浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2209-2219.DOI: 10.3969/j.issn.1004-1524.2022.10.15
尹明华1,2,3,4(), 白丽1, 陈舒敏1, 程佳慧1, 冯丽文1
收稿日期:
2022-01-18
出版日期:
2022-10-25
发布日期:
2022-10-26
作者简介:
尹明华(1973—),女,江西永新人,硕士,教授,主要从事植物生物技术研究。E-mail: yinminghua04@163.com
基金资助:
YIN Minghua1,2,3,4(), BAI Li1, CHEN Shumin1, CHENG Jiahui1, FENG Liwen1
Received:
2022-01-18
Online:
2022-10-25
Published:
2022-10-26
摘要:
为探究广丰千金薯和铁棍山药在分子水平的差异,以广丰千金薯(QJS)和铁棍山药(TGSY)试管苗的微型块茎为试验材料进行转录组分析。结果表明:QJS组和TGSY组样本间相关系数为0.42。QJS组和TGSY组表达量FPKM的对数值在0~1.5,表达量密度在0~1.0。与TGSY组相比,QJS组有4 765个基因下调,有5 112个基因上调。QJS组和TGSY组表达的共有基因有25 207个,QJS组单独表达的基因有5 261个,TGSY组单独表达的基因有3 571个。QJS组和TGSY组共发现611 498个单核苷酸多态性(single nucleotide polymorphism,SNP)位点和12 056个简单重复序列(simple sequence repeats,SSR)。与TGSY组相比,QJS组的淀粉合成酶3、α-淀粉酶3、β-淀粉酶、类黄酮3'-单加氧酶、类黄酮3'-羟化酶、花青素合酶等基因上调,而颗粒结合淀粉合酶2、蔗糖合酶1、扩展蛋白2和苯丙氨酸解氨酶等基因下调。这可能是广丰千金薯微型块茎肉质绵密粉嫩、软糯爽口、胁迫防御、食后易胀的内在原因。结果可以为广丰千金薯的品种鉴定和分子育种提供参考。
中图分类号:
尹明华, 白丽, 陈舒敏, 程佳慧, 冯丽文. 广丰千金薯和铁棍山药脱毒微型块茎的转录组分析[J]. 浙江农业学报, 2022, 34(10): 2209-2219.
YIN Minghua, BAI Li, CHEN Shumin, CHENG Jiahui, FENG Liwen. Transcriptome analysis of virus-free microtubers of Dioscorea polystachya Turczaninow. cv. Guangfeng Qianjin and Dioscorea polystachya Turczaninow. cv. Tiegun[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2209-2219.
目的基因 Target gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 退火温度 Annealing temperature/℃ | 长度 Length/bp |
---|---|---|---|---|
淀粉合成酶3 Starch synthase 3(SS3) | CTGTGGAAGGTGGAATGGATG | TCTGCTTCTTTCCGACGCTGT | 52.3 | 136 |
α-淀粉酶3 Alpha-amylase 3(α-AMY3) | GCCCTGCGTAGAACCAGTATCAT | TGCGAGTATTGGCGGCTATCT | 53.6 | 114 |
β-淀粉酶 Beta-amylase(β-AMY) | TTATGCTCCCTCTGGGTGTTA | GCTCCTGGGCTTGGACTCTAT | 52.8 | 149 |
颗粒结合淀粉合酶2 Granule-bound starch synthase 2(GBSS2) | ATTAAAGTGCTCACCTCCTACT | ATACGTGCCAGAAATCCAAGA | 49.8 | 164 |
蔗糖合酶1 Sucrose synthase 1(SUS1) | CTCAAGAAGGTCTAGGAGCAG | ATCCCAAATGATACACCATACTC | 51.3 | 126 |
扩展蛋白2 Expansin 2(EXP2) | CGCTGTGCTTAGTGCTGCTGT | ATTCTACGGTGGTGGTGATGC | 52.3 | 106 |
类黄酮3'-单加氧酶 Flavonoid 3'-monooxygenase(F3'MO) | TCTGACATTGCCCATTCTACT | TTCTTCAACTTGCTGCTGATC | 51.8 | 130 |
类黄酮3'-羟化酶 Flavonoid 3'-hydroxylase(F3'H) | CATTCACCGCCTGTCCTACAT | CTGCACCTGTTCTCAGTTAAAGC | 53.4 | 127 |
苯丙氨酸解氨酶 Phenylalanine ammonia lyase(PAL) | AATCCTAACTAACATTGCTGCTC | GGCTTTGGTGCTACTTCTCAT | 51.2 | 156 |
花青素合酶 Anthocyanin synthase(CHS) | TGAAGGATAGGTGGCTGACGT | GAAGCAGGTGGAATGGAGAAC | 52.4 | 121 |
甘油醛磷酸脱氢酶 Glyceraldehyde phosphate dehydrogenase (GAPD) | TCCTAGCAAGGATGCTCCGATGT | AAACCCTCCACGATGCCAAAG | 53.3 | 153 |
表1 差异表达基因的qRT-PCR引物
Table 1 qRT-PCR primers for differentially expressed genes
目的基因 Target gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 退火温度 Annealing temperature/℃ | 长度 Length/bp |
---|---|---|---|---|
淀粉合成酶3 Starch synthase 3(SS3) | CTGTGGAAGGTGGAATGGATG | TCTGCTTCTTTCCGACGCTGT | 52.3 | 136 |
α-淀粉酶3 Alpha-amylase 3(α-AMY3) | GCCCTGCGTAGAACCAGTATCAT | TGCGAGTATTGGCGGCTATCT | 53.6 | 114 |
