[1] 原向阳, 郭平毅, 张丽光, 等. 干旱胁迫下草甘膦对抗草甘膦大豆幼苗保护酶活性及脂质过氧化作用的影响[J]. 中国农业科学, 2010, 43(4): 698-705. YUAN X Y, GUO P Y, ZHANG L G, et al.Glyphosate and post-drought rewatering on protective enzyme activities and membrane lipid peroxidation in leaves of glyphosate-resistant soybean [Glycine amx (L.) Merr.]seedlings[J]. Scientia Agricultura Sinica, 2010, 43(4): 698-705. (in Chinese with English abstract) [2] 张永芳, 王润梅, 张东旭, 等. 我国大豆耐旱性研究进展[J]. 山西农业科学, 2011, 39(1): 88-90. ZHANG Y F, WANG R M, ZHANG D X, et al.Research progress in drought resistance of soybean(Glycine max) in China[J]. Journal of Shanxi Agricultural Sciences, 2011, 39(1): 88-90.(in Chinese with English abstract) [3] 康蕾, 张红旗. 我国五大粮食主产区农业干旱态势综合研究[J]. 中国生态农业学报, 2014, 22(8): 928-937. KANG L, ZHANG H Q.Comprehensive research on the state of agricultural drought in five main grain producing areas in China[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 928-937.(in Chinese with English abstract) [4] 莫金钢, 马建, 张丽辉, 等. 干旱胁迫对大豆种子萌发的影响[J]. 大豆科学, 2014, 33(5): 701-704. MO J G, MA J, ZHANG L H, et al.Effect of drought stress on germination of soybean[J]. Soybean Science, 2014, 33(5): 701-704.(in Chinese with English abstract) [5] 王国夫. 不同菜用大豆品种发芽期耐旱性鉴定[J]. 绍兴文理学院学报(自然科学), 2015, 35(1): 14-18. WANG G F.Identification of drought-tolerance of soybean cultivars at germination growth stages[J]. Journal of Shaoxing University(Natural Science), 2015, 35(1): 14-18.(in Chinese with English abstract) [6] MILLA M A R, TOWNSEND J, CHANG I, et al. The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways[J]. Plant Molecular Biology, 2006, 61(1/2): 13-30. [7] LI G, TAI F J, ZHENG Y, et al.Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling[J]. Plant Molecular Biology, 2010, 74(4/5): 437-452. [8] LIU W X, ZHANG F C, ZHANG W Z, et al.Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress[J]. Molecular Plant, 2013, 6(5): 1487-1502. [9] QIN L X, LI Y, LI D D, et al.Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses[J]. Plant Molecular Biology, 2014, 86(6): 609-625. [10] SAPRA V T, ANAELE A O.Screening soybean genotypes for drought and heat tolerance[J]. Journal of Agronomy and Crop Science, 1991, 167(2): 96-102. [11] 谢甫绨, 董钻, 孙艳环, 等. 不同生育时期干旱对大豆生长和产量的影响[J]. 沈阳农业大学学报, 1994, 25(1): 13-16. XIE F T, DONG Z, SUN Y H, et al.Influence of drought on growth and yield of soybeans at different growth stages[J]. Journal of Shengyang Agricultural University, 1994, 25(1): 13-16.(in Chinese with English abstract) [12] 吴旭红, 王玉梅, 张百忱. 不同品种大豆幼苗抗旱性的研究初报[J]. 齐齐哈尔师范学院院报(自然科学版), 1996, 16(4): 55-58. WU X H, WANG Y M, ZHANG B C.A preliminary study on the drought resistance of soybean seedling of different varieties[J]. Journal of Qiqihar teachers’ college (Natural Science), 1996, 16(4): 55-58. (in Chinese with English abstract) [13] ZHANG Y Z, HAN Y H.Effect of high temperature and/or drought stress on the activities of SOD and POD of intact leaves in two soybean (G. max) cultivars[J]. Soybean Genetics Newsletter, 1997, 24: 39-40. [14] SAKAMOTO H, MARUYAMA K, SAKUMA Y, et al.Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions[J]. Plant Physiology, 2004, 136(1): 2734-2746. [15] 王启明, 徐心诚, 吴诗光, 等. 