浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2104-2115.DOI: 10.3969/j.issn.1004-1524.2021.11.13
江涛1,2,3(), 王立国1,2,3, 孙芳芳1,2,3, 成剑波1,2,3,*(
), 何腾兵1,2,3, 秦松4, 范成五4, 阴文芳1,2,3
收稿日期:
2021-02-19
出版日期:
2021-11-25
发布日期:
2021-11-26
通讯作者:
成剑波
作者简介:
*成剑波,E-mail: jbcheng@gzu.edu.cn基金资助:
JIANG Tao1,2,3(), WANG Liguo1,2,3, SUN Fangfang1,2,3, CHENG Jianbo1,2,3,*(
), HE Tengbing1,2,3, QIN Song4, FAN Chengwu4, YIN Wenfang1,2,3
Received:
2021-02-19
Online:
2021-11-25
Published:
2021-11-26
Contact:
CHENG Jianbo
摘要:
为探讨沼渣生物质炭施用对黄壤和石灰土氮淋溶和白菜产量的影响,于温室大棚开展沼渣生物质炭施用比例分别为0(CK)、1%(BC1)、2%(BC2)、4%(BC4)、6%(BC6)的模拟沼液灌溉的盆栽试验。结果表明,施用沼渣生物质炭对黄壤氮素淋溶和白菜氮素吸收量无显著影响,但施用6%的沼渣生物质炭可显著降低石灰土氮素淋溶量,总氮、铵态氮、硝态氮和亚硝态氮的淋溶量分别降低12.06、11.82、1.14、0.103 kg·hm-2,降幅分别达35.89%、52.99%、25.53%、23.25%。在石灰土上施用沼渣生物质炭处理的白菜氮素吸收量增加9.25~19.13 kg·hm-2,且以BC6处理的白菜氮素吸收量最高,达到60.15 kg·hm-2。另外,在黄壤和石灰土上施用沼渣生物质炭均对白菜有增产效果,增幅分别在29.82%~68.78%、23.58%~79.07%,分别在BC4和BC6处理下获得最大产量(13.81 t·hm-2和9.01 t·hm-2)。
中图分类号:
江涛, 王立国, 孙芳芳, 成剑波, 何腾兵, 秦松, 范成五, 阴文芳. 沼渣生物质炭对西南喀斯特山区沼液灌溉土壤氮淋溶和白菜产量的影响[J]. 浙江农业学报, 2021, 33(11): 2104-2115.
JIANG Tao, WANG Liguo, SUN Fangfang, CHENG Jianbo, HE Tengbing, QIN Song, FAN Chengwu, YIN Wenfang. Effects of solid-digestate biochar application on soil nitrogen leaching and cabbage yield with liquid-digestate irrigation in karst-mountainous region of southwest China[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2104-2115.
图2 黄壤和石灰土上的氮素淋溶量 壤类型下,柱上无相同字母的表示处理间差异显著(P<0.05)。下同。
Fig.2 Nitrogen leaching rate in yellow soil and calcareous soil Bars marked without the same letters indicated significant difference within treatments at P<0.05 under the same soil type. The same as below.
[1] | 刘慧屿, 娄春荣, 韩英祚, 等. 秸秆生物炭与减量氮肥配施对玉米氮素利用率及土壤结构的影响[J]. 土壤通报, 2020, 51(5):1180-1188. |
LIU H Y, LOU C R, HAN Y Z, et al. Impact of biochar addition combined with reduced nitrogen fertilizer on nitrogen use efficiency and soil structure in brown earth[J]. Chinese Journal of Soil Science, 2020, 51(5):1180-1188.(in Chinese with English abstract) | |
[2] |
JOHNSON J M F, FRANZLUEBBERS A J, WEYERS S L, et al. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environmental Pollution, 2007, 150(1):107-124.
DOI URL |
[3] | SNYDER C S, BRUULSEMA T W, JENSEN T L, et al. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture, Ecosystems & Environment, 2009, 133(3/4):247-266. |
[4] | 娄庭, 龙怀玉, 杨丽娟, 等. 在过量施氮农田中减氮和有机无机配施对土壤质量及作物产量的影响[J]. 中国土壤与肥料, 2010 (2):11-15. |
LOU T, LONG H Y, YANG L J, et al. The effect of fertilizer ratio and rate on soil quality and crop yields in the farmland of excessive use of nitrogenous fertilizers[J]. Soils and Fertilizers Sciences in China, 2010 (2):11-15. | |
[5] | 张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响[J]. 中国农学通报, 2010, 26(11):182-187. |
ZHANG B Y, CHEN T L, WANG B. Effects of long-term uses of chemical fertilizers on soil quality[J]. Chinese Agricultural Science Bulletin, 2010, 26(11):182-187.(in Chinese with English abstract) | |
[6] |
MÖLLER K, MÜLLER T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review[J]. Engineering in Life Sciences, 2012, 12(3):242-257.