β-淀粉酶 Beta-amylase(β-AMY) | TTATGCTCCCTCTGGGTGTTA | GCTCCTGGGCTTGGACTCTAT | 52.8 | 149 |
颗粒结合淀粉合酶2 Granule-bound starch synthase 2(GBSS2) | ATTAAAGTGCTCACCTCCTACT | ATACGTGCCAGAAATCCAAGA | 49.8 | 164 |
蔗糖合酶1 Sucrose synthase 1(SUS1) | CTCAAGAAGGTCTAGGAGCAG | ATCCCAAATGATACACCATACTC | 51.3 | 126 |
扩展蛋白2 Expansin 2(EXP2) | CGCTGTGCTTAGTGCTGCTGT | ATTCTACGGTGGTGGTGATGC | 52.3 | 106 |
类黄酮3'-单加氧酶 Flavonoid 3'-monooxygenase(F3'MO) | TCTGACATTGCCCATTCTACT | TTCTTCAACTTGCTGCTGATC | 51.8 | 130 |
类黄酮3'-羟化酶 Flavonoid 3'-hydroxylase(F3'H) | CATTCACCGCCTGTCCTACAT | CTGCACCTGTTCTCAGTTAAAGC | 53.4 | 127 |
苯丙氨酸解氨酶 Phenylalanine ammonia lyase(PAL) | AATCCTAACTAACATTGCTGCTC | GGCTTTGGTGCTACTTCTCAT | 51.2 | 156 |
花青素合酶 Anthocyanin synthase(CHS) | TGAAGGATAGGTGGCTGACGT | GAAGCAGGTGGAATGGAGAAC | 52.4 | 121 |
甘油醛磷酸脱氢酶 Glyceraldehyde phosphate dehydrogenase (GAPD) | TCCTAGCAAGGATGCTCCGATGT | AAACCCTCCACGATGCCAAAG | 53.3 | 153 |
样品 Sample | 原始数据中 的read数 Raw read | 原始数据过滤 后的read数 Clean read | 原始数据过滤 后的碱基数 Clean base | 数据整体测序 错误率 Error rate/% | Phred数值大于 20的碱基占总 碱基的百分比 Q20/% | Phred数值大于 30的碱基占总 碱基的百分比 Q30/% | Clean read中G与 C占4种碱基 的百分比 GC content/% |
---|---|---|---|---|---|---|---|
广丰千金薯QJS | 22 686 888 | 21 821 043 | 6.55 G | 0.03 | 98.00 | 94.1 | 46.00 |
铁棍山药TGSY | 22 152 964 | 21 470 765 | 6.44 G | 0.02 | 98.08 | 94.3 | 45.59 |
表2 QJS组和TGSY组的测序数据产出统计
Table 2 Sequencing data output statistics between QJS group and TGSY group
样品 Sample | 原始数据中 的read数 Raw read | 原始数据过滤 后的read数 Clean read | 原始数据过滤 后的碱基数 Clean base | 数据整体测序 错误率 Error rate/% | Phred数值大于 20的碱基占总 碱基的百分比 Q20/% | Phred数值大于 30的碱基占总 碱基的百分比 Q30/% | Clean read中G与 C占4种碱基 的百分比 GC content/% |
---|---|---|---|---|---|---|---|
广丰千金薯QJS | 22 686 888 | 21 821 043 | 6.55 G | 0.03 | 98.00 | 94.1 | 46.00 |
铁棍山药TGSY | 22 152 964 | 21 470 765 | 6.44 G | 0.02 | 98.08 | 94.3 | 45.59 |
Transcript/unigene | 不同长度(bp)区间Different length interval | 总数 Total | |||
---|---|---|---|---|---|
300~<500 | 500~<1 000 | 1 000~<2 000 | ≥2 000 | ||
Transcript数量 Number of transcript | 21 413 | 25 033 | 23 152 | 11 940 | 81 538 |
Unigene数量 Number of unigene | 11 661 | 9 924 | 8 117 | 4 365 | 34 067 |
表3 QJS组和TGSY组的测序数据产出统计
Table 3 Sequencing data output statistics between QJS group and TGSY group
Transcript/unigene | 不同长度(bp)区间Different length interval | 总数 Total | |||
---|---|---|---|---|---|
300~<500 | 500~<1 000 | 1 000~<2 000 | ≥2 000 | ||
Transcript数量 Number of transcript | 21 413 | 25 033 | 23 152 | 11 940 | 81 538 |
Unigene数量 Number of unigene | 11 661 | 9 924 | 8 117 | 4 365 | 34 067 |
图3 QJS组和TGSY组差异表达基因GO富集分析柱形图1,细胞成分组织;2,细胞成分与生物发生;3,核糖体;4,核糖体结构成分;5,结构分子活性。
Fig.3 Column chart of GO enrichment analysis of differentially expressed genes in QJS group and TGSY group1, Cellular component organization; 2, Cellular component biogenesis; 3, Ribosome; 4, Structural constituent of ribosome; 5, Structural molecule activity.
