浙江农业学报 ›› 2022, Vol. 34 ›› Issue (5): 1091-1102.DOI: 10.3969/j.issn.1004-1524.2022.05.24
• 综述 • 上一篇
李琳1(), 朱学明1, 鲍坚东1, 王教瑜1, 林福呈1,2,*(
)
收稿日期:
2022-01-13
出版日期:
2022-05-25
发布日期:
2022-06-06
通讯作者:
林福呈
作者简介:
* 林福呈,E-mail: fuchenglin@zju.edu.cn基金资助:
LI Lin1(), ZHU Xueming1, BAO Jiandong1, WANG Jiaoyu1, LIN Fucheng1,2,*(
)
Received:
2022-01-13
Online:
2022-05-25
Published:
2022-06-06
Contact:
LIN Fucheng
摘要:
基因编辑技术能够精准修改或修饰动植物、微生物和人的基因组,为作物定向育种、人类遗传疾病的精准治疗等带来了革命性的机遇,被誉为21世纪最伟大的生物发现之一。基因编辑技术主要包括4种:归巢核酸内切酶(meganuclease)、锌指核酸酶(zinc finger nucleases,ZFNs)、类转录激活因子效应物核酸酶(transcription activator-like effector nucleases,TALENs)、CRISPR-Cas9。其中,CRISPR-Cas9基因编辑技术,因其“更快、更准、更简单”成为当今主流的基因编辑技术,并获得了2020年度诺贝尔化学奖。本文系统阐述了基因编辑的发展演进历程、技术原理和应用,针对存在的问题与面临的挑战进行了展望。
中图分类号:
李琳, 朱学明, 鲍坚东, 王教瑜, 林福呈. 基因编辑的“前世今生”[J]. 浙江农业学报, 2022, 34(5): 1091-1102.
LI Lin, ZHU Xueming, BAO Jiandong, WANG Jiaoyu, LIN Fucheng. Gene editing: past and present[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1091-1102.
图1 三种基因编辑技术的工作原理 A,归巢核酸内切酶可识别长段DNA序列,没有明显的结合和切割结构域;B,锌指核酸酶,每个锌指核酸酶识别3个碱基。C,类转录激活因子效应物核酸酶,每个TALE识别单个碱基;D,以上3种酶都会导致DNA双链断裂,可以通过容易出错的非同源末端连接(NHEJ)或同源定向修复(HDR)来修复。NHEJ会导致目标位点的随机插入缺失和基因破坏,HDR可以在目标位点插入特定的DNA模板(单链或双链)以进行精确的基因编辑。
Fig.1 Basic working principle of three gene-editing technologies A, Meganuclease recognizes long DNA sequences without obvious binding and cleavage domains. B, ZFNs, each of which recognizes 3 bases. C, TALENs, each TALE identifies a single base. D, all three enzymes cause DNA double-strand breaks, which can be repaired by error-prone non-homologous end linking (NHEJ) or homologous directed repair (HDR). NHEJ causes random insertion deletions and gene destruction at the target site, and HDR can insert specific DNA templates (single or double strands) at the target site for precise gene editing.
图2 CRISPR-Cas9工作原理 Cas9核酸酶靶向切割与单链向导RNA (sgRNA)互补的DNA序列,该序列位于原始间隔区相邻基序(PAM)的上游。
Fig.2 The basic working principle of CRISPR-Cas9 Cas9 nucleases target cleaved DNA sequences that are complementary to single guide RNA (sgRNA) upstream of protospacer-adjacent motifs (PAM).
[1] |
MCCARTY M, AVERY O T. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. 3. An improved method for the isolation of the transforming substance and its application to pneumococcus type-Ⅱ, type-Ⅲ, and type-Ⅵ[J]. Journal of Experimental Medicine, 1946, 83(2):97-104.
DOI URL |
[2] |
HERSHEY A D, CHASE M. Independent functions of viral protein and nucleic acid in growth of bacteriophage[J]. The Journal of General Physiology, 1952, 36(1):39-56.
DOI URL |
[3] |
SMITH H O, WELCOX K W. A Restriction enzyme from Hemophilus influenzae: I. Purification and general properties[J]. Journal of Molecular Biology, 1970, 51(2): 379-391.
DOI URL |
[4] |
KELLY T J, SMITH H O. A restriction enzyme from Hemophilus influenzae[J]. Journal of Molecular Biology, 1970, 51(2): 393-409.
DOI URL |
[5] |
DANNA K, NATHANS D. Specific cleavage of Simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae[J]. Proceedings of the National Academy of Sciences, 1971, 68(12): 2913-2917.
DOI URL |
[6] |
SMITHIES O, GREGG R G, BOGGS S S, et al. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination[J]. Nature, 1985, 317(6034): 230-234.
