[1] BERNDES G, FREDRIKSON F, BÖRJESSON P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden[J]. Agriculture Ecosystems & Environment, 2004, 103(1):207-223. [2] MARMIROLI M, PIETRINI F, MAESTRI E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12):1319-1334. [3] FISCHEROVÁ Z, TLUSTOŠ P, SZÁKOVÁ J, et al. A comparison of phytoremediation capability of selected plant species for given trace elements[J]. Environmental Pollution, 2006, 144(1):93-100. [4] KUZOVKINA Y A, QUIGLEY M F. Willows beyond wetlands: Uses of Salix L. species for environmental projects[J]. Water, Air, & Soil Pollution, 2005, 162(1):183-204. [5] WEIH M, NORDH N E. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes[J]. Biomass & Bioenergy, 2002, 23(6):397-413. [6] LIU W, NI J, ZHOU Q. Uptake of heavy metals by trees: prospects for phytoremediation[J]. Materials Science Forum, 2013, 743-744:768-781. [7] LAUREYSENS I, DE T L, HASTIR T, et al. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. Ⅱ. Vertical distribution and phytoextraction potential[J]. Environmental Pollution, 2005, 133(3):541-551. [8] MIRCK J, ISEBRANDS J G, VERWIJST T, et al. Development of short-rotation willow coppice systems for environmental purposes in Sweden[J]. Biomass & Bioenergy, 2005, 28(2):219-228. [9] DIMITRIOU I, ARONSSON P. Nitrogen leaching from short-rotation willow coppice after intensive irrigation with wastewater[J]. Biomass & Bioenergy, 2004, 26(5):433-441. [10] DIMITRIOU I, ARONSSON P, WEIH M. Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate[J]. Bioresource Technology, 2006, 97(1):150-157. [11] MANT C, PETERKIN J, MAY E, et al. A feasibility study of a Salix viminalis gravel hydroponic system to renovate primary settled wastewater[J]. Bioresource Technology, 2003, 90(1):19-25. [12] PERTTU K L, KOWALIK P J. Salix vegetation filters for purification of waters and soils[J]. Biomass & Bioenergy, 1997, 12(1):9-19. [13] JONSSON M, DIMITRIOU I, ARONSSON P, et al. Treatment of log yard run-off by irrigation of grass and willows[J]. Environmental Pollution, 2006, 139(1):157-166. [14] MARLER R J, STROMBERG J C, PATTEN D T. Growth response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima seedlings under different nitrogen and phosphorus concentrations[J]. Journal of Arid Environments, 2001, 49(1):133-146. [15] SAMECKA-CYMERMAN A, STEPIEN D, KEMPERS A J. Efficiency in removing pollutants by constructed wetland purification systems in Poland[J]. Journal of Toxicology and Environmental Health, Part A, 2004, 67(4): 265-275. [16] BÖRJESSON P. Environmental effects of energy crop cultivation in Sweden—I: identification and quantification[J]. Biomass and Bioenergy, 1999, 16(2): 137-154. [17] SHIN J Y, PARK S S, AN K G. Removal of nitrogen and phosphorus using dominant riparian plants in a hydroponic culture system[J]. Journal of Environmental Science & Health Part A, 2004, 39(3):821-834. [18] 王红玲, 施士争, 黄瑞芳,等. 6种柳树对富营养化灌溉污水的氮磷富集能力比较[J]. 西北林学院学报, 2016, 31(4):59-66. WANG H L, SHI S Z, HUANG R F, et al. Comparison of the enriching ability of nitrogen and phosphorus between 6 willow species irrigated by artificial eutrophic water[J]. Journal of Northwest Forestry University, 2016, 31(4): 59-66. (in Chinese with English abstract) [19] ROGERS A, MCDONALD K, MUEHLBAUER M F, et al. Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. 638 increases biomass but does not impact leaf level physiology[J]. Global Change Biology Bioenergy, 2012, 4(3):364-370. [20] 刘桂青, 杨栋, 倪其军, 等. 内生菌对柳树生长及氮磷吸收的强化作用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2):256-264. LIU G Q, YANG D, NI Q J, et al. Bioaugmentation effects of endophytic bacteria on growth and nitrogen and phosphorus accumulation of willow[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2016, 42(2): 256-264. (in Chinese with English abstract) [21] DA CUNHA A C B, SABEDOT S, SAMPAIO C H, et al. Salix rubens, and Salix triandra, species as phytoremediators of soil contaminated with petroleum-derived hydrocarbons[J]. Water, Air, & Soil Pollution, 2012, 223(8):4723-4731. [22] IONESCU M, BERANOVA K, DUDKOVA V, et al. Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls[J]. International Biodeterioration & Biodegradation, 2009, 63(6):667-672. [23] CORSEUIL H X, MORENO F N. Phytoremediation potential of willow trees for aquifers contaminated with ethanol-blended gasoline[J]. Water Research, 2001, 35(12):3013-3017. [24] SCHOENMUTH B W, PESTEMER W. Dendroremediation of trinitrotoluene (TNT) Part 1: Literature overview and research concept[J]. Environmental Science and Pollution Research, 2004, 11(4):273-278. [25] SCHOENMUTH B W, PESTEMER W. Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labelled TNT in trees[J]. Environmental Science and Pollution Research, 2004, 11(5):331-339. [26] UCISIK A S, TRAPP S. Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis)[J]. Environmental Toxicology and Chemistry, 2006, 25(9):2455-2460. [27] UCISIK A S, TRAPP S. Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees[J]. Archives of Environmental Contamination & Toxicology, 2008, 54(4):619-627. [28] WIESHAMMER G, UNTERBRUNNER R, GARCÍA T B, et al. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea, and Arabidopsis halleri[J]. Plant and Soil, 2007, 298(1):255-264. [29] GRANEL T, ROBINSON B, MILLS T, et al. Cadmium accumulation by willow clones used for soil conservation, stock fodder, and phytoremediation[J]. Soil Research, 2002, 40(8):1331-1337. [30] MERTENS J, VERVAEKE P, MEERS E, et al. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment[J]. Environmental Science & Technology, 2006, 40(6):1962-1968. [31] DOS SANTOS UTMAZIAN M N, WENZEL W W. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils [J]. Journal of Plant Nutrition and Soil Science, 2007, 170 (2): 265-272. [32] HAMMER D, KAYSER A, KELLER C. Phytoextraction of Cd and Zn with Salix viminalis in field trials[J]. Soil Use and Management, 2003, 19(3):187-192. [33] VANDECASTEELE B, MEERS E, VERVAEKE P, et al. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels[J]. Chemosphere, 2005, 58(8):995-1002. [34] VANDECASTEELE B, QUATAERT P, TACK F M. The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea[J]. Environmental Pollution, 2005, 135(2):303-312. [35] 王银, 王光辉, 胡苏杭. 重金属和有机污染土壤植物增效修复技术研究进展[J]. 安徽农业科学, 2014, 42(16):5074-5076. WANG Y, WANG G H, HU S H. Application of enhanced phytoremediation in contaminated soil by heavy metals and organic pollutants[J]. Journal of Anhui Agricultural Sciences, 2014, 42(16): 5074-5076. (in Chinese with English abstract) [36] WANG Y, GREGER M. Use of iodide to enhance the phytoextraction of mercury-contaminated soil[J]. Science of the Total Environment, 2006, 368(1): 30-39. [37] KOMÁREK M, TLUSTOS P, SZÁKOVÁ J, et al. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils[J]. Chemosphere, 2007, 67(4): 640-651. [38] BAUM C, HRYNKIEWICZ K, LEINWEBER P, et al. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4):516-522. [39] EAPEN S, D'SOUZA S F. Prospects of genetic engineering of plants for phytoremediation of toxic metals[J]. Biotechnology Advances, 2005, 23(2): 97-114. [40] CHEN Y, TANG X, CHEEMA S A, et al. β-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area[J]. Journal of Environmental Monitoring, 2010, 12(7):1482-1489. [41] YANG C, ZHOU Q, WEI S, et al. Chemical-assisted phytoremediation of Cd-PAHs contaminated soils using Solanum nigrum L[J]. International Journal of Phytoremediation, 2011, 13(8):818-833. [42] YU X Z, GU J D. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees[J]. Ecotoxicology, 2008, 17(3):143-152. [43] PUNSHON T, LEPP N W, DICKINSON N M. Resistance to copper toxicity in some British willows[J]. Journal of Geochemical Exploration, 1995, 52(1):259-266. [44] KUZOVKINA Y A, KNEE M, QUIGLEY M F. Cadmium and copper uptake and translocation in five willow (Salix L.) species[J]. International Journal of Phytoremediation, 2004, 6(3):269-287. [45] WATSON C, PULFORD I D, RIDDELLBLACK D. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix)[J]. International Journal of Phytoremediation, 2003, 5(4):333-349. [46] WATSON C, PULFORD I D, RIDDELLBLACK D. Heavy metal toxicity responses of two willow (Salix) varieties grown hydroponically: development of a tolerance screening test[J]. Environmental Geochemistry and Health, 1999, 21(4):359-364. [47] WATSON C, PULFORD I D, RIDDELLBLACK D. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials[J]. International Journal of Phytoremediation, 2003, 5(4):351-365. |