DOI URL |
[7] |
NKOA R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review[J]. Agronomy for Sustainable Development, 2014, 34(2):473-492.
DOI URL |
[8] |
INSAM H, GÓMEZ-BRANDÓN M, ASCHER J. Manure-based biogas fermentation residues: friend or foe of soil fertility?[J]. Soil Biology and Biochemistry, 2015, 84:1-14.
DOI URL |
[9] |
MÖLLER K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity: a review[J]. Agronomy for Sustainable Development, 2015, 35(3):1021-1041.
DOI URL |
[10] |
GUL S, WHALEN J K. Biochemical cycling of nitrogen and phosphorus in biochar-amended soils[J]. Soil Biology and Biochemistry, 2016, 103:1-15.
DOI URL |
[11] |
GÓMEZ-BRANDÓN M, JUÁREZ M F D, ZANGERLE M, et al. Effects of digestate on soil chemical and microbiological properties: a comparative study with compost and vermicompost[J]. Journal of Hazardous Materials, 2016, 302:267-274.
DOI URL |
[12] |
SÄNGER A, GEISSELER D, LUDWIG B. C and N dynamics of a range of biogas slurries as a function of application rate and soil texture: a laboratory experiment[J]. Archives of Agronomy and Soil Science, 2014, 60(12):1779-1794.
DOI URL |
[13] |
SAWADA K, TOYOTA K. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification[J]. Microbes and Environments, 2015, 30(1):37-43.
DOI URL |
[14] |
MUKHERJEE A, LAL R, ZIMMERMAN A R. Impacts of biochar and other amendments on soil-carbon and nitrogen stability: a laboratory column study[J]. Soil Science Society of America Journal, 2014, 78(4):1258-1266.
DOI URL |
[15] |
CLOUGH T, CONDRON L, KAMMANN C, et al. A review of biochar and soil nitrogen dynamics[J]. Agronomy, 2013, 3(2):275-293.
DOI URL |
[16] |
WANG S J, LIU Q M, ZHANG D F. Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation[J]. Land Degradation & Development, 2004, 15(2):115-121.
DOI URL |
[17] | 苏维词, 杨华, 李晴, 等. 我国西南喀斯特山区土地石漠化成因及防治[J]. 土壤通报, 2006, 37(3):447-451. |
SU W C, YANG H, LI Q, et al. Rocky land desertification and its controlling measurements in the Karst mountainous region, southwest of China[J]. Chinese Journal of Soil Science, 2006, 37(3):447-451.(in Chinese with English abstract) | |
[18] | 邓英, 陶莲, 钟秀来, 等. 贵州秋冬蔬菜栽培技术[J]. 中国蔬菜, 2021(1):112-116. |
DENG Y, TAO L, ZHONG X L, et al. Cultivation techniques of autumn and winter vegetables in Guizhou[J]. China Vegetables, 2021(1):112-116.(in Chinese) | |
[19] | 山楠, 串丽敏, 刘继培, 等. 基于产量反应和农学效率的白菜推荐施肥方法可行性研究[J]. 植物营养与肥料学报, 2020, 26(9):1681-1690. |
SHAN N, CHUAN L M, LIU J P, et al. Availability of fertilizer recommendation based on yield response and agronomic efficiency of Chinese cabbage[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9):1681-1690.(in Chinese with English abstract) | |
[20] | SVOBODA N, TAUBE F, KLUß C, et al. Crop production for biogas and water protection: a trade-off?[J]. Agriculture, Ecosystems & Environment, 2013, 177:36-47. |
[21] |
SVOBODA N, TAUBE F, WIENFORTH B, et al. Nitrogen leaching losses after biogas residue application to maize[J]. Soil and Tillage Research, 2013, 130:69-80.
DOI URL |
[22] |
SÄNGER A, GEISSELER D, LUDWIG B. Effects of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry[J]. Biology and Fertility of Soils, 2011, 47(3):249-259.
DOI URL |
[23] |
MATSUNAKA T, SAWAMOTO T, ISHIMURA H, et al. Efficient use of digested cattle slurry from biogas plant with respect to nitrogen recycling in grassland[J]. International Congress Series, 2006, 1293:242-252.
