浙江农业学报 ›› 2020, Vol. 32 ›› Issue (2): 373-382.DOI: 10.3969/j.issn.1004-1524.2020.02.22
• 综述 • 上一篇
张古文1, 沈立2, 郑华章3, 刘娜1, 冯志娟1, 龚亚明1,*
收稿日期:2019-08-29
出版日期:2020-02-25
发布日期:2020-03-13
作者简介:张古文(1981—),男,山西运城人,博士,主要从事菜用大豆抗逆及品质机理研究。E-mail:zhangguwen@126.com
通讯作者:
*龚亚明,E-mail:基金资助:ZHANG Guwen1, SHEN Li2, ZHENG Huazhang3, LIU Na1, FENG Zhijuan1, GONG Yaming1,*
Received:2019-08-29
Online:2020-02-25
Published:2020-03-13
摘要: 干旱是人类面临的最主要自然灾害之一,是影响农作物生产最主要的环境因素。锌指蛋白指含有锌离子、具有手指状结构域的一类蛋白质,是植物中发现种类最多、调控作用最显著的一类转录因子,在植物干旱响应中发挥重要作用。Di19是最新发现的一类小分子锌指蛋白,其含有两个C2H2型锌指结构域,受干旱和高盐诱导,在植物的抗旱响应中起积极作用。大豆根系不发达,需水量多,对干旱敏感,水分亏缺是制约其产量提高和品质提升的最重要环境因子。本文评述了大豆耐旱性研究现状,锌指蛋白及其家族最新成员Di19在大豆耐旱性响应过程中发挥的作用,以期为大豆耐旱性改良提供参考。
中图分类号:
张古文, 沈立, 郑华章, 刘娜, 冯志娟, 龚亚明. 锌指蛋白转录因子Di19参与调控大豆干旱响应的研究进展[J]. 浙江农业学报, 2020, 32(2): 373-382.
ZHANG Guwen, SHEN Li, ZHENG Huazhang, LIU Na, FENG Zhijuan, GONG Yaming. Research advances of zinc finger protein transcription factor Di19 in regulation of soybean responding to drought stress[J]. , 2020, 32(2): 373-382.
| [1] 原向阳, 郭平毅, 张丽光, 等. 干旱胁迫下草甘膦对抗草甘膦大豆幼苗保护酶活性及脂质过氧化作用的影响[J]. 中国农业科学, 2010, 43(4): 698-705. YUAN X Y, GUO P Y, ZHANG L G, et al.Glyphosate and post-drought rewatering on protective enzyme activities and membrane lipid peroxidation in leaves of glyphosate-resistant soybean [ [2] 张永芳, 王润梅, 张东旭, 等. 我国大豆耐旱性研究进展[J]. 山西农业科学, 2011, 39(1): 88-90. ZHANG Y F, WANG R M, ZHANG D X, et al.Research progress in drought resistance of soybean( [3] 康蕾, 张红旗. 我国五大粮食主产区农业干旱态势综合研究[J]. 中国生态农业学报, 2014, 22(8): 928-937. KANG L, ZHANG H Q.Comprehensive research on the state of agricultural drought in five main grain producing areas in China[J]. [4] 莫金钢, 马建, 张丽辉, 等. 干旱胁迫对大豆种子萌发的影响[J]. 大豆科学, 2014, 33(5): 701-704. MO J G, MA J, ZHANG L H, et al.Effect of drought stress on germination of soybean[J]. [5] 王国夫. 不同菜用大豆品种发芽期耐旱性鉴定[J]. 绍兴文理学院学报(自然科学), 2015, 35(1): 14-18. WANG G F.Identification of drought-tolerance of soybean cultivars at germination growth stages[J]. [6] MILLA M A R, TOWNSEND J, CHANG I, et al. The [7] LI G, TAI F J, ZHENG Y, et al.Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling[J]. Plant Molecular Biology, 2010, 74(4/5): 437-452. [8] LIU W X, ZHANG F C, ZHANG W Z, et al. [9] QIN L X, LI Y, LI D D, et al. [10] SAPRA V T, ANAELE A O.Screening soybean genotypes for drought and heat tolerance[J]. Journal of Agronomy and Crop Science, 1991, 167(2): 96-102. [11] 谢甫绨, 董钻, 孙艳环, 等. 不同生育时期干旱对大豆生长和产量的影响[J]. 沈阳农业大学学报, 1994, 25(1): 13-16. XIE F T, DONG Z, SUN Y H, et al.Influence of drought on growth and yield of soybeans at different growth stages[J]. [12] 吴旭红, 王玉梅, 张百忱. 不同品种大豆幼苗抗旱性的研究初报[J]. 