GO标号 GO accession | 描述 Description | 项目类别 Term type | P值 P value | 校正后的P值 Corrected P value | 差异表达基因数 Number of differentially expressed genes |
---|---|---|---|---|---|
GO:0003735 | 核糖体的结构成分Structural constituent of ribosome | MF | 0.0 000 001 | 0.0 005 988 | 215 |
GO:0005198 | 结构分子活性Structural molecule activity | MF | 0.0 000 014 | 0.0 033 944 | 301 |
GO:0071840 | 细胞成分组织或生物发生 | BP | 0.0 000 275 | 0.0 404 870 | 537 |
Cellular component organization or biogenesis | |||||
GO:0005840 | 核糖体Ribosome | CC | 0.0 000 413 | 0.0 404 870 | 240 |
GO:0044085 | 细胞成分生物发生Cellular component biogenesis | BP | 0.0 000 415 | 0.0 404 870 | 394 |
GO:0042254 | 核糖体生物发生Ribosome biogenesis | BP | 0.0 000 722 | 0.0 586 230 | 240 |
GO:0004523 | RNA-DNA杂交核糖核酸酶活性 | MF | 0.0 000 841 | 0.0 586 230 | 53 |
RNA-DNA hybrid ribonuclease activity | |||||
GO:0004521 | 内核糖核酸酶活性Endoribonuclease activity | MF | 0.0 001 260 | 0.0 768 270 | 68 |
GO:0022613 | 核糖核蛋白复合物生物发生 | BP | 0.0 001 420 | 0.0 769 580 | 242 |
Ribonucleoprotein complex biogenesis | |||||
GO:0016891 | 产生5'-磷酸单酯的内核糖核酸酶活性 | MF | 0.0 004 694 | 0.2 289 300 | 58 |
Endoribonuclease activity, producing 5'-phosphomonoesters | |||||
GO:0006412 | 翻译Translation | BP | 0.0 010 554 | 0.4 679 300 | 268 |
GO:0006979 | 氧化应激反应Response to oxidative stress | BP | 0.0 011 666 | 0.4 741 100 | 34 |
GO:0004298 | 苏氨酸型内肽酶活性 | MF | 0.0 015 389 | 0.5 361 000 | 12 |
Threonine-type endopeptidase activity | |||||
GO:0070003 | 苏氨酸型肽酶活性Threonine-type peptidase activity | MF | 0.0 015 389 | 0.5 361 000 | 12 |
GO:0043043 | 肽生物合成过程Peptide biosynthetic process | BP | 0.0 016 825 | 0.5 470 400 | 269 |
GO:0071554 | 细胞壁组织或生物发生 | BP | 0.0 021 782 | 0.6 639 400 | 43 |
Cell wall organization or biogenesis | |||||
GO:0043232 | 细胞内非膜结合细胞器 | CC | 0.0 025 134 | 0.6 982 100 | 487 |
Intracellular non-membrane-bounded organelle | |||||
GO:0043228 | 非膜结合细胞器Non-membrane-bounded organelle | CC | 0.0 025 769 | 0.6 982 100 | 491 |
GO:0016209 | 抗氧化活性Antioxidant activity | MF | 0.0 028 077 | 0.7 206 800 | 46 |
GO:0006518 | 肽代谢过程Peptide metabolic process | BP | 0.0 0384 40 | 0.8 927 200 | 280 |
表4 部分差异表达基因GO富集结果
Table 4 GO enrichment results of part differentially expressed genes
GO标号 GO accession | 描述 Description | 项目类别 Term type | P值 P value | 校正后的P值 Corrected P value | 差异表达基因数 Number of differentially expressed genes |
---|---|---|---|---|---|
GO:0003735 | 核糖体的结构成分Structural constituent of ribosome | MF | 0.0 000 001 | 0.0 005 988 | 215 |
GO:0005198 | 结构分子活性Structural molecule activity | MF | 0.0 000 014 | 0.0 033 944 | 301 |
GO:0071840 | 细胞成分组织或生物发生 | BP | 0.0 000 275 | 0.0 404 870 | 537 |
Cellular component organization or biogenesis | |||||
GO:0005840 | 核糖体Ribosome | CC | 0.0 000 413 | 0.0 404 870 | 240 |