DOI URL |
[24] | 苟小林, 吴福忠, 杨万勤, 等. 季节性冻融格局变化对高山森林土壤氮素淋溶损失的影响[J]. 环境科学学报, 2014, 34(2):439-448. |
GOU X L, WU F Z, YANG W Q, et al. Effect of changes in seasonal freeze-thaw pattern on nitrogen loss from leaching in the alpine forest soil[J]. Acta Scientiae Circumstantiae, 2014, 34(2):439-448.(in Chinese with English abstract) | |
[25] | HARMSEN G W, KOLENBRANDER G J. Soil inorganic nitrogen[M]// BARTHOLOMEW W V, CLARK F E. Soil nitrogen.[S. l.]: American Society of Agronomy, 1965. |
[26] |
WANG J, LI G, LAI X, et al. Differential responses of ammonia-oxidizers communities to nitrogen and water addition in Stipa baicalensis steppe, Inner Mongolia, Northern China[J]. Journal of Resources and Ecology, 2015, 6(1):1-11.
DOI URL |
[27] | 李卓瑞, 韦高玲. 不同生物炭添加量对土壤中氮磷淋溶损失的影响[J]. 生态环境学报, 2016, 25(2):333-338. |
LI Z R, WEI G L. Effects of biochar with different additive amounts on the leaching loss of nitrogen and phosphorus in soils[J]. Ecology and Environmental Sciences, 2016, 25(2):333-338.(in Chinese with English abstract) | |
[28] |
PRATIWI E P A, HILLARY A K, FUKUDA T, et al. The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil[J]. Geoderma, 2016, 277:61-68.
DOI URL |
[29] |
KANTHLE A K, LENKA N K, LENKA S, et al. Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India[J]. Soil and Tillage Research, 2016, 157:65-72.
DOI URL |
[30] |
YAO Y, GAO B, ZHANG M, et al. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil[J]. Chemosphere, 2012, 89(11):1467-1471.
DOI URL |
[31] |
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99:19-33.
DOI URL |
[32] | CHINTALA R, SCHUMACHER T E, MCDONALD L M, et al. Phosphorus sorption and availability from biochars and soil/biochar mixtures[J]. Clean: Soil, Air, Water, 2014, 42(5):626-634. |
[33] | 惠锦卓, 张爱平, 刘汝亮, 等. 添加生物炭对灌淤土土壤养分含量和氮素淋失的影响[J]. 中国农业气象, 2014, 35(2):156-161. |
HUI J Z, ZHANG A P, LIU R L, et al. Effects of biochar on soil nutrients and nitrogen leaching in anthropogenic alluvial soil[J]. Chinese Journal of Agrometeorology, 2014, 35(2):156-161. (in Chinese with English abstract) | |
[34] | CZIMCZIK C I, MASIELLO C A. Controls on black carbon storage in soils[J]. Global Biogeochemical Cycles, 2007, 21(3): GB3005. |
[35] | 李少朋, 陈昢圳, 周艺艺, 等. 生物炭施用对滨海盐碱土速效养分和酶活性的影响[J]. 南方农业学报, 2019, 50(7):1460-1465. |
LI S P, CHEN P Z, ZHOU Y Y, et al. Effects of biochar application on available nutrients and enzyme activities in coastal saline-alkali soil[J]. Journal of Southern Agriculture, 2019, 50(7):1460-1465.(in Chinese with English abstract) | |
[36] | 崔虎, 王莉霞, 欧洋, 等. 生物炭-化肥配施对稻田土壤氮磷迁移转化的影响[J]. 农业环境科学学报, 2019, 38(2):412-421. |
CUI H, WANG L X, OU Y, et al. Effect of the combined application of biochar and chemical fertilizer on the migration and transformation of nitrogen and phosphorus in paddy soil[J]. Journal of Agro-Environment Science, 2019, 38(2):412-421.(in Chinese with English abstract) | |
[37] |
LIU Y, DAI Q Y, JIN X Q, et al. Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?[J]. Environmental Science & Technology, 2018, 52(21):12740-12747.