DOI URL |
[7] |
CAPECCHI M R. Altering the genome by homologous recombination[J]. Science, 1989, 244(4910): 1288-1292.
DOI URL |
[8] |
RUDIN N, SUGARMAN E, HABER J E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae[J]. Genetics, 1989, 122(3): 519-534.
DOI URL |
[9] | ROUET P, SMIH F, JASIN M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease[J]. Molecular and Cellular Biology, 1994, 14(12): 8096-8106. |
[10] |
PLESSIS A, PERRIN A, HABER J E, et al. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus[J]. Genetics, 1992, 130(3): 451-460.
DOI URL |
[11] | DÜRRENBERGER F, ROCHAIX J D. Characterization of the cleavage site and the recognition sequence of the I-CreI DNA endonuclease encoded by the chloroplast ribosomal intron of Chlamydomonas reinhardtii[J]. Molecular & General Genetics: MGG, 1993, 236(2/3): 409-414. |
[12] |
SILVA G H, DALGAARD J Z, BELFORT M, et al. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI[J]. Journal of Molecular Biology, 1999, 286(4): 1123-1136.
DOI URL |
[13] |
KLUG A, RHODES D. Zinc fingers: a novel protein fold for nucleic acid recognition[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52: 473-482.
DOI URL |
[14] |
KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences, 1996, 93(3): 1156-1160.
DOI URL |
[15] |
MILLER J C, HOLMES M C, WANG J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J]. Nature Biotechnology, 2007, 25(7): 778-785.
DOI URL |
[16] |
DOYON Y, VO T D, MENDEL M C, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures[J]. Nature Methods, 2011, 8(1): 74-79.
DOI URL |
[17] |
GUO J, GAJ T, BARBAS C F Ⅲ. Directed evolution of an enhanced and highly efficient FokⅠ cleavage domain for zinc finger nucleases[J]. Journal of Molecular Biology, 2010, 400(1): 96-107.
DOI URL |
[18] |
TEBAS P, STEIN D, TANG W W, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV[J]. The New England Journal of Medicine, 2014, 370(10): 901-910.
DOI URL |
[19] |
BOCH J, SCHOLZE H, SCHORNACK S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science, 2009, 326(5959): 1509-1512.
DOI URL |
[20] |
MOSCOU M J, BOGDANOVE A J. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959): 1501.
DOI URL |
[21] |
WOOD A J, LO T W, ZEITLER B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040): 307.
DOI URL |
[22] |
MILLER J C, TAN S, QIAO G, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2): 143-148.
DOI URL |
[23] |
CHRISTIAN M, CERMAK T, DOYLE E L, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757-761.
DOI URL |
[24] |
JOUNG J K, SANDER J D. TALENs: a widely applicable technology for targeted genome editing[J]. Nature Reviews Molecular Cell Biology, 2013, 14(1): 49-55.
DOI URL |
[25] |
MUSSOLINO C, ALZUBI J, FINE E J, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity[J]. Nucleic Acids Research, 2014, 42(10): 6762-6773.
DOI URL |
[26] |
ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433.
DOI URL |
[27] |
JANSEN R, VAN EMBDEN J D A, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575.
DOI URL |
[28] |
MOJICA F J M, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60(2): 174-182.
DOI URL |
[29] |
BOLOTIN A, QUINQUIS B, SOROKIN A, et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J]. Microbiology (Reading, England), 2005, 151(Pt 8): 2551-2561.
DOI URL |
[30] |
POURCEL C, SALVIGNOL G, VERGNAUD G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology (Reading, England), 2005, 151(Pt 3): 653-663.
DOI URL |
[31] |
BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712.
DOI URL |
[32] |
DEVEAU H, BARRANGOU R, GARNEAU J E, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus[J]. Journal of Bacteriology, 2008, 190(4): 1390-1400.
DOI URL |
[33] |
GARNEAU J E, DUPUIS M È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71.
DOI URL |
[34] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
DOI URL |
[35] | GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586. |
[36] |
DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature, 2011, 471(7340): 602-607.
DOI URL |
[37] |
JIANG F G, ZHOU K H, MA L L, et al. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition[J]. Science, 2015, 348(6242): 1477-1481.
DOI URL |
[38] |
KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37: 67-78.
DOI URL |
[39] |
GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464-471.
DOI URL |
[40] |
KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
DOI URL |
[41] |
NISHIDA K, ARAZOE T, YACHIE N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729.
DOI URL |
[42] |
REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 2018, 19(12): 770-788.
DOI URL |
[43] |
CHEN B H, GILBERT L A, CIMINI B A, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/cas system[J]. Cell, 2013, 155(7): 1479-1491.
