
| C | 0.090 133 | 1 | 0.090 133 | 159.058 800 | 0.006 228 | 0.173 333 | 0.086 667 | 9.006 128 | 6 |
| D | 0.104 533 | 1 | 0.104 533 | 184.470 600 | 0.005 377 | -0.186 670 | -0.093 330 | 10.444 980 | 5 |
| E | 0.014 700 | 1 | 0.014 700 | 25.941 180 | 0.036 454 | 0.070 000 | 0.035 000 | 1.468 825 | 7 |
| F | 0.252 300 | 1 | 0.252 300 | 445.235 300 | 0.002 238 | 0.290 000 | 0.145 000 | 25.209 830 | 1 |
| G | 0.003 333 | 1 | 0.003 333 | 5.882 353 | 0.136 132 | 0.033 333 | 0.016 667 | 0.333 067 | 9 |
| H | 0.172 800 | 1 | 0.172 800 | 304.941 200 | 0.003 263 | 0.240 000 | 0.120 000 | 17.266 190 | 3 |
| I | 0.213 333 | 1 | 0.213 333 | 376.470 600 | 0.002 646 | 0.266 667 | 0.133 333 | 21.316 280 | 2 |
| 残差Residual | 0.001 133 | 2 | 0.000 567 | — | — | — | — | — | — |
| 总离差平方和 | 1.000 798 | 11 | — | — | — | — | — | — | — |
| Cor Total | |||||||||
| 模型Model | 0.999 665 | 9 | 0.111 074 | 196.013 100 | 0.005 086 | Significant | — | — | — |
Table 3 Analysis of variance (ANOVA) for each factor in the PB experiment
| 方差来源 Soruce | 平方和 Sum of squares | 自由度 Degree of freedom | 均方差 Mean square | F值 F value | p | 标准化效应 Standardization effect | 系数 Coefficient | 贡献率 Contribution rate/% | 重要性排序 Importance rank |
|---|---|---|---|---|---|---|---|---|---|
| A | 0.145 200 | 1 | 0.145 200 | 256.235 300 | 0.003 880 | -0.220 000 | -0.110 000 | 14.508 390 | 4 |
| B | 0.003 333 | 1 | 0.003 333 | 5.882 353 | 0.136 132 | -0.033 330 | -0.016 670 | 0.333 067 | 8 |
| C | 0.090 133 | 1 | 0.090 133 | 159.058 800 | 0.006 228 | 0.173 333 | 0.086 667 | 9.006 128 | 6 |
| D | 0.104 533 | 1 | 0.104 533 | 184.470 600 | 0.005 377 | -0.186 670 | -0.093 330 | 10.444 980 | 5 |
| E | 0.014 700 | 1 | 0.014 700 | 25.941 180 | 0.036 454 | 0.070 000 | 0.035 000 | 1.468 825 | 7 |
| F | 0.252 300 | 1 | 0.252 300 | 445.235 300 | 0.002 238 | 0.290 000 | 0.145 000 | 25.209 830 | 1 |
| G | 0.003 333 | 1 | 0.003 333 | 5.882 353 | 0.136 132 | 0.033 333 | 0.016 667 | 0.333 067 | 9 |
| H | 0.172 800 | 1 | 0.172 800 | 304.941 200 | 0.003 263 | 0.240 000 | 0.120 000 | 17.266 190 | 3 |
| I | 0.213 333 | 1 | 0.213 333 | 376.470 600 | 0.002 646 | 0.266 667 | 0.133 333 | 21.316 280 | 2 |
| 残差Residual | 0.001 133 | 2 | 0.000 567 | — | — | — | — | — | — |
| 总离差平方和 | 1.000 798 | 11 | — | — | — | — | — | — | — |
| Cor Total | |||||||||
| 模型Model | 0.999 665 | 9 | 0.111 074 | 196.013 100 | 0.005 086 | Significant | — | — | — |
| 组别Group | F | I/% | H/℃ | D600 |
|---|---|---|---|---|
| 1 | 7.0 | 0.10 | 30 | 1.441 |
| 2 | 8.0 | 0.10 | 30 | 1.868 |
| 3 | 7.0 | 1.00 | 30 | 1.913 |
| 4 | 8.0 | 1.00 | 30 | 1.916 |
| 5 | 7.0 | 0.55 | 28 | 1.929 |
| 6 | 8.0 | 0.55 | 28 | 1.994 |
| 7 | 7.0 | 0.55 | 32 | 1.929 |
| 8 | 8.0 | 0.55 | 32 | 1.994 |
| 9 | 7.5 | 0.10 | 28 | 1.741 |
| 10 | 7.5 | 1.00 | 28 | 1.864 |
| 11 | 7.5 | 0.10 | 32 | 1.761 |
| 12 | 7.5 | 1.00 | 32 | 1.864 |
