Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (9): 2020-2030.DOI: 10.3969/j.issn.1004-1524.20231074
• Animal Science • Previous Articles Next Articles
ZHOU Maocuo1,2(), LU Jianxiong1, GUO Xiaonong1, FENG Yulan1, CHAI Weiwei1,*(
), GAO Pengfei2,*(
)
Received:
2023-09-08
Online:
2024-09-25
Published:
2024-09-30
CLC Number:
ZHOU Maocuo, LU Jianxiong, GUO Xiaonong, FENG Yulan, CHAI Weiwei, GAO Pengfei. Optimization of quinoa straw fermentation process based on response surface methodology[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2020-2030.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231074
水平 Level | 因素Factor | ||
---|---|---|---|
A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | |
-1 | 20 | 3 | 50 |
0 | 25 | 4 | 60 |
1 | 30 | 5 | 70 |
Table 1 Factors and levels of response surface test
水平 Level | 因素Factor | ||
---|---|---|---|
A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | |
-1 | 20 | 3 | 50 |
0 | 25 | 4 | 60 |
1 | 30 | 5 | 70 |
秸秆 Straw | 粗蛋白含量 Crude protein content | 粗纤维含量 Crude fiber content | 粗脂肪含量 Crude fat content |
---|---|---|---|
藜麦秸秆 | 6.37 | 55.70 | 0.52 |
Quinoa straw | |||
玉米秸秆 | 6.25 | 46.37 (NDF), | 1.14 |
Corn stalk | 33.37 (ADF) | ||
豆类秸秆 | 7.10~15.00 | 17.50~42.08 | 1.05~4.50 |
Bean straw |
Table 2 Comparation of main nutrient components among quinoa straw, corn stalk and bean straw %
秸秆 Straw | 粗蛋白含量 Crude protein content | 粗纤维含量 Crude fiber content | 粗脂肪含量 Crude fat content |
---|---|---|---|
藜麦秸秆 | 6.37 | 55.70 | 0.52 |
Quinoa straw | |||
玉米秸秆 | 6.25 | 46.37 (NDF), | 1.14 |
Corn stalk | 33.37 (ADF) | ||
豆类秸秆 | 7.10~15.00 | 17.50~42.08 | 1.05~4.50 |
Bean straw |
Fig.1 Effect of fermentation time on the quality of fermented quinoa straw Date marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
序号 No. | A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | Y1粗蛋白含量 Crude protein content/% | Y2粗纤维含量 Crude fiber content/% |
---|---|---|---|---|---|
1 | -1 | -1 | 0 | 5.26 | 54.12 |
2 | 1 | -1 | 0 | 6.13 | 46.10 |
3 | -1 | 1 | 0 | 6.24 | 46.78 |
4 | 1 | 1 | 0 | 6.57 | 46.30 |
5 | -1 | 0 | -1 | 5.60 | 48.21 |
6 | 1 | 0 | -1 | 5.82 | 48.99 |
7 | -1 | 0 | 1 | 5.26 | 48.56 |
8 | 1 | 0 | 1 | 5.86 | 46.49 |
9 | 0 | -1 | -1 | 6.63 | 54.36 |