DOI URL |
[44] |
TENG F, LI J, CUI T T, et al. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds[J]. Genome Biology, 2019, 20(1): 15.
DOI URL |
[45] |
COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-cas13[J]. Science, 2017, 358(6366): 1019-1027.
DOI URL |
[46] |
HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839-842.
DOI URL |
[47] |
HORSCH R B, ROGERS S G, FRALEY R T. Transgenic plants[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1985, 50: 433-437.
DOI URL |
[48] |
KLEIN T M, WOLF E D, WU R, et al. High-velocity microprojectiles for delivering nucleic acids into living cells[J]. Nature, 1987, 327:70-73.
DOI URL |
[49] |
WOLF E D, ZASLOFF M. Enhancement of mRNA nuclear transport by promoter elements[J]. Cell, 1987, 50(4): 613-619.
DOI URL |
[50] |
BALTES N J, VOYTAS D F. Enabling plant synthetic biology through genome engineering[J]. Trends in Biotechnology, 2015, 33(2): 120-131.
DOI URL |
[51] |
LI Y, LI W J, LI J. The CRISPR/Cas9 revolution continues: from base editing to prime editing in plant science[J]. Journal of Genetics and Genomics, 2021, 48(8): 661-670.
DOI URL |
[52] |
WANG Y, GENG L Z, YUAN M L, et al. Deletion of a target gene in Indica rice via CRISPR/Cas9[J]. Plant Cell Reports, 2017, 36(8): 1333-1343.
DOI URL |
[53] |
LV Y S, SHAO G N, JIAO G A, et al. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield[J]. Molecular Plant, 2021, 14(2): 344-351.
DOI URL |
[54] |
MIAO C B, WANG D, HE R Q, et al. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice[J]. Plant Biotechnology Journal, 2020, 18(2): 491-501.
DOI URL |
[55] |
WANG W, PAN Q L, HE F, et al. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat[J]. The CRISPR Journal, 2018, 1(1): 65-74.
DOI URL |
[56] |
ZENG D C, LIU T L, MA X L, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2385-2387.
DOI URL |
[57] |
XU Y, LIN Q P, LI X F, et al. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13.
DOI URL |
[58] |
HUANG L C, LI Q F, ZHANG C Q, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2164-2166.
DOI URL |
[59] |
ASHOKKUMAR S, JAGANATHAN D, RAMANATHAN V, et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PLoS One, 2020, 15(8): e0237018.
DOI URL |
[60] |
TANG Y C, ABDELRAHMAN M, LI J B, et al. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice[J]. Plant Biotechnology Journal, 2021, 19(4): 642-644.
DOI URL |
[61] | 王福军. 利用TALENs和CRISPR/Cas9基因编辑技术改良水稻稻瘟病抗性[D]. 南宁: 广西大学, 2016. |
WANG F J. Enhanced rice blast resistance by TALENs and CRISPR/Cas9 geneme-editing techniques[D]. Nanning: Guangxi University, 2016. (in Chinese with English abstract) | |
[62] |
OLIVA R, JI C, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1344-1350.
DOI URL |
[63] |
WANG Y, CHENG X, SHAN Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9): 947-951.
DOI URL |
[64] |
JALLAD K N. Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans[J]. Environmental Science and Pollution Research International, 2015, 22(20): 15449-15458.
DOI URL |
[65] |
CLEMENS S, AARTS M G M, THOMINE S, et al. Plant science: the key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 2013, 18(2): 92-99.
DOI URL |
[66] |
ISHIKAWA S, ISHIMARU Y, IGURA M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences, 2012, 109(47): 19166-19171.
DOI URL |
[67] |
TANG L, MAO B, LI Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7: 14438.
DOI URL |
[68] |
SHI J R, GAO H R, WANG H Y, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnology Journal, 2017, 15(2): 207-216.
DOI URL |
[69] |
ZHANG J S, ZHANG H, SRIVASTAVA A K, et al. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiology, 2018, 176(3): 2082-2094.
DOI URL |
[70] | 王福军, 赵开军. 基因组编辑技术应用于作物遗传改良的进展与挑战[J]. 中国农业科学, 2018, 51(1): 1-16. |
WANG F J, ZHAO K J. Progress and challenge of crop genetic improvement via genome editing[J]. Scientia Agricultura Sinica, 2018, 51(1): 1-16. (in Chinese with English abstract) | |
[71] |
HILTON I B, GERSBACH C A. Enabling functional genomics with genome engineering[J]. Genome Research, 2015, 25(10): 1442-1455.
DOI URL |
[72] |
KOIKE-YUSA H, LI Y, TAN E P, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library[J]. Nature Biotechnology, 2014, 32(3): 267-273.
