[1] |
OWIS A I. Broccoli, the green beauty: a review[J]. Journal of Pharmaceutical Sciences & Research, 2015, 7(9): 696-703.
|
[2] |
LATTÉ K P, APPEL K E, LAMPEN A. Health benefits and possible risks of broccoli: an overview[J]. Food and Chemical Toxicology, 2011, 49(12): 3287-3309.
DOI
URL
|
[3] |
WANG J S, GU H H, YU H F, et al. Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China[J]. Food Chemistry, 2012, 133(3): 735-741.
DOI
URL
|
[4] |
高庆生, 陈永生, 管春松, 等. 西兰花生产现状、存在的问题及建议[J]. 蔬菜, 2020(11): 29-31.
|
|
GAO Q S, CHEN Y S, GUAN C S, et al. Production status, problems and suggestions of broccoli[J]. Vegetables, 2020(11): 29-31. (in Chinese with English abstract)
|
[5] |
VARALAKSHMI B, GANESHAN G, GOPALAKRISHNAN C, et al. Identification of sources of resistance to Alternaria leaf spot (Alternaria brassicicola), black rot (Xanthomonas campestris) and downy mildew (Peronospora parasitica) in cauliflower (Brassica oleraceae)[J]. Indian Journal of Agricultural Sciences, 2009, 79(6): 482-483.
|
[6] |
COELHO P S, MONTEIRO A A. Inheritance of downy mildew resistance in mature broccoli plants[J]. Euphytica, 2003, 131(1): 65-69.
DOI
URL
|
[7] |
NAGAI H, MIYAKE N, KATO S, et al. Improved control of black rot of broccoli caused by Xanthomonas campestris pv. campestris using a bacteriophage and a nonpathogenic Xanthomonas sp. strain[J]. Journal of General Plant Pathology, 2017, 83(6): 373-381.
DOI
URL
|
[8] |
GUPTA M, VIKRAM A, BHARAT N. Black rot-A devastating disease of crucifers: a review[J]. Agricultural Reviews, 2013, 34(4): 269.
DOI
URL
|
[9] |
SINGH D, DHAR S, YADAVA D K. Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in Crucifers[J]. Current Microbiology, 2011, 63(6): 551-560.
DOI
URL
|
[10] |
MURIES B, CARVAJAL M, MARTÍNEZ-BALLESTA M. Response of three broccoli cultivars to salt stress, in relation to water status and expression of two leaf aquaporins[J]. Planta, 2013, 237(5): 1297-1310.
DOI
URL
|
[11] |
KIM Y N, KHAN M A, KANG S M, et al. Enhancement of drought-stress tolerance of Brassica oleracea var. italica L. by newly isolated Variovorax sp. YNA59[J]. Journal of Microbiology and Biotechnology, 2020, 30(10): 1500-1509.
DOI
URL
|
[12] |
MORA A A, EARLE E D. Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene[J]. Molecular Breeding, 2001, 8(1): 1-9.
DOI
URL
|
[13] |
LI Z S, MEI Y J, LIU Y M, et al. The evolution of genetic diversity of broccoli cultivars in China since 1980[J]. Scientia Horticulturae, 2019, 250: 69-80.
DOI
URL
|
[14] |
CIANCALEONI S, NEGRI V. A method for obtaining flexible broccoli varieties for sustainable agriculture[J]. BMC Genetics, 2020, 21(1): 51.
DOI
URL
|
[15] |
LI Y, XIA C C, FENG J L, et al. The SNW domain of SKIP is required for its integration into the spliceosome and its interaction with the Paf1 complex in Arabidopsis[J]. Molecular Plant, 2016, 9(7): 1040-1050.
DOI
URL
|
[16] |
ZHANG D Q, QIAO X J, WANG L M, et al. Skip is essential for Notch signaling to induce Sox2 in cerebral arteriovenous malformations[J]. Cellular Signalling, 2020, 68: 109537.
DOI
URL
|
[17] |
LIM G H, ZHANG X, CHUNG M S, et al. A putative novel transcription factor, AtSKIP, is involved in abscisic acid signalling and confers salt and osmotic tolerance in Arabidopsis[J]. New Phytologist, 2010, 185(1): 103-113.
DOI
URL
|
[18] |
WANG X X, WU F M, XIE Q G, et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis[J]. Plant Cell, 2012, 24(8): 3278-3295.
DOI
URL
|
[19] |
CUI Z B, TONG A Z, HUO Y Q, et al. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis[J]. BMC Biology, 2017, 15(1): 80.
DOI
URL
|
[20] |
LI Y, YANG J, SHANG X D, et al. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis[J]. New Phytologist, 2019, 224(1): 321-335.
DOI
URL
|
[21] |
ZHANG H J, YIN L F, SONG F M, et al. SKIP silencing decreased disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in tomato[J]. Frontiers in Plant Science, 2020, 11: 593267.
DOI
URL
|
[22] |
FRASCH M, SAUMWEBER H. Two proteins from Drosophila nuclei are bound to chromatin and are detected in a series of puffs on polytene chromosomes[J]. Chromosoma, 1989, 97(4): 272-281.
DOI
URL
|
[23] |
WIELAND C, MANN S, VON BESSER H, et al. The Drosophila nuclear protein Bx42, which is found in many puffs on polytene chromosomes, is highly charged[J]. Chromosoma, 1992, 101(8): 517-525.
DOI
URL
|
[24] |
DAHL R, WANI B, HAYMAN M J. The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42[J]. Oncogene, 1998, 16 (12): 1579-1586.
DOI
URL
|
[25] |
HOU X, XIE K B, YAO J L, et al. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance[J]. Proceedings of the National Academy of Sciences, 2009, 106(15): 6410-6415.
DOI
URL
|
[26] |
WANG X M, LI Z G, YAN F, et al. ZmSKIP, a homologue of SKIP in maize, is involved in response to abiotic stress in tobacco[J]. Plant Cell, Tissue and Organ Culture, 2013, 112(2): 203-216.
|