10 | 0 | 1 | -1 | 6.35 | 48.00 |
11 | 0 | -1 | 1 | 5.69 | 53.49 |
12 | 0 | 1 | 1 | 6.73 | 47.50 |
13 | 0 | 0 | 0 | 6.34 | 47.37 |
14 | 0 | 0 | 0 | 6.69 | 47.84 |
15 | 0 | 0 | 0 | 6.55 | 46.12 |
16 | 0 | 0 | 0 | 6.60 | 45.98 |
17 | 0 | 0 | 0 | 6.62 | 46.41 |
Table 3 Scheme and results of response surface test
序号 No. | A发酵时间 Fermentation time/d | B尿素添加量 Urea addition/ (g·kg-1) | C秸秆含水量 Water content of straw/% | Y1粗蛋白含量 Crude protein content/% | Y2粗纤维含量 Crude fiber content/% |
---|---|---|---|---|---|
1 | -1 | -1 | 0 | 5.26 | 54.12 |
2 | 1 | -1 | 0 | 6.13 | 46.10 |
3 | -1 | 1 | 0 | 6.24 | 46.78 |
4 | 1 | 1 | 0 | 6.57 | 46.30 |
5 | -1 | 0 | -1 | 5.60 | 48.21 |
6 | 1 | 0 | -1 | 5.82 | 48.99 |
7 | -1 | 0 | 1 | 5.26 | 48.56 |
8 | 1 | 0 | 1 | 5.86 | 46.49 |
9 | 0 | -1 | -1 | 6.63 | 54.36 |
10 | 0 | 1 | -1 | 6.35 | 48.00 |
11 | 0 | -1 | 1 | 5.69 | 53.49 |
12 | 0 | 1 | 1 | 6.73 | 47.50 |
13 | 0 | 0 | 0 | 6.34 | 47.37 |
14 | 0 | 0 | 0 | 6.69 | 47.84 |
15 | 0 | 0 | 0 | 6.55 | 46.12 |
16 | 0 | 0 | 0 | 6.60 | 45.98 |
17 | 0 | 0 | 0 | 6.62 | 46.41 |
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 3.830 0 | 9 | 0.426 0 | 19.67 | 0.000 4 | ** |
A | 0.510 1 | 1 | 0.510 1 | 23.56 | 0.001 8 | ** |
B | 0.594 1 | 1 | 0.594 1 | 27.44 | 0.001 2 | ** |
C | 0.092 4 | 1 | 0.092 4 | 4.27 | 0.077 6 | |
AB | 0.072 9 | 1 | 0.072 9 | 3.37 | 0.109 1 | |
AC | 0.036 1 | 1 | 0.036 1 | 1.67 | 0.237 6 | |
BC | 0.435 6 | 1 | 0.435 6 | 20.12 | 0.002 8 | ** |
A2 | 1.580 0 | 1 | 1.580 0 | 72.96 | <0.000 1 | ** |
B2 | 0.044 2 | 1 | 0.044 2 | 2.04 | 0.196 0 | |
C2 | 0.411 2 | 1 | 0.411 2 | 18.99 | 0.003 3 | ** |
残差Residual | 0.151 6 | 7 | 0.021 7 | |||
失拟项Quasi missing term | 0.081 0 | 3 | 0.027 0 | 1.53 | 0.336 8 | |
纯误差Pure error | 0.070 6 | 4 | 0.017 7 | |||
合计Total | 3.990 0 | 16 |
Table 4 Analysis of variance of response surface fitting regression equation for crude protein content
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 3.830 0 | 9 | 0.426 0 | 19.67 | 0.000 4 | ** |
A | 0.510 1 | 1 | 0.510 1 | 23.56 | 0.001 8 | ** |
B | 0.594 1 | 1 | 0.594 1 | 27.44 | 0.001 2 | ** |
C | 0.092 4 | 1 | 0.092 4 | 4.27 | 0.077 6 | |
AB | 0.072 9 | 1 | 0.072 9 | 3.37 | 0.109 1 | |
AC | 0.036 1 | 1 | 0.036 1 | 1.67 | 0.237 6 | |