DOI URL |
[73] |
ZHOU Y, ZHU S, CAI C, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells[J]. Nature, 2014, 509(7501): 487-491.
DOI URL |
[74] |
MA H M, DANG Y, WU Y G, et al. A CRISPR-based screen identifies genes essential for west-Nile-virus-induced cell death[J]. Cell Reports, 2015, 12(4): 673-683.
DOI URL |
[75] |
KORKMAZ G, LOPES R, UGALDE A P, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9[J]. Nature Biotechnology, 2016, 34(2): 192-198.
DOI URL |
[76] |
DOYON Y, MCCAMMON J M, MILLER J C, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases[J]. Nature Biotechnology, 2008, 26(6): 702-708.
DOI URL |
[77] |
SANDER J D, CADE L, KHAYTER C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs[J]. Nature Biotechnology, 2011, 29(8): 697-698.
DOI URL |
[78] |
CUI X, JI D, FISHER D A, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases[J]. Nature Biotechnology, 2011, 29(1): 64-67.
DOI URL |
[79] |
WANG H, HU Y C, MARKOULAKI S, et al. TALEN-mediated editing of the mouse Y chromosome[J]. Nature Biotechnology, 2013, 31(6): 530-532.
DOI URL |
[80] |
WU Y X, LIANG D, WANG Y H, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9[J]. Cell Stem Cell, 2013, 13(6): 659-662.
DOI URL |
[81] |
GEURTS A M, COST G J, FREYVERT Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939): 433.
DOI URL |
[82] |
TESSON L, USAL C, MÉNORET S, et al. Knockout rats generated by embryo microinjection of TALENs[J]. Nature Biotechnology, 2011, 29(8): 695-696.
DOI URL |
[83] |
LIU Z, ZHOU X, ZHU Y, et al. Generation of a monkey with MECP2 mutations by TALEN-based gene targeting[J]. Neuroscience Bulletin, 2014, 30(3): 381-386.
DOI URL |
[84] | HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12013-12017. |
[85] |
TABEBORDBAR M, ZHU K X, CHENG J K W, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells[J]. Science, 2016, 351(6271): 407-411.
DOI URL |
[86] |
NELSON C E, HAKIM C H, OUSTEROUT D G, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy[J]. Science, 2016, 351(6271): 403-407.
DOI URL |
[87] |
YIN H, XUE W, CHEN S D, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype[J]. Nature Biotechnology, 2014, 32(6): 551-553.
DOI URL |
[88] |
STADTMAUER E A, FRAIETTA J A, DAVIS M M, et al. CRISPR-engineered T cells in patients with refractory cancer[J]. Science, 2020, 367(6481): eaba7365.
DOI URL |
[89] |
GILLMORE J D, GANE E, TAUBEL J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]. The New England Journal of Medicine, 2021, 385(6): 493-502.
DOI URL |
[90] |
HU W H, KAMINSKI R, YANG F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection[J]. Proceedings of the National Academy of Sciences, 2014, 111(31): 11461-11466.
DOI URL |
[91] | LIANG P P, XU Y W, ZHANG X Y, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein & Cell, 2015, 6(5): 363-372. |
[92] |
KANG X J, HE W Y, HUANG Y L, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing[J]. Journal of Assisted Reproduction and Genetics, 2016, 33(5): 581-588.
DOI URL |
[93] |
HAAPANIEMI E, BOTLA S, PERSSON J, et al. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nature Medicine, 2018, 24(7): 927-930.
DOI URL |
[94] |
TONG Y J, CHARUSANTI P, ZHANG L X, et al. CRISPR-Cas9 based engineering of actinomycetal genomes[J]. ACS Synthetic Biology, 2015, 4(9): 1020-1029.
DOI URL |
[95] | 程文焕, 伏广好, 陈晓妮, 等. 基因编辑技术在工业微生物育种中的应用进展[J]. 发酵科技通讯, 2020, 49(4): 236-242. |
CHENG W H, FU G H, CHEN X N, et al. Application of gene editing technology in industrial microbe breeding[J]. Bulletin of Fermentation Science and Technology, 2020, 49(4): 236-242. (in Chinese with English abstract) |
[1] | 李红英, 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌. 利用CRISPR_Cas9技术创建拟南芥Argonaute2基因缺失突变体[J]. 浙江农业学报, 2021, 33(11): 2001-2008. |
[2] | 谭晓菁, 王忠华, 吴月燕, 郑二松, 徐如梦, 陈剑平, 王栩鸣, 严成其. 基因编辑技术在水稻抗病基因与育种研究中的应用进展[J]. 浙江农业学报, 2021, 33(10): 1982-1990. |
[3] | 原文霞, 王栩鸣, 李冬月, 周洁, 严成其, 陈剑平. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5): 685-693. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||