| 13 | 7.5 | 0.55 | 30 | 0.200 |
| 14 | 7.5 | 0.55 | 30 | 0.005 |
| 15 | 7.5 | 0.55 | 30 | 0.095 |
| 16 | 7.5 | 0.55 | 30 | 0.136 |
| 17 | 7.5 | 0.55 | 30 | 0.027 |
Table 4 Box-Behnken Design experiment and results
| 组别Group | F | I/% | H/℃ | D600 |
|---|---|---|---|---|
| 1 | 7.0 | 0.10 | 30 | 1.441 |
| 2 | 8.0 | 0.10 | 30 | 1.868 |
| 3 | 7.0 | 1.00 | 30 | 1.913 |
| 4 | 8.0 | 1.00 | 30 | 1.916 |
| 5 | 7.0 | 0.55 | 28 | 1.929 |
| 6 | 8.0 | 0.55 | 28 | 1.994 |
| 7 | 7.0 | 0.55 | 32 | 1.929 |
| 8 | 8.0 | 0.55 | 32 | 1.994 |
| 9 | 7.5 | 0.10 | 28 | 1.741 |
| 10 | 7.5 | 1.00 | 28 | 1.864 |
| 11 | 7.5 | 0.10 | 32 | 1.761 |
| 12 | 7.5 | 1.00 | 32 | 1.864 |
| 13 | 7.5 | 0.55 | 30 | 0.200 |
| 14 | 7.5 | 0.55 | 30 | 0.005 |
| 15 | 7.5 | 0.55 | 30 | 0.095 |
| 16 | 7.5 | 0.55 | 30 | 0.136 |
| 17 | 7.5 | 0.55 | 30 | 0.027 |
| 方差来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方差 Mean square | F值 F value | p |
|---|---|---|---|---|---|
| 模型Model | 0.430 | 9 | 0.048 | 7.100 | 0.008 5 |
| F | 0.039 | 1 | 0.039 | 5.780 | 0.047 2 |
| I | 0.070 | 1 | 0.070 | 10.250 | 0.015 0 |
| H | 5.000×10-5 | 1 | 5.000×10-5 | 7.368×10-3 | 0.934 0 |
| FI | 0.045 | 1 | 0.045 | 6.620 | 0.036 8 |
| FH | 5.551×10-17 | 1 | 5.551×10-17 | 8.180×10-15 | 1.000 0 |
| IH | 1.000×10-4 | 1 | 1.000×10-4 | 0.015 | 0.906 8 |
| F2 | 0.025 | 1 | 0.025 | 0.680 | 0.096 4 |
| I2 | 0.220 | 1 | 0.220 | 0.120 | 0.000 7 |
| H2 | 0.012 | 1 | 0.012 | 1.810 | 0.220 2 |
| 残差Residual | 0.048 | 7 | 6.787×10-3 | — | — |
| 失拟项Lack of fit | 0.022 | 3 | 7.368×10-3 | 1.160 | 0.428 0 |
| 纯误差Pure error | 0.025 | 4 | 6.350×10-3 | — | — |
| 总和Cor total | 0.936 | 32 | — | — | — |
Table 5 Analysis result of variance for the Box-Behnken Design experiment
| 方差来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方差 Mean square | F值 F value | p |
|---|---|---|---|---|---|
| 模型Model | 0.430 | 9 | 0.048 | 7.100 | 0.008 5 |
| F | 0.039 | 1 | 0.039 | 5.780 | 0.047 2 |
| I | 0.070 | 1 | 0.070 | 10.250 | 0.015 0 |
| H | 5.000×10-5 | 1 | 5.000×10-5 | 7.368×10-3 | 0.934 0 |
| FI | 0.045 | 1 | 0.045 | 6.620 | 0.036 8 |
| FH | 5.551×10-17 | 1 | 5.551×10-17 | 8.180×10-15 | 1.000 0 |
| IH | 1.000×10-4 | 1 | 1.000×10-4 | 0.015 | 0.906 8 |
| F2 | 0.025 | 1 | 0.025 | 0.680 | 0.096 4 |
| I2 | 0.220 | 1 | 0.220 | 0.120 | 0.000 7 |
| H2 | 0.012 | 1 | 0.012 | 1.810 | 0.220 2 |
| 残差Residual | 0.048 | 7 | 6.787×10-3 | — | — |
| 失拟项Lack of fit | 0.022 | 3 | 7.368×10-3 | 1.160 | 0.428 0 |
| 纯误差Pure error | 0.025 | 4 | 6.350×10-3 | — | — |
| 总和Cor total | 0.936 | 32 | — | — | — |
| [1] | CHEN Y J, ZENG L, SHU N, et al. Pestalotiopsis-like species causing gray blight disease on Camellia sinensis in China[J]. Plant Disease, 2018, 102(1): 98-106. |
| [2] | PANDEY A K, SINNIAH G D, BABU A, et al. How the global tea industry copes with fungal diseases-challenges and opportunities[J]. Plant Disease, 2021, 105(7): 1868-1879. |