干旱胁迫对不同大豆品种苗期叶片渗透调节物质含量和细胞膜透性的影响[J]. 种子, 2005, 24(8): 9-12. WANG Q M, XU X C, WU S G, et al.The effect of drought stress on the content of osmotic adjusting substance in leaves and cell membrance permeability of different soybean varieties in seedling period[J]. Seed, 2005, 24(8): 9-12.(in Chinese with English abstract) [16] THU N B A, HOANG X L T, NGUYEN T D H, et al. Differential expression of two-component system-related drought-responsive genes in two contrasting drought-tolerant soybean cultivars DT51 and MTD720 under well-watered and drought conditions[J]. Plant Molecular Biology Reporter, 2015, 33(5): 1599-1610. [17] ZHOU Q, WU Y Y, ZHENG C L, et al.Triadimefon induced C and N metabolism and root ultra-structural changes for drought stress protection in soybean at flowering stage[J]. Journal of Plant Growth Regulation, 2016, 35(1): 222-231. [18] MIAN M A R, BAILEY M A, ASHLEY D A, et al. Molecular markers associated with water use efficiency and leaf ash in soybean[J]. Crop Science, 1996, 36(5): 1252. [19] MIAN M A R, ASHLEY D A, BOERMA H R. An additional QTL for water use efficiency in soybean[J]. Crop Science, 1998, 38(2): 390. [20] 刘莹. 大豆根区逆境耐性的鉴定和相关根系性状的遗传分析与QTL定位[D]. 南京: 南京农业大学, 2005. LIU Y.Identification of tolerance to rhizosperical stresses and inheretance and QTL locatting of related root traits in soybean (Glycine max(L.) Merr.)[D]. Nanjing: Nanjing Agricultural University, 2005.(in Chinese with English abstract) [21] DU W J, YU D Y, FU S X.Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max(L.) Merr.][J]. Agricultural Sciences in China, 2009, 8(5): 529-537. [22] 李灿东, 蒋洪蔚, 刘春燕, 等. 大豆耐旱选择群体QTL定位[J]. 作物学报, 2011, 37(4): 603-611. LI C D, JIANG H W, LIU C Y, et al.QTL identification of drought tolerance to soybean in selection population[J]. Acta Agronomica Sinica, 2011, 37(4): 603-611.(in Chinese with English abstract) [23] ABDEL-HALEEM H, CARTER T E, PURCELL L C, et al.Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr.)[J]. Theoretical and Applied Genetics, 2012, 125(5): 837-846. [24] 邢光南, 刘泽稀楠, 谭连美, 等. 大豆叶面茸毛密度和长度的QTL定位[J]. 作物学报, 2013, 39(1): 12-20. XING G N, LIU Z, TAN L M, et al.QTL mapping of pubescence density and length on leaf surface of soybean[J]. Acta Agronomica Sinica, 2013, 39(1): 12-20.(in Chinese with English abstract) [25] ZHANG D, ZHANG H Y, CHU S S, et al.Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress[J]. Plant Molecular Biology, 2017, 93(1/2): 137-150. [26] 张大勇, 易金鑫, 何晓兰, 等. 大豆水通道蛋白家族基因的相关研究[C]//江苏省遗传学会会员代表大会暨学术研讨会, 2010. [27] FARIA J A, REIS P A, REIS M T, et al.The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress-and osmotic stress-induced NRP-mediated cell-death signaling pathway[J]. Plant Signaling & Behavior, 2012, 11(1): 129 [28] LE D T, NISHIYAMA R, WATANABE Y, et al.Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One, 2012, 7(11): e49522. [29] VIDAL R O, DO NASCIMENTO L C, MAURÍCIO COSTA MONDEGO J, et al. Identification of SNPs in RNA-seq data of two cultivars of Glycine max(soybean) differing in drought resistance[J]. Genetics and Molecular Biology, 2012, 35(1 suppl 1): 331-334. [30] XU J Y, XUE C C, XUE D, et al.Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One, 2013, 8(7): e69810. [31] LUO X, BAI X, SUN X L, et al.Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signalling[J]. Journal of Experimental Botany, 2013, 64(8): 2155-2169. [32] 秦迪, 赵翠兰, 郑成忠, 等. 转BADH基因大豆耐旱性分析[J]. 中国油料作物学报, 2015, 37(6): 752-758. QIN D, ZHAO C L, ZHENG C Z, et al.Drought tolerance of transgenic soybean with BADH gene[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(6): 752-758.(in Chinese with English abstract) [33] SINGH K.Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5): 430-436. [34] TRAN L S P, NAKASHIMA K, SAKUMA Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive Cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell, 2004, 16(9): 2481-2498. [35] JOO J, LEE Y H, SONG S I.Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA[J]. Plant Biotechnology Reports, 2014, 8(6): 431-441. [36] ENGLBRECHT C C, SCHOOF H, BÖHM S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome[J]. BMC Genomics, 2004, 5(1): 39. [37] 田路明, 黄丛林, 张秀海, 等. 逆境相关植物锌指蛋白的研究进展[J]. 生物技术通报, 2005(6): 12-16. TIAN L M, HUANG C L, ZHANG X H, et al.Advances of plant zinc finger proteins involved in abiotic stress[J]. Biotechnology Information, 2005(6): 12-16.(in Chinese with English abstract) [38] PABO C O, PEISACH E, GRANT R A.Design and selection of novel Cys2His2 zinc finger proteins[J]. Annual Review of Biochemistry, 2001, 70(1): 313-340. [39] SUGANO S, KAMINAKA H, RYBKA Z, et al.Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in Petunia[J]. The Plant Journal, 2003, 36(6): 830-841. [40] HUANG X Y, CHAO D Y, GAO J P, et al.A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control[J]. Genes & Development, 2009, 23(15): 1805-1817. [41] KIM J C, LEE S H, CHEONG Y H, et al.A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. The Plant Journal, 2001, 25(3): 247-259. [42] 刘萌萌. 大豆C2H2型锌指蛋白转录因子基因的克隆与鉴定[D]. 北京: 中国农业科学院, 2007. LIU M M.Isolation and characterization of C2H2 type zinc finger transcription factor in Glycine max(L.) Merrill[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007.(in Chinese with English abstract) [43] 白晶, 张必弦, 李新玲, 等. 野生大豆(Glycine soja) C2H2型锌指蛋白基因的克隆与序列分析[J]. 大豆科学, 2009, 28(1): 21-25. BAI J, ZHANG B X, LI X L, et al.Cloning and sequence analysis of a C2H2 type zinc finger protein gene from Glycine soja[J]. Soybean Science, 2009, 28(1): 21-25. (in Chinese with English abstract) [44] 吴学闯, 曹新有, 陈明, 等. 大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析[J]. 植物遗传资源学报, 2010, 11(3): 343-348. WU X C, CAO X Y, CHEN M, et al.Isolation and expression pattern assay of a C3HC4-type RING zinc finger protein gene GmRZFP1 in Glycine max(L.)[J]. Journal of Plant Genetic Resources, 2010, 11(3): 343-348.(in Chinese with English abstract) [45] 单曙光, 于国红, 徐娜, 等. 大豆转录因子GmC2H2基因转化拟南芥效果分析[J]. 生物技术通报, 2011(12): 75-81. SHAN S G, YU G H, XU N, et al.Effect analysis of transcription factor GmC2H2 in transgenic Arabidopsis[J]. Biotechnology Bulletin, 2011(12): 75-81. (in Chinese with English abstract) [46] 韩丹, 王丕武, 曲静, 等. 