[1] PERRY L, DICKAU R, ZARRILLO S, et al. Starch fossils and the domestication and dispersal of chili peppers ( Capsicum spp. L.) in the Americas[J]. Science , 2007, 315(5814): 986-988. [2] COHEN O, BOROVSKY Y, DAVID-SCHWARTZ R, et al. Capsicum annuum S ( CaS ) promotes reproductive transition and is required for flower formation in pepper( Capsicum annuum )[J]. New Phytologist , 2014, 202(3): 1014-1023. [3] ELITZUR T, NAHUM H, BOROVSKY Y, et al. Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE : the pepper orthologue of SELF PRUNING [J]. Journal of Experimental Botany , 2009, 60(3): 869-880. [4] ZUELLIG M P, KENNEY A M, SWEIGART A L. Evolutionary genetics of plant adaptation: insights from new model systems[J]. Current Opinion in Plant Biology , 2014, 18: 44-50. [5] MIMURA Y, MINAMIYAMA Y, SANO H, et al. Mapping for axillary shooting, flowering date, primary axis length, and number of leaves in pepper ( Capsicum annuum )[J]. Journal of the Japanese Society for Horticultural Science , 2010, 79(1): 56-63. [6] TAN S, CHENG J W, ZHANG L, et al. Construction of an interspecific genetic map based on InDel and SSR for mapping the QTLs affecting the initiation of flower primordia in pepper ( Capsicum spp.)[J]. PLoS One , 2015, 10(3): e0119389. [7] 陈学军. 辣椒早熟性状遗传分析、相关基因分子标记及辣椒属栽培种遗传多样性研究[D]. 南京: 南京农业大学, 2006. CHEN X J. Studies on inheritance of earliness traits, molecular markers of related gene and genetic diversity among cultivated species in pepper [D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese with English abstract) [8] 方荣, 陈学军, 周坤华, 等. 辣椒早熟性状遗传研究进展[J]. 中国蔬菜, 2009(22): 1-5. FANG R, CHEN X J, ZHOU K H, et al. Research progress in pepper genetic characteristics of earliness[J]. China Vegetables , 2009(22): 1-5. (in Chinese with English abstract) [9] SAMACH A, LOTAN H. The transition to flowering in tomato[J]. Plant Tissue Culture Letters , 2007, 24(1): 71-82. [10] BARCHI L, LEFEBVRE V, SAGEPALLOIX A M, et al. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping[J]. Theoretical and Applied Genetics , 2009, 118(6): 1157-1171. [11] ALIMI N A, MCAM B, DIELEMAN J A, et al. Genetic and QTL analyses of yield and a set of physiological traits in pepper[J]. Euphytica , 2013, 190: 181-201. [12] 宗洪霞. 辣椒分子遗传图谱的构建与果实相关性状QTL分析[D]. 南昌: 江西农业大学, 2013. ZONG H X. Construction of molecular linkage map and QTL analysis on fruit-related traits in pepper [D]. Nanchang: Jiangxi Agricultural University, 2013. (in Chinese with English abstract) [13] ALIMI N A, BINK M C A M, DIELEMAN J A, et al. Exploratory QTL analyses of some pepper physiological traits in two environments [C]// Proceedings of the XIVth EUCARPIA Meeting on genetics and breeding of Capsicum and Eggplant, Valencia, Spain, 2010. [14] 段蒙蒙. 辣椒种内遗传图谱的构建及植物学性状和抗疫病的QTL定位[D]. 北京: 中国农业科学院, 2014. DUAN M M. Construction of intraspecific genetic linkage map and QTL analysis of phytological traits and Phytophthora capsici resistance in pepper ( Capsicum L.) [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract) [15] 周坤华, 雷刚, 方荣, 等. 利用辣椒种间F 2 和F 2:3 两个群体进行其主要农艺性状QTL分析[J]. 园艺学报, 2015, 42(5): 879-889. ZHOU K H, LEI G, FANG R, et al. Detection of QTLs for main agronomic traits using F 2 and F 2:3 interspecific populations in pepper[J]. Acta Horticulturae Sinica , 2015, 42(5): 879-889. (in Chinese with English abstract) [16] 张芳芳. 