| [3] | KUMAR J, RAMLAL A, MALLICK D, et al. An overview of some biopesticides and their importance in plant protection for commercial acceptance[J]. Plants, 2021, 10(6): 1185. |
| [4] | 黄大野, 杨丹, 姚经武, 等. 贝莱斯芽孢杆菌CY30防治茶轮斑病研究[J]. 中国植保导刊, 2020, 40(11): 13-18. |
| HUANG D Y, YANG D, YAO J W, et al. Study on the control effect of Bacillus velezensis CY30 on tea gray blight[J]. China Plant Protection, 2020, 40(11): 13-18. (in Chinese) | |
| [5] | 糜芳, 吴紫燕, 王承芳, 等. 1株解淀粉芽孢杆菌的分离、鉴定及在马铃薯疮痂病防治上的应用[J]. 江苏农业科学, 2021, 49(18): 122-127. |
| MI F, WU Z Y, WANG C F, et al. Isolation and identification of a strain of Bacillus amyloliquefaciens and its application in prevention and treatment of potato scab[J]. Jiangsu Agricultural Sciences, 2021, 49(18): 122-127. (in Chinese with English abstract) | |
| [6] | 杨学宇, 谭琳, 张玉丹, 等. 茶轮斑病病原菌的分离鉴定及其拮抗菌筛选[J]. 湖南农业大学学报(自然科学版), 2023, 49(2): 195-200. |
| YANG X Y, TAN L, ZHANG Y D, et al. Identification of pathogen from tea leaves with gray blight disease and screening of biocontrol strain biocontrol strain[J]. Journal of Hunan Agricultural University(Natural Sciences), 2023, 49(2): 195-200. (in Chinese with English abstract) | |
| [7] | 马乔女, 李心悦, 顾欣, 等. 芽孢杆菌抗真菌肽的研究进展[J]. 中国植保导刊, 2023, 43(5): 17-24. |
| MA Q N, LI X Y, GU X, et al. Research progress of Bacillus antifungal peptides[J]. China Plant Protection, 2023, 43(5): 17-24. (in Chinese) | |
| [8] | MULATU A, ALEMU T, MEGERSA N, et al. Optimization of culture conditions and production of bio-fungicides from Trichoderma species under solid-state fermentation using mathematical modeling[J]. Microorganisms, 2021, 9(8): 1675. |
| [9] | ZALILA-KOLSI I, KESSENTINI S, TOUNSI S, et al. Optimization of Bacillus amyloliquefaciens BLB369 culture medium by response surface methodology for low cost production of antifungal activity[J]. Microorganisms, 2022, 10(4): 830. |
| [10] | 李姝江, 王淋敏, 谯天敏, 等. 利用响应面法优化贝莱斯芽孢杆菌ZJ20发酵参数[J]. 西北农林科技大学学报(自然科学版), 2019, 47(2): 88-96. |
| LI S J, WANG L M, QIAO T M, et al. Optimization of Bacillus velezensis ZJ20 fermentation parameters by response surface methodology[J]. Journal of Northwest A & F University(Natural Science Edition), 2019, 47(2): 88-96. (in Chinese with English abstract) | |
| [11] | 施兆荣, 孙述俊, 张广荣, 等. 甜瓜黑斑病菌的拮抗细菌筛选、鉴定及发酵条件优化[J]. 生物技术通报, 2022, 38(1): 115-124. |
| SHl Z R, SUN S J, ZHANG G R, et al. Screening, identification and fermentation condition optimization of an antagonistic bacterium for melon black spot[J]. Biotechnology Bulletin, 2022, 38(1): 115-124. (in Chinese with English abstract) | |
| [12] | LIU Q, SHEN Y R, YIN K D. Optimized production of protein elicitor AMEP412 by Bacillus subtilis BU412 through response surface methodology[J]. Biotechnology & Biotechnological Equipment, 2021, 35(1): 1058-1064. |
| [13] | 陈越, 李虎林, 闫寒, 等. 烟草炭疽病拮抗菌分离及其发酵条件优化[J]. 吉林农业大学学报, 2020, 42(5): 518-525. |