BC | 0.435 6 | 1 | 0.435 6 | 20.12 | 0.002 8 | ** |
A2 | 1.580 0 | 1 | 1.580 0 | 72.96 | <0.000 1 | ** |
B2 | 0.044 2 | 1 | 0.044 2 | 2.04 | 0.196 0 | |
C2 | 0.411 2 | 1 | 0.411 2 | 18.99 | 0.003 3 | ** |
残差Residual | 0.151 6 | 7 | 0.021 7 | |||
失拟项Quasi missing term | 0.081 0 | 3 | 0.027 0 | 1.53 | 0.336 8 | |
纯误差Pure error | 0.070 6 | 4 | 0.017 7 | |||
合计Total | 3.990 0 | 16 |
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 115.24 | 9 | 12.80 | 7.09 | 0.008 6 | ** |
A | 11.98 | 1 | 11.98 | 6.63 | 0.036 7 | ** |
B | 47.48 | 1 | 47.84 | 26.29 | 0.001 4 | ** |
C | 1.55 | 1 | 1.55 | 0.86 | 0.385 3 | |
AB | 14.21 | 1 | 14.21 | 7.87 | 0.026 3 | * |
AC | 2.03 | 1 | 2.03 | 1.12 | 0.324 2 | |
BC | 0.03 | 1 | 0.03 | 0.02 | 0.894 4 | |
A2 | 1.50 | 1 | 1.50 | 0.83 | 0.392 4 | |
B2 | 19.97 | 1 | 19.97 | 11.06 | 0.012 7 | * |
C2 | 15.45 | 1 | 15.45 | 8.55 | 0.022 2 | * |
残差Residual | 12.64 | 7 | 1.81 | |||
失拟项Quasi missing term | 9.97 | 3 | 3.32 | 4.96 | 0.077 9 | |
纯误差Pure error | 2.68 | 4 | 0.67 | |||
合计Total | 127.89 | 16 |
Table 5 Analysis of variance of response surface fitting regression equation for crude fiber content
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 方差 Variance | F值 F value | P | 显著性 Significance |
---|---|---|---|---|---|---|
回归模型Regression Model | 115.24 | 9 | 12.80 | 7.09 | 0.008 6 | ** |
A | 11.98 | 1 | 11.98 | 6.63 | 0.036 7 | ** |
B | 47.48 | 1 | 47.84 | 26.29 | 0.001 4 | ** |
C | 1.55 | 1 | 1.55 | 0.86 | 0.385 3 | |
AB | 14.21 | 1 | 14.21 | 7.87 | 0.026 3 | * |
AC | 2.03 | 1 | 2.03 | 1.12 | 0.324 2 | |
BC | 0.03 | 1 | 0.03 | 0.02 | 0.894 4 | |
A2 | 1.50 | 1 | 1.50 | 0.83 | 0.392 4 | |
B2 | 19.97 | 1 | 19.97 | 11.06 | 0.012 7 | * |
C2 | 15.45 | 1 | 15.45 | 8.55 | 0.022 2 | * |
残差Residual | 12.64 | 7 | 1.81 | |||
失拟项Quasi missing term | 9.97 | 3 | 3.32 | 4.96 | 0.077 9 | |
纯误差Pure error | 2.68 | 4 | 0.67 | |||
合计Total | 127.89 | 16 |
Fig.4 Three-dimensional response surface curve of crude protein content in fermented quinoa straw a, Interaction between fermentation time and urea addition; b, Interaction between fermentation time and water content of straw; c, Interaction between urea addition and water content of straw.The same as below.