齐齐哈尔师范学院院报(自然科学版), 1996, 16(4): 55-58. WU X H, WANG Y M, ZHANG B C.A preliminary study on the drought resistance of soybean seedling of different varieties[J]. [13] ZHANG Y Z, HAN Y H.Effect of high temperature and/or drought stress on the activities of SOD and POD of intact leaves in two soybean ( [14] SAKAMOTO H, MARUYAMA K, SAKUMA Y, et al. [15] 王启明, 徐心诚, 吴诗光, 等. 干旱胁迫对不同大豆品种苗期叶片渗透调节物质含量和细胞膜透性的影响[J]. 种子, 2005, 24(8): 9-12. WANG Q M, XU X C, WU S G, et al.The effect of drought stress on the content of osmotic adjusting substance in leaves and cell membrance permeability of different soybean varieties in seedling period[J]. [16] THU N B A, HOANG X L T, NGUYEN T D H, et al. Differential expression of two-component system-related drought-responsive genes in two contrasting drought-tolerant soybean cultivars DT51 and MTD720 under well-watered and drought conditions[J]. Plant Molecular Biology Reporter, 2015, 33(5): 1599-1610. [17] ZHOU Q, WU Y Y, ZHENG C L, et al.Triadimefon induced C and N metabolism and root ultra-structural changes for drought stress protection in soybean at flowering stage[J]. Journal of Plant Growth Regulation, 2016, 35(1): 222-231. [18] MIAN M A R, BAILEY M A, ASHLEY D A, et al. Molecular markers associated with water use efficiency and leaf ash in soybean[J]. Crop Science, 1996, 36(5): 1252. [19] MIAN M A R, ASHLEY D A, BOERMA H R. An additional QTL for water use efficiency in soybean[J]. Crop Science, 1998, 38(2): 390. [20] 刘莹. 大豆根区逆境耐性的鉴定和相关根系性状的遗传分析与QTL定位[D]. 南京: 南京农业大学, 2005. LIU Y.Identification of tolerance to rhizosperical stresses and inheretance and QTL locatting of related root traits in soybean ( [21] DU W J, YU D Y, FU S X.Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [ [22] 李灿东, 蒋洪蔚, 刘春燕, 等. 大豆耐旱选择群体QTL定位[J]. 作物学报, 2011, 37(4): 603-611. LI C D, JIANG H W, LIU C Y, et al.QTL identification of drought tolerance to soybean in selection population[J]. [23] ABDEL-HALEEM H, CARTER T E, PURCELL L C, et al.Mapping of quantitative trait loci for canopy-wilting trait in soybean ( [24] 邢光南, 刘泽稀楠, 谭连美, 等. 大豆叶面茸毛密度和长度的QTL定位[J]. 作物学报, 2013, 39(1): 12-20. XING G N, LIU Z, TAN L M, et al.QTL mapping of pubescence density and length on leaf surface of soybean[J]. [25] ZHANG D, ZHANG H Y, CHU S S, et al.Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress[J]. Plant Molecular Biology, 2017, 93(1/2): 137-150. [26] 张大勇, 易金鑫, 何晓兰, 等. 大豆水通道蛋白家族基因的相关研究[C]//江苏省遗传学会会员代表大会暨学术研讨会, 2010. [27] FARIA J A, REIS P A, REIS M T, et al.The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress-and osmotic stress-induced NRP-mediated cell-death signaling pathway[J]. Plant Signaling & Behavior, 2012, 11(1): 129 [28] LE D T, NISHIYAMA R, WATANABE Y, et al.Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One, 2012, 7(11): e49522. [29] VIDAL R O, DO NASCIMENTO L C, MAURÍCIO COSTA MONDEGO J, et al. Identification of SNPs in RNA-seq data of two cultivars of [30] XU J Y, XUE C C, XUE D, et al.Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in [31] LUO X, BAI X, SUN X L, et al.Expression of wild soybean WRKY20 in [32] 秦迪, 赵翠兰, 郑成忠, 等. 转 QIN D, ZHAO C L, ZHENG C Z, et al.Drought tolerance of transgenic soybean with [33] SINGH K.Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5): 430-436. [34] TRAN L S P, NAKASHIMA K, SAKUMA Y, et al. Isolation and functional analysis of [35] JOO J, LEE Y H, SONG S I.Overexpression of the rice basic leucine zipper transcription factor OsbZIP12 confers drought tolerance to rice and makes seedlings hypersensitive to ABA[J]. Plant Biotechnology Reports, 2014, 8(6): 431-441. [36] ENGLBRECHT C C, SCHOOF H, BÖHM S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the [37] 田路明, 黄丛林, 张秀海, 等. 逆境相关植物锌指蛋白的研究进展[J]. 生物技术通报, 2005(6): 12-16. TIAN L M, HUANG C L, ZHANG X H, et al.Advances of plant zinc finger proteins involved in abiotic stress[J]. [38] PABO C O, PEISACH E, GRANT R A.Design and selection of novel Cys2His2 zinc finger proteins[J]. Annual Review of Biochemistry, 2001, 70(1): 313-340. [39] SUGANO S, KAMINAKA H, RYBKA Z, et al.Stress-responsive zinc finger gene [40] HUANG X Y, CHAO D Y, GAO J P, et al.A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control[J]. Genes & Development, 2009, 23(15): 1805-1817. [41] KIM J C, LEE S H, CHEONG Y H, et al.A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. The Plant Journal, 2001, 25(3): 247-259. [42] 刘萌萌. 大豆C2H2型锌指蛋白转录因子基因的克隆与鉴定[D]. 北京: 中国农业科学院, 2007. LIU M M.Isolation and characterization of C2H2 type zinc finger transcription factor in [43] 白晶, 张必弦, 李新玲, 等. 野生大豆( BAI J, ZHANG B X, LI X L, et al.Cloning and sequence analysis of a C2H2 type zinc finger protein gene from [44] 吴学闯, 曹新有, 陈明, 等. 大豆C3HC4型RING锌指蛋白基因 WU X C, CAO X Y, CHEN M, et al.Isolation and expression pattern assay of a C3HC4-type RING zinc finger protein gene [45] 单曙光, 于国红, 徐娜, 等. 大豆转录因子 SHAN S G, YU G H, XU N, et al.Effect analysis of transcription factor [46] 韩丹, 王丕武, 曲静, 等. 大豆C2H2型锌指蛋白基因 HAN D, WANG P W, QU J, et al.Transformation and functional analysis of soybean [47] KANG X J, CHONG J, NI M.HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses[J]. The Plant Cell, 2005, 17(3): 822-835. [48] SEARLES M A, LU D, KLUG A.The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA1[J]. Journal of Molecular Biology, 2000, 301(1): 47-60. [49] WOLFE S A, NEKLUDOVA L, PABO C O.DNA recognition by Cys2His2 zinc finger proteins[J]. Annual Review of Biophysics and Biomolecular Structure, 2000, 29(1): 183-212. [50] FUKAMATSU Y, MITSUI S, YASUHARA M, et al.Identification of LOV KELCH PROTEIN2 (LKP2)-interacting factors that can recruit LKP2 to nuclear bodies[J]. Plant and Cell Physiology, 2005, 46(8): 1340-1349. [51] JEANNETTE E, RONA J, BARDAT F, et al.Induction of [52] KARIOLA T, BRADER G, HELENIUS E, et al.EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in [53] LI S, XU C H, YANG Y N, et al.Functional analysis of [54] 李朔. 