DOI URL |
[38] | SUN H J, SHI W M, ZHOU M Y, et al. Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil[J]. Plant, Soil and Environment, 2019, 65(No. 2):83-89. |
[39] | 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020, 41(2):922-931. |
YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020, 41(2):922-931.(in Chinese with English abstract) | |
[40] | 柳瑞, ABDUL H, 李恩琳 等. 减氮配施稻秆生物炭对稻田土壤养分及植株氮素吸收的影响[J]. 应用生态学报, 2020, 31(7):2381-2389. |
LIU R, ABDUL H, LI E L, et al. Effects of nitrogen fertilizer reduction and biochar application on paddy soil nutrient and nitrogen uptake of rice[J]. Chinese Journal of Applied Ecology, 2020, 31(7):2381-2389.(in Chinese with English abstract) | |
[41] | 尚杰, 耿增超, 赵军, 等. 生物炭对塿土水热特性及团聚体稳定性的影响[J]. 应用生态学报, 2015, 26(7):1969-1976. |
SHANG J, GENG Z C, ZHAO J, et al. Effects of biochar on water thermal properties and aggregate stability of Lou soil[J]. Chinese Journal of Applied Ecology, 2015, 26(7):1969-1976.(in Chinese with English abstract) | |
[42] | 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响[J]. 作物学报, 2013, 39(8):1445-1451. |
ZHANG W M, MENG J, WANG J Y, et al. Effect of biochar on root morphological and physiological characteristics and yield in rice[J]. Acta Agronomica Sinica, 2013, 39(8):1445-1451.(in Chinese with English abstract) | |
[43] |
STEINER C, TEIXEIRA W G, LEHMANN J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil[J]. Plant and Soil, 2007, 291(1/2):275-290.
DOI URL |
[44] | 张斌, 刘晓雨, 潘根兴, 等. 施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J]. 中国农业科学, 2012, 45(23):4844-4853. |
ZHANG B, LIU X Y, PAN G X, et al. Changes in soil properties, yield and trace gas emission from a paddy after biochar amendment in two consecutive rice growing cycles[J]. Scientia Agricultura Sinica, 2012, 45(23):4844-4853.(in Chinese with English abstract) | |
[45] | SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105:47-82. |
[1] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
[2] | 王小明, 陈爱玲, 董璐, 石玉军, 郑刘长, 赵连慧, 张瑞琪, 张芬琴. 基于叶片质外体相关成分和酶活性响应的龙葵耐Cd机理研究[J]. 浙江农业学报, 2020, 32(5): 816-823. |
[3] | 边建文, 崔岩, 杨宋琪, 罗光宏, 孟宪刚. 衣藻和固氮鱼腥藻对盐胁迫下小麦幼苗生长的影响[J]. 浙江农业学报, 2020, 32(10): 1748-1756. |
[4] | 董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. |
[5] | 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性[J]. 浙江农业学报, 2019, 31(7): 1045-1056. |
[6] | 李洋, 刘凯, 魏吉鹏, 张兰, 李鑫, 韩文炎, 李青云. 不同浓度EGCG对NaCl胁迫下黄瓜种子萌发及其抗性的影响[J]. 浙江农业学报, 2018, 30(7): 1160-1167. |
[7] | 萨如拉, 杨恒山, 高聚林, 范富, 张瑞富, 刘晶, 吴帅. 玉米秸秆还田模式对土壤肥力和玉米产量的影响[J]. 浙江农业学报, 2018, 30(2): 268-274. |
[8] | 王颖洁, 左其生, 张良良, 张文慧, 金晶, 王飞, 纪艳芹, 靳锴, 何娜娜, 李碧春, 张亚妮. 靶向鸡Stra8基因的miRNA预测及鉴定[J]. 浙江农业学报, 2017, 29(5): 729-736. |
[9] | 梅映学,魏玮,张诗婉,张韫璐,王金缘,王茜,苏昕,马莲菊*. 干旱锻炼对盐胁迫下水稻幼苗根系抗氧化酶活性的影响[J]. 浙江农业学报, 2016, 28(8): 1304-. |
[10] | 刘占才1,2,牛景彦1,郭彦玲2,孔祥会2. 汞暴露对草鱼氧化损伤及抗氧化能力的影响[J]. 浙江农业学报, 2016, 28(7): 1148-. |
[11] | 黄菁,朱志伟,陈晓宇,于福先,潘建治*. 鸡卵清蛋白基因调控序列的克隆与载体构建[J]. 浙江农业学报, 2016, 28(3): 412-. |
[12] | 杜亮1,黄芳2,王飞飞2,吕要斌1,2,*. 班氏跳小蜂对毒死蜱和吡虫啉的敏感性及解毒酶活性的变化 [J]. 浙江农业学报, 2015, 27(3): 387-. |
[13] | 秦晨亮1,2,丁玲1,代红军1,2,*. 赤霞珠葡萄果实发育过程中酚类物质含量与相关酶活性的关系[J]. 浙江农业学报, 2015, 27(11): 1922-. |
[14] | 郭达伟*. 假臭草精油对小菜蛾的毒力及酶活力的影响 [J]. 浙江农业学报, 2014, 26(5): 1278-. |
[15] | 贾凤;刘燕;韦强;肖琛闻;季权安;李科;鲍国连;*. 包膜丁酸钠对肉鸭肠道黏膜形态和消化酶活性的影响[J]. , 2014, 26(3): 0-570575. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||