[1] | 肖正春, 张广伦. 藜麦及其资源开发利用[J]. 中国野生植物资源, 2014, 33(2): 62-66. |
XIAO Z C, ZHANG G L. Development and utilization of Chenopodium quinoa Willd[J]. Chinese Wild Plant Resources, 2014, 33(2): 62-66. (in Chinese with English abstract) | |
[2] | 魏玉明, 杨发荣, 刘文瑜, 等. 藜麦不同生育期营养物质积累与分配规律[J]. 草业科学, 2018, 35(7): 1720-1727. |
WEI Y M, YANG F R, LIU W Y, et al. Regulation of nutrient accumulation and distribution in quinoa at different growth stages[J]. Pratacultural Science, 2018, 35(7): 1720-1727. (in Chinese with English abstract) | |
[3] | FLÓREZ-MARTÍNEZ D H, RODRÍGUEZ-CORTINA J, CHAVEZ-OLIVEROS L F, et al. Current trends and prospects in quinoa research: an approach for strategic knowledge areas[J]. Food Science & Nutrition, 2024, 12(3): 1479-1501. |
[4] | 杨发荣, 黄杰, 魏玉明, 等. 藜麦生物学特性及应用[J]. 草业科学, 2017, 34(3): 607-613. |
YANG F R, HUANG J, WEI Y M, et al. A review of biological characteristics, applications, and culture of Chenopodium quinoa[J]. Pratacultural Science, 2017, 34(3): 607-613. (in Chinese with English abstract) | |
[5] | 胡志萍, 尼玛草, 次仁拥青, 等. 氮素和微生物菌剂对菊苣粗蛋白含量和粗纤维含量的影响[J]. 林业科技通讯, 2024(1): 46-50. |
HU Z P, NI M C, CI R, et al. Effects of nitrogen and microbial agents on crude protein and crude fiber content of Cichorium intybus[J]. Forest Science and Technology, 2024(1): 46-50. (in Chinese with English abstract) | |
[6] | 王天武, 王腾达, 张玉晶, 等. 非蛋白氮在反刍动物生产中的研究进展[J]. 饲料研究, 2023, 46(7): 138-141. |
WANG T W, WANG T D, ZHANG Y J, et al. Progress of research on non-protein nitrogen in ruminant production[J]. Feed Research, 2023, 46(7): 138-141. (in Chinese with English abstract) | |
[7] | 曾兵, 张新全, 张新跃. 尿素在肉牛饲养中的应用[J]. 四川畜牧兽医, 2004, 31(8): 43-44. |
ZENG B, ZHANG X Q, ZHANG X Y. Application of urea in beef cattle feeding[J]. Sichuan Animal and Veterinary Sciences, 2004, 31(8): 43-44. (in Chinese) | |
[8] | 吴进东, 陈云波, 孙武. 添加尿素对青贮玉米秸秆品质的影响[J]. 皖西学院学报, 2007, 23(5): 87-89. |
WU J D, CHEN Y B, SUN W. Influence of adding urea on the quality of silage corn straw[J]. Journal of West Anhui University, 2007, 23(5): 87-89. (in Chinese with English abstract) | |
[9] | 王雨琼, 王敏玲, 周道玮. 添加丙酸钙和尿素对玉米秸秆黄贮发酵品质的影响[J]. 河南农业大学学报, 2017, 51(5): 662-666. |
WANG Y Q, WANG M L, ZHOU D W. Effects of adding calcium propionate and urea on fermentation quality of yellow storage of corn stalk[J]. Journal of Henan Agricultural University, 2017, 51(5): 662-666. (in Chinese with English abstract) | |
[10] | 谢展, 穆麟, 张志飞, 等. 尿素对紫花苜蓿和稻秸与豆粕混合青贮的影响[J]. 湖南农业大学学报(自然科学版), 2022, 48(4): 483-487. |
XIE Z, MU L, ZHANG Z F, et al. Effect of urea on mixed silage from alfalfa, rice straw and soybean meal[J]. Journal of Hunan Agricultural University(Natural Sciences), 2022, 48(4): 483-487. (in Chinese with English abstract) | |
[11] | 麦合木提·依马木尼亚孜. 尿素和微生物青贮添加剂对青贮饲料营养成分的影响[J]. 新疆畜牧业, 2013, 28(2): 39-41. |
MAIHEMUTI Y. Effects of urea and microbial silage additives on nutritional components of silage[J]. Xingjiang Xumuye, 2013, 28(2): 39-41. (in Chinese) | |