辣椒果实主要色素动态变化及辣椒红素的QTL定位[D]. 北京: 中国农业科学院, 2010. ZHANG F F. Dynamic changes of pigments content and QTL analysis of the capsanthin content of pepper [D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract) [17] COHEN O, BOROVSKY Y, DAVID-SCHWARTZ R, et al. CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper[J]. Journal of Experimental Botany , 2012, 63(13): 4947-4957. [18] JEIFETZ D, DAVID-SCHWARTZ R, BOROVSKY Y, et al. CaBLIND regulates axillary meristem initiation and transition to flowering in pepper[J]. Planta , 2011, 234(6): 1227-1236. [19] BOROVSKY Y, SHARMA V K, VERBAKEL H, et al. CaAP 2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum [J]. Theoretical and Applied Genetics , 2015, 128(6): 1073-1082. [20] MACALISTER C A, PARK S J, JIANG K, et al. Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene[J]. Nature Genetics , 2012, 44(12): 1393-1398. [21] BOSS P K, BASTOW R M, MYLNE J S, et al. Multiple pathways in the decision to flower: enabling, promoting, and resetting[J]. Plant Cell , 2004, 16(S): S18-S31. [22] SZYMKOWIAK E J and IRISH E E. JOINTLESS suppresses sympodial identity in inflorescence meristems of tomato[J]. Planta , 2006, 223(4): 646-658. [23] LIPPMAN Z B, COHEN O, ALVAREZ J P, et al. The making of a compound inflorescence in tomato and related nightshades[J]. PLoS Biology , 2008, 6(11): e288. [24] AB R, M B, E K, et al. Role of EVERGREEN in the development of the cymose petunia inflorescence[J]. Developmental Cell , 2008, 15(3): 437-447. [25] HARTMANN U, H HMANN S, NETTESHEIM K, et al. Molecular cloning of SVP : a negative regulator of the floral transition in Arabidopsis [J]. Plant Journal , 2000, 21(4): 351-360. [26] LI D, LIU C, SHEN L, et al. A repressor complex governs the integration of flowering signals in Arabidopsis [J]. Developmental Cell , 2008, 15(1): 110-120. [27] GREGIS V, SESSA A, COLOMBO L, et al. AGL 24, SHORT VEGETATIVE PHASE , and APETALA 1 rebundantly control AGAMOUS during early stages of flower development in Arabidopsis [J]. Plant Cell , 2006, 18(6): 1373-1382. [28] LIU C, CHEN H Y, ER H L, et al. Direct interaction of AGL 24 and SOC 1 integrates flowering signals in Arabidopsis [J]. Development , 2008, 135(8): 1481-1491. [29] M LLER D, SCHMITZ G, THERES K. Blind homologous R 2 R 3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis [J]. Plant Cell , 2006, 18(3): 586-597. [30] QUINET M, DIELEN V, BATOKO H, et al. Genetic interactions in the control of flowering time and reproductive structure development in tomato( Solanum lycopersicum )[J]. New Phytologist , 2006, 170(4): 701-710. [31] NICOLA M, PISANI C, BOUCHET J P, et al. Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper ( Capsicum annuum )[J]. Genetics and Molecular Research , 2012, 11(3): 2295-2300. [32] NORELLI J L, WISNIEWSKI M, FAZIO G, et al. Genotyping-by-sequencing markers facilitate the identification of quantitative trait loci controlling resistance to Penicillium expansum in Malus sieversii [J]. PLoS One , 2017, 12(3): e0172949. [33] YU L X, ZHENG P, BHAMIDIMARRI S, et al. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa ( Medicago sativa L.)[J]. Frontiers in Plant Science , 2017, 8: 89-101. [34] CHEN H D, HE H, ZOU Y J, et al. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice( Oryza sativa L.)[J]. Theoretical and Applied Genetics , 2011, 123(6): 869-879. [35] JONES E, CHU W C, AYELE M, et al. Development of single nucleotide polymorphism (SNP) markers for use in commercial maize ( Zea mays L.) germplasm[J]. Molecular Breeding , 2009, 24(2): 165-176. [36] WIGGINS S. Single nucleotide polymorphism (SNP) marker-assisted breeding and stability analysis of low phytate soybean [C]// ASA·CSSA·SSSA International Annual Meetings, San Antonio, 2011. [37] VUONG T D, ISABELLE A, NGUYEN H T. High-throughput SNP genotyping platform for marker-assisted breeding in soybean [C]// Plant & Animal Genome ⅩⅪ, San Diego, CA, 2013. [38] DE HOOP S J, STRUSS D, LOTHROP J, et al. Developing a SNP marker set for breeding and genetics applications in Cucumber [C]// Plant & Animal Genome ⅩⅩ, San Diego, CA, 2012. [39] HAN K, JEONG H J, YANG H B, et al. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper ( Capsicum annuum )[J]. DNA Research , 2016, 23(2): 81-91. [40] FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: Control of flowering in Arabidopsis [J]. Cell , 2010, 141(3): 550. [41] BERNIER G, PÉRILLEUX C. A physiological overview of the genetics of flowering time control[J]. Plant Biotechnology Journal , 2005, 3(1): 3-16. [42] KARDAILSKY I, SHUKLA V K, AHN J H, et al. Activation tagging of the floral inducer FT [J]. Science , 1999, 286(5446): 1962-1965. [43] WEIGEL D, NILSSON O. A developmental switch sufficient for flower initiation in diverse plants[J]. Nature , 1995, 377(6549): 495-500. [44] CORBESIER L, COUPLAND G. Photoperiodic flowering of Arabidopsis : integrating genetic and physiological approaches to characterization of the floral stimulus[J]. Plant , Cell and Environment , 2005, 28(1): 54-66. [45] LIFSCHITZ E, ESHED Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato[J]. Journal of Experimental Botany , 2006, 57(13): 3405-3414. [46] MOLINERO-ROSALES N, JAMILENA M, ZURITA S, et al. FALSIFLORA , the tomato orthologue of FLORICAULA and LEAFY , controls flowering time and floral meristem identity[J]. Plant Journal , 1999, 20(6): 685-693. [47] LIPPMAN Z B, COHEN O, ALVAREZ J P, et al. The making of a compound inflorescence in tomato and related nightshades[J]. PLoS Biology , 2008, 6(11): 2424-2435. [48] DIELEN V, QUINET M, CHAO J, et al. UNIFLORA , a pivotal gene that regulates floral transition and meristem identity in tomato ( Lycopersicon esculentum )[J]. New Phytologist , 2004, 161(2): 393-400. [49] KIM S, PARK M, YEOM S I, et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species[J]. Nature Genetics , 2014, 46(3): 270-278. [50] QIN C, YU C S, SHEN Y O, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization[J]. Proceedings of the National Academy of Sciences of the United States of America , 2014, 111(14): 5135-5140. [51] SUWARNO W B, PIXLEY K V, PALACIOS-ROJAS N, et al. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize[J]. Theoretical and Applied Genetics , 2015, 128(5): 851-864. [52] ILLA-BERENGUER E, VAN HOUTEN J, HUANG Z, et al. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq[J]. Theoretical and Applied Genetics , 2015, 128(7): 1329-1342. [53] LIU S Z, YEH C T, TANG H M, et al. Gene mapping via bulked segregant RNA-Seq (BSR-Seq)[J]. PLoS One , 2012, 7(5): e36406. |