大豆C2H2型锌指蛋白基因SCTF-1转化及功能分析[J]. 中国油料作物学报, 2016, 38(3): 307-312. HAN D, WANG P W, QU J, et al.Transformation and functional analysis of soybean SCTF-1 gene encoding a C2H2-typezinc finger protein[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(3): 307-312. (in Chinese with English abstract) [47] KANG X J, CHONG J, NI M.HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses[J]. The Plant Cell, 2005, 17(3): 822-835. [48] SEARLES M A, LU D, KLUG A.The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA1[J]. Journal of Molecular Biology, 2000, 301(1): 47-60. [49] WOLFE S A, NEKLUDOVA L, PABO C O.DNA recognition by Cys2His2 zinc finger proteins[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29(1): 183-212. [50] FUKAMATSU Y, MITSUI S, YASUHARA M, et al.Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies[J]. Plant and Cell Physiology, 2005, 46(8): 1340-1349. [51] JEANNETTE E, RONA J, BARDAT F, et al.Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells[J]. The Plant Journal, 1999, 18(1): 13-22. [52] KARIOLA T, BRADER G, HELENIUS E, et al.EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis[J]. Plant Physiology, 2006, 142(4): 1559-1573. [53] LI S, XU C H, YANG Y N, et al.Functional analysis of TaDi19A, a salt-responsive gene in wheat[J]. Plant Cell & Environment, 2010, 33: 117-129. [54] 李朔. 小麦耐盐渐渗系山融3号根系盐胁迫转录组分析及相关基因功能研究[D]. 济南: 山东大学, 2009. LI S.Expression profiles of wheat somatic hybrid introgression line Shanrong No.3 under salt stress and functional analysis of salt responsive genes[D]. Jinan: Shandong University, 2009.(in Chinese with English abstract) [55] 茹京娜, 于太飞, 陈隽, 等. 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选[J]. 中国农业科学, 2017, 50(13): 2411-2422. RU J N, YU T F, CHEN J, et al.Response of wheat zinc-finger transcription factor TaDi19A to cold and its screening of interacting proteins[J]. Scientia Agricultura Sinica, 2017, 50(13): 2411-2422.(in Chinese with English abstract) [56] 赵娟莹, 刘佳明, 冯志娟, 等. 大豆锌指转录因子GmDi19-5对高温的响应及互作蛋白的筛选[J]. 中国农业科学, 2017, 50(12): 2389-2398. ZHAO J Y, LIU J M, FENG Z J, et al.The response to heat and screening of the interacting proteins of zinc finger protein GmDi19-5 in soybean[J]. Scientia Agricultura Sinica, 2017, 50(12): 2389-2398.(in Chinese with English abstract) [57] 张敏. 玉米抗逆基因ZmDi19-5的功能研究[D]. 合肥: 安徽农业大学, 2017. ZHANG M.Functional analysis of a stress resistant gene ZmDi19-5 from maize[D]. Hefei: Anhui Agricultural University, 2017.(in Chinese with English abstract) [58] 张新宇, 林书岱, 张涛, 等. 棉花C2H2类型锌指蛋白基因GhSIZ1的克隆及表达分析[J]. 棉花学报, 2015, 27(3): 189-197. ZHANG X Y, LIN S D, ZHANG T, et al.Cloning and expression analysis of GhSIZ1, encoding a C2H2 zinc finger protein in cotton(Gossypium hirsutum)[J]. Cotton Science, 2015, 27(3): 189-197.(in Chinese with English abstract) [59] 李灿东, 苗兴奋, 蒋洪蔚, 等. 大豆耐旱选择群体叶片持水能力QTL定位[J]. 中国农学通报, 2011, 27(9): 152-155. LI C D, MIAO X F, JIANG H W, et al.QTL identification of WRC to soybean in drought tolerance selection population[J]. Chinese Agricultural Science Bulletin, 2011, 27(9): 152-155.(in Chinese with English abstract) |