[12] | PHILLIP Y L, HASSANIEN H A M, ABOU EL-FADEL M H, et al. Effect of acetic acid addition to rice straw pre-treated with urea on performance of dairy ewes[J]. Tropical Animal Health and Production, 2023, 55(5): 351. |
[13] | 张丽英. 饲料分析及饲料质量检测技术[M]. 4版. 北京: 中国农业大学出版社, 2016. |
[14] | 伏桂华, 杨宝良, 张飞, 等. 尿素对全株玉米青贮饲料发酵品质和饲料营养价值的影响[J]. 饲料研究, 2021, 44(14): 117-119. |
FU G H, YANG B L, ZHANG F, et al. Effect of urea on fermentation quality and nutritional value of whole corn silage[J]. Feed Research, 2021, 44(14): 117-119. (in Chinese with English abstract) | |
[15] | 张玲, 高飞虎, 李雪, 等. 秸秆饲料加工技术研究进展[J]. 南方农业, 2018, 12(25): 85-87. |
ZHANG L, GAO F H, LI X, et al. Advance in the research on fodder processing techniques[J]. South China Agriculture, 2018, 12(25): 85-87. (in Chinese with English abstract) | |
[16] | 杨游. 稻草秸秆氨化的机理研究及参数优化[D]. 重庆: 西南农业大学, 2004. |
YANG Y. Mechanism study and parameter optimization of ammoniation of rice straw[D]. Chongqing: Southwest Agricultural University, 2004. (in Chinese with English abstract) | |
[17] | 李红宇, 许丽, 方美琪, 等. 黄贮玉米秸秆中玉米浆添加水平对其发酵品质主要指标的影响[J]. 东北农业大学学报, 2013, 44(9): 137-143. |
LI H Y, XU L, FANG M Q, et al. Effect of addition level for corn steep liquor on main index of fermentation quality in yellow corn stover silage[J]. Journal of Northeast Agricultural University, 2013, 44(9): 137-143. (in Chinese with English abstract) | |
[18] | 谭树义, 魏立民, 王峰, 等. 尿素对苏丹草青贮发酵品质的影响[J]. 中国饲料, 2014(17): 18-19. |
TAN S Y, WEI L M, WANG F, et al. Effects of urea on fermentation quality of Sorghum sudanense (Piper) Stapt[J]. China Feed, 2014(17): 18-19. (in Chinese with English abstract) | |
[19] | 曹振. 尿素预处理玉米秸秆的脱木质素动力学及厌氧发酵特性研究[D]. 哈尔滨: 东北农业大学, 2020. |
CAO Z. Study on delignification kinetics and anaerobic fermentation characteristics of corn stalk pretreated by urea[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract) | |
[20] | 顾雅梅, 边高瑞, 张曦元, 等. 不同尿素、麦麸的添加水平对咖啡渣发酵效果的影响[J]. 中国饲料, 2023(19): 158-162. |
GU Y M, BIAN G R, ZHANG X Y, et al. Effects of different levels of urea and wheat bran on the fermentation effect of coffee grounds[J]. China Feed, 2023(19): 158-162. (in Chinese with English abstract) | |
[21] |
KASHONGWE O B, MIGWI P, BEBE B O, et al. Improving the nutritive value of wheat straw with urea and yeast culture for dry season feeding of dairy cows[J]. Tropical Animal Health and Production, 2014, 46(6): 1009-1014.
DOI PMID |
[22] | 李龙, 高林青, 蔡锋隆, 等. 发酵饲料发酵品质评定的研究进展[J]. 中国饲料, 2023(2): 13-16. |
LI L, GAO L Q, CAI F L, et al. Research progress on evaluation of feed fermentation quality[J]. China Feed, 2023(2): 13-16. (in Chinese with English abstract) | |
[23] | RAYMOND L J, ERFLE J D, SAUER F D, et al. Protein and free amino acid patterns in maize ensiled with or without urea[J]. Journal of the Science of Food and Agriculture, 1978, 29(6): 506-512. |
[24] |
荣辉, 余成群, 李志华, 等. 添加糖蜜和尿素对象草青贮发酵品质的影响[J]. 草地学报, 2012, 20(5): 940-946.