小麦耐盐渐渗系山融3号根系盐胁迫转录组分析及相关基因功能研究[D]. 济南: 山东大学, 2009. LI S.Expression profiles of wheat somatic hybrid introgression line Shanrong No.3 under salt stress and functional analysis of salt responsive genes[D]. Jinan: Shandong University, 2009.(in Chinese with English abstract) [55] 茹京娜, 于太飞, 陈隽, 等. 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选[J]. 中国农业科学, 2017, 50(13): 2411-2422. RU J N, YU T F, CHEN J, et al.Response of wheat zinc-finger transcription factor TaDi19A to cold and its screening of interacting proteins[J]. [56] 赵娟莹, 刘佳明, 冯志娟, 等. 大豆锌指转录因子GmDi19-5对高温的响应及互作蛋白的筛选[J]. 中国农业科学, 2017, 50(12): 2389-2398. ZHAO J Y, LIU J M, FENG Z J, et al.The response to heat and screening of the interacting proteins of zinc finger protein GmDi19-5 in soybean[J]. [57] 张敏. 玉米抗逆基因 ZHANG M.Functional analysis of a stress resistant gene [58] 张新宇, 林书岱, 张涛, 等. 棉花C2H2类型锌指蛋白基因 ZHANG X Y, LIN S D, ZHANG T, et al.Cloning and expression analysis of [59] 李灿东, 苗兴奋, 蒋洪蔚, 等. 大豆耐旱选择群体叶片持水能力QTL定位[J]. 中国农学通报, 2011, 27(9): 152-155. LI C D, MIAO X F, JIANG H W, et al.QTL identification of WRC to soybean in drought tolerance selection population[J]. |
| [1] | 王小慧, 贾赛男, 冯佳宇, 尹馨悦, 刘子萱, 刘雯洁, 赵帅滢, 王姝婧, 唐跃辉. 麻风树JcMYB27基因的克隆与功能分析[J]. 浙江农业学报, 2025, 37(8): 1658-1665. |
| [2] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [3] | 蒋明, 张胜, 陈孝赏, 张慧娟. 西兰花灰霉病响应基因BoWRKY15的克隆与功能鉴定[J]. 浙江农业学报, 2025, 37(8): 1723-1732. |
| [4] | 何国欣, 李素娟, 王剑, 陶晓园, 叶子弘, 陈光, 徐盛春. 大豆种质苗期低氮耐性筛选和鉴定[J]. 浙江农业学报, 2025, 37(5): 965-976. |
| [5] | 许竹溦, 雷俊, 邵晓伟, 陈润兴, 姜欢, 汪寿根, 余文慧. 基于层次分析法与模糊综合评价法的衢州鲜食大豆低聚糖种质资源评价研究[J]. 浙江农业学报, 2025, 37(4): 754-766. |
| [6] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [7] | 汤奥冉, 金秀, 王坦, 饶元, 李佳佳, 张武. 基于弯曲大豆植株主茎骨架重构的生理株高测量方法[J]. 浙江农业学报, 2025, 37(2): 466-479. |
| [8] | 刘辉, 王晓蒙, 闫留延, 王永芳, 杨朋娟, 龚珂珂, 李兴杰, 董志平, 贾小平. 谷子B3转录因子可变剪切体分析[J]. 浙江农业学报, 2024, 36(9): 1969-1976. |
| [9] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
| [10] | 张鑫, 刘鹏. 植物顺式调控元件研究进展[J]. 浙江农业学报, 2024, 36(8): 1945-1956. |
| [11] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [12] | 牛钰, 李晶, 王俊文, 李瑞瑞, 田强, 武玥, 郁继华. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报, 2024, 36(4): 978-996. |
| [13] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
| [14] | 陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703. |
| [15] | 唐跃辉, 陈淑颖, 何文琼, 王涵瑾, 包欣欣, 贾赛男, 王瑶瑶, 陈宇阳, 杨同文. 麻风树JcERF22基因的克隆与功能分析[J]. 浙江农业学报, 2024, 36(10): 2219-2228. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||