| CHEN Y, LI H L, YAN H, et al. Isolation of antagonistic bacteria against tobacco anthracnose and optimization of fermentation conditions[J]. Journal of Jilin Agricultural University, 2020, 42(5): 518-525. (in Chinese with English abstract) | |
| [14] | 刘仕飞, 伊艳杰, 董臣, 等. 禾谷丝核菌拮抗细菌XZ18-3的分离、鉴定及其发酵条件优化[J]. 中国植保导刊, 2019, 39(11): 5-13. |
| LIU S F, YI Y J, DONG C, et al. Isolation and identification of antagonistic bacteria against Rhizoctonia cerealis and optimization of its fermentation conditions[J]. China Plant Protection, 2019, 39(11): 5-13. (in Chinese) | |
| [15] | 石慧敏, 叶建仁, 王焱, 等. 响应面优化贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18产芽孢培养基和培养条件[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 209-218. |
| SHI H M, YE J R, WANG Y, et al. Optimizing spore-producing medium and culture conditions of Bacillus velezensis strain YH-18 by response surface methodology[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2023, 47(1): 209-218. (in Chinese with English abstract) | |
| [16] | 王垚, 黄纯杨, 杨亮, 等. 烟草青枯病复配增效药剂筛选及田间防效[J]. 农药, 2022, 61(10): 776-80. |
| WANG Y, HUANG C Y, YANG L, et al. Selection on synergetic ratio of combine pesticides to tobacco bacterial wilt and their field control effect[J]. Agrochemicals, 2022, 61(10): 776-80. (in Chinese) | |
| [17] | 李书颖, 朱天辉. 响应面法优化杜仲黑斑病菌生防芽胞杆菌的发酵参数[J]. 植物保护, 2020, 46(5): 133-141. |
| LI S Y, ZHU T H. Optimization of fermentation parameters of Bacillus amyloliquefaciens against Pestalotiopsis trachicarpicola by using response surface methodology[J]. Plant Protection, 2020, 46(5): 133-141. (in Chinese with English abstract) | |
| [18] | 金黎明, 王晓彤, 宫小明, 等. 拮抗黄曲霉枯草芽孢杆菌21-1-2发酵条件的优化[J]. 中国酿造, 2020, 39(3): 47-51. |
| JIN L M, WANG X T, GONG X M, et al. Optimization of fermentation conditions of Bacillus subtilis 21-1-2 against Aspergillus flavus[J]. China Brewing, 2020, 39(3): 47-51. (in Chinese with English abstract) | |
| [19] | 马金秀, 张锦锋, 王江来, 等. 普城沙雷氏菌MM产酶条件优化及对西瓜枯萎病的防治效果[J]. 西北农业学报, 2022, 31(12): 1635-1645. |
| MA J X, ZHANG J F, WANG J L, et al. Optimization of enzyme production conditions of Serratia plymuthica MM and its control effect on watermelon Fusarium wilt[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(12): 1635-1645. (in Chinese with English abstract) | |
| [20] | 郑世仲, 周子维, 陈晓慧, 等. 拮抗炭疽病的茶树内生菌筛选、鉴定及培养条件优化[J]. 茶叶科学, 2023, 43(2): 205-215. |
| ZHENG S Z, ZHOU Z W, CHEN X H, et al. Screening, identification and culture condition optimization of antagonistic endophytic bacteria against Gloeosporium theae-sinensis Miyake[J]. Journal of Tea Science, 2023, 43(2): 205-215. (in Chinese with English abstract) | |
| [21] | 杜丽红, 郝亚男, 陈宁, 等. 有机氮源及其在微生物发酵中的应用[J]. 发酵科技通讯, 2019, 48(1): 1-4. |
| DU L H, HAO Y N, CHEN N, et al. Organic nitrogen source and their applications in microbial fermentation[J]. Bulletin of Fermentation Science and Technology, 2019, 48(1): 1-4. (in Chinese with English abstract) | |