DOI |
RONG H, YU C Q, LI Z H, et al. Effects of adding molasses and urea on fermentation quality of Napier grass silage[J]. Acta Agrestia Sinica, 2012, 20(5): 940-946. (in Chinese with English abstract)
DOI |
|
[25] | 王英琪. 玉米秸秆厌氧发酵预处理技术研究[D]. 大庆: 黑龙江八一农垦大学, 2019. |
WANG Y Q. Study on pretreatment technology of corn stalk by anaerobic fermentation[D]. Daqing: Heilongjiang Bayi Agricultural University, 2019. (in Chinese with English abstract) | |
[26] | 马君. 秸秆的氨化厌氧发酵工艺优化与反应器的启动[D]. 西安: 陕西科技大学, 2013. |
MA J. Optimization of ammoniation anaerobic fermentation process of straw and start-up of reactor[D]. Xi’an: Shaanxi University of Science & Technology, 2013. (in Chinese with English abstract) | |
[27] | 孙国强, 崔海净, 蔡李逢, 等. 尿素与氢氧化钙不同组合对麦秸纤维含量的影响[J]. 河南农业科学, 2012, 41(2): 149-151. |
SUN G Q, CUI H J, CAI L F, et al. Effects of different combination of urea and calcium hydroxide on the fiber content of wheat straw[J]. Journal of Henan Agricultural Sciences, 2012, 41(2): 149-151. (in Chinese with English abstract) | |
[28] | 刘建勇, 余梅, 王安奎, 等. 添加尿素对甘蔗梢青贮的影响[J]. 中国牛业科学, 2010, 36(4): 22-25. |
LIU J Y, YU M, WANG A K, et al. Influences of the quality of sugarcane tip silage by adding urea[J]. China Cattle Science, 2010, 36(4): 22-25. (in Chinese with English abstract) | |
[29] | 吴兆鹏, 蚁细苗, 钟映萍, 等. 添加剂对甘蔗梢叶青贮营养价值的影响[J]. 广西科学, 2016, 23(1): 51-55. |
WU Z P, YI X M, ZHONG Y P, et al. Effects of additives on the nutritional value of sugarcane tip silage[J]. Guangxi Sciences, 2016, 23(1): 51-55. (in Chinese with English abstract) | |
[30] | 魏志敏, 赵宇, 崔纪菡, 等. 藜麦作为饲料饲草的应用潜力分析[J]. 中国畜禽种业, 2022, 18(2): 81-82. |
WEI Z M, ZHAO Y, CUI J H, et al. Analysis of application potential of quinoa as forage grass[J]. The Chinese Livestock and Poultry Breeding, 2022, 18(2): 81-82. (in Chinese) | |
[31] |
赵小雪, 王仕玉, 郭凤根, 等. 乳酸菌及纤维素酶对不同藜麦秸秆青贮发酵品质的影响[J]. 草地学报, 2022, 30(10): 2827-2833.
DOI |
ZHAO X X, WANG S Y, GUO F G, et al. Effects of lactic acid bacteria and cellulase on fermentation quality of straw silage of different Chenopodium quinoa willd[J]. Acta Agrestia Sinica, 2022, 30(10): 2827-2833. (in Chinese with English abstract) | |
[32] |
吕敬, 吴治勇, 郭晓农, 等. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876.