| [22] | 梁艳琼, 吴伟怀, 习金根, 等. 解淀粉芽胞杆菌JNC2摇瓶发酵条件优化[J]. 草业科学, 2019, 36(8): 2159-2167. |
| LIANG Y Q, WU W H, Ⅺ J G, et al. Optimizing fermentation condition for Bacillus amyloliquefaciens JNC2 in flask[J]. Pratacultural Science, 2019, 36(8): 2159-2167. (in Chinese with English abstract) | |
| [23] | 卢彩鸽, 董红平, 张殿朋, 等. 解淀粉芽胞杆菌MH71摇瓶发酵培养基及发酵条件优化[J]. 中国生物防治学报, 2015, 31(3): 369-377. |
| LU C G, DONG H P, ZHANG D P, et al. Optimization of fermentation medium components and cultural conditions for Bacillus amyloliquefaciens MH71 in flask[J]. Chinese Journal of Biological Control, 2015, 31(3): 369-377. (in Chinese with English abstract) | |
| [24] | 郭建军, 曾静, 袁林, 等. 响应面法优化多粘类芽孢杆菌LY1的产芽孢条件[J]. 湖南农业科学, 2022(4): 6-11. |
| GUO J J, ZENG J, YUAN L, et al. Optimization of spore production conditions of Paenibacillus polymyxa LY1 by response surface methodology[J]. Hunan Agricultural Sciences, 2022(4): 6-11. (in Chinese with English abstract) | |
| [25] | 汤永玉, 吴国星, 李冉, 等. 响应面法优化爪哇虫草菌的培养条件及其对斜纹夜蛾的毒力和保护酶活性影响[J]. 微生物学报, 2023, 63(12): 4555-4573. |
| TANG Y Y, WU G X, LI R, et al. Response surface methodology-based optimization of culture conditions of Cordyceps javanica with effects on virulence and protective enzyme activity of Spodoptera litura[J]. Acta Microbiologica Sinica, 2023, 63(12): 4555-4573. (in Chinese with English abstract) | |
| [26] | 刘芳, 黎妍妍, 陈伟, 等. 响应面法优化贝莱斯芽胞杆菌YC11的液体发酵培养基[J]. 中国生物防治学报, 2023, 39 (4): 915-923. |
| LIU F, LI Y Y, CHEN W, et al. Optimization of fermentation medium for spore production by Bacillus velezensis YC11 through response-surface methodology[J]. Chinese Journal of Biological Control, 2023, 39 (4): 915-923. (in Chinese with English abstract) | |
| [27] | 薛锐, 沈绍运, 邓细周, 等. 响应面法优化莱氏绿僵菌SL200714菌株液态发酵培养条件[J]. 中国农学通报, 2023, 39(6): 135-143. |
| XUE R, SHEN S Y, DENG X Z, et al. Metarhizium rileyi SL200714 strain liquid fermentation conditions: optimization by response surface methodology[J]. Chinese Agricultural Science Bulletin, 2023, 39(6): 135-143. (in Chinese with English abstract) | |
| [28] | 薛锐, 付玉飞, 杨光源, 等. 响应面设计优化莱氏绿僵菌SZCY固体发酵培养条件及致病力测定[J]. 微生物学通报, 2023, 50 (2): 514-525. |
| XUE R, FU Y F, YANG G Y, et al. Optimization of the solid-state fermentation conditions of Metarhizium rileyi SZCY by response surface methodology and determination of the virulence[J]. Microbiology China, 2023, 50 (2): 514-525. (in Chinese with English abstract) | |
| [29] | 夏邦华, 赵健, 宫娉, 等. 基于响应面分析法优化解淀粉芽孢杆菌DSYZ发酵条件[J]. 山东农业大学学报(自然科学版), 2021, 52(2): 241-246. |
| XIA B H, ZHAO J, GONG P, et al. Optimal fermentation conditions for Bacillus amyloliquefaciens DSYZ based on response surface methodology[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2021, 52(2): 241-246. (in Chinese with English abstract) |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||