DOI |
LYU J, WU Z Y, GUO X N, et al. Optimization of fermented quinoa straw with lactic acid bacteria by response surface methodology[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1866-1876. (in Chinese with English abstract)
DOI |
|
[33] | 李晓燕, 谢丽霞, 严秉莲, 等. 日粮中添加藜麦秸秆对湖羊生长性能和屠宰性能的影响[J]. 中国草食动物科学, 2022, 42(1): 79-81. |
LI X Y, XIE L X, YAN B L, et al. Effects of quinoa straw supplementation on growth performance and slaughter performance of Hu sheep[J]. China Herbivore Science, 2022, 42(1): 79-81. (in Chinese with English abstract) |
[1] | ZHANG Ni, TAO Wenyang, LUO Mengfan, ZHOU Wanyi, ZHENG Xiaojie, LI Yanpo, JIN Huoxi, YANG Ying. Effects of enzyme-assisted extraction on composition and gut microbiota regulation function of Dendrobium officinale polysaccharide [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2099-2109. |
[2] | LI Shuyan, JIAO Ting, QI Shuai, ZHANG Xia, WANG Huning, ZHAO Shengguo. In vitro study on effects of isochlorogenic acid supplementation in sheep diets on nutrient digestion and rumen fermentation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1753-1763. |
[3] | LIU Wenwen, HU Lianqing, ZHOU Wanhai, WEI Qin, FENG Ruizhang, ZHAO Xin, CHE Litao, CHEN Jinyu. Effects of different contents of Camphora longepaniculata leaves in diets on intestinal pH, cecal fermentation and cecal microbiota of meat rabbits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1279-1289. |
[4] | ZHANG Yue, CHEN Hui, ZHENG Yadan, YANG Peng, KE Zhigang, DAI Yangzhang, JIN Youding, DING Yuting, LIU Shulai. Quality changes of wine-lees mussel during wine-lees pickling process [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 416-423. |
[5] | YANG Kai, CHEN Kai, LI Hongmei, ZHAO Zhongjuan, HU Jindong, LI Jishun, YANG Hetong. Biocontrol efficacy and action mechanism of Trichoderma harzianum LTR-2 and Arthrobacter ureafaciens DnL1-1 against crown rot of wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1385-1395. |
[6] | HE Yu, LYU Weiguang, LI Shuangxi, ZHENG Xianqing, ZHANG Hanlin, ZHANG Juanqin, ZHANG Haiyun, BAI Naling, LIU Shanliang. Effects of γ-polyglutamic acid fermentation broth on growth of pakchoi and utilization rate of nitrogen and phosphorus fertilizer [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 329-337. |
[7] | ZHANG Xiwen, GUO Xiaonong, WANG Zexing, WANG Yaling. Optimization of fermentation process of quinoa straw fermented feed with different compound probiotics [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2818-2829. |
[8] | ZHOU Li, GUI Linsheng. Effect of wheat particle dosage in diet on rumen internal environment of male Tibetan lambs [J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2543-2554. |
[9] | LYU Jing, WU Zhiyong, GUO Xiaonong, FENG Yulan, LU Jianxiong, CHAI Weiwei. Optimization of fermented quinoa straw with lactic acid bacteria by response surface methodology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1866-1876. |
[10] | PAN Xujie, LIU Ruiling, DENG Shanggui, WU Weijie, CHEN Hangjun, GAO Haiyan. Optimization of process conditions and volatile flavor components analysis of bayberry pulp fermented by lactic acid bacteria [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1502-1512. |
[11] | PENG Caiwang, ZHOU Ting, SUN Songlin, XIE Yelin, WEI Yuan. Calibration of parameters of black soldier fly in discrete method simulation based on response angle of particle heap [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 814-823. |
[12] | HE Xiu, XU Meiyu, XIN Weigang, ZHANG Qilin, WANG Feng, LIN Lianbing. Effects of soybean meal addition and fermentation time on nutritional quality and bacterial diversity of Pennisetum purpureum silage [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2160-2171. |
[13] | YANG Yeshuang, ZHANG Yingping, CHEN Yifan, ZHANG Jin, LI Huanhuan, CHEN Lihong, TANG Honggang, GAO Bin. Optimization of formulation of reconstituted liquid egg by response surface methodology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 153-162. |
[14] | JIA Yangyang, NIE Zongning, LUO Xingyu, YANG Kaihui, HE Chunlei. Study on processing technology of exogenous polyphenol oxidase assisted fermentation of Tibetan tea [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1720-1729. |
[15] | GAO Hanfeng, LIU Yuqin, CHENG Liang, GUO Qingyun. Study on fermentation conditions of herbicidal active strain HL-1 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1042-1048. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||