GO:0044085 | 细胞成分生物发生Cellular component biogenesis | BP | 0.0 000 415 | 0.0 404 870 | 394 |
GO:0042254 | 核糖体生物发生Ribosome biogenesis | BP | 0.0 000 722 | 0.0 586 230 | 240 |
GO:0004523 | RNA-DNA杂交核糖核酸酶活性 | MF | 0.0 000 841 | 0.0 586 230 | 53 |
RNA-DNA hybrid ribonuclease activity | |||||
GO:0004521 | 内核糖核酸酶活性Endoribonuclease activity | MF | 0.0 001 260 | 0.0 768 270 | 68 |
GO:0022613 | 核糖核蛋白复合物生物发生 | BP | 0.0 001 420 | 0.0 769 580 | 242 |
Ribonucleoprotein complex biogenesis | |||||
GO:0016891 | 产生5'-磷酸单酯的内核糖核酸酶活性 | MF | 0.0 004 694 | 0.2 289 300 | 58 |
Endoribonuclease activity, producing 5'-phosphomonoesters | |||||
GO:0006412 | 翻译Translation | BP | 0.0 010 554 | 0.4 679 300 | 268 |
GO:0006979 | 氧化应激反应Response to oxidative stress | BP | 0.0 011 666 | 0.4 741 100 | 34 |
GO:0004298 | 苏氨酸型内肽酶活性 | MF | 0.0 015 389 | 0.5 361 000 | 12 |
Threonine-type endopeptidase activity | |||||
GO:0070003 | 苏氨酸型肽酶活性Threonine-type peptidase activity | MF | 0.0 015 389 | 0.5 361 000 | 12 |
GO:0043043 | 肽生物合成过程Peptide biosynthetic process | BP | 0.0 016 825 | 0.5 470 400 | 269 |
GO:0071554 | 细胞壁组织或生物发生 | BP | 0.0 021 782 | 0.6 639 400 | 43 |
Cell wall organization or biogenesis | |||||
GO:0043232 | 细胞内非膜结合细胞器 | CC | 0.0 025 134 | 0.6 982 100 | 487 |
Intracellular non-membrane-bounded organelle | |||||
GO:0043228 | 非膜结合细胞器Non-membrane-bounded organelle | CC | 0.0 025 769 | 0.6 982 100 | 491 |
GO:0016209 | 抗氧化活性Antioxidant activity | MF | 0.0 028 077 | 0.7 206 800 | 46 |
GO:0006518 | 肽代谢过程Peptide metabolic process | BP | 0.0 0384 40 | 0.8 927 200 | 280 |
SNP位点所在unigene ID Gene ID | SNP位点 SNP site | 变异位点在参考序列中的碱基 Base of variant site in reference sequence | 变异位点在样本中的实际碱基 The actual base of the variant site in the sample |
---|---|---|---|
Cluster-10348.0 | 213 | A | G |
Cluster-10348.0 | 264 | T | A |
Cluster-10348.0 | 312 | C | T |
Cluster-10348.0 | 339 | A | G |
Cluster-10348.0 | 378 | T | C |
Cluster-10348.0 | 419 | A | T |
Cluster-10348.0 | 420 | T | A |
Cluster-10348.0 | 480 | C | T |
Cluster-10348.0 | 933 | T | A |
Cluster-10348.0 | 975 | T | C |
Cluster-10348.0 | 1 122 | G | A |
Cluster-10348.0 | 1 335 | A | G |
Cluster-10348.0 | 1 438 | T | C |
Cluster-10348.0 | 1 443 | G | A |
Cluster-10348.0 | 1 519 | G | C |
Cluster-10348.0 | 1 749 | A | C |
Cluster-10348.0 | 1 884 | A | G |
Cluster-10348.0 | 1 993 | G | A |
Cluster-10348.0 | 2 016 | G | A |
Cluster-10348.0 | 2 029 | A | G |
表5 SNP部分分析结果
Table 5 Part of SNP results
SNP位点所在unigene ID Gene ID | SNP位点 SNP site | 变异位点在参考序列中的碱基 Base of variant site in reference sequence | 变异位点在样本中的实际碱基 The actual base of the variant site in the sample |
---|---|---|---|
Cluster-10348.0 | 213 | A | G |
Cluster-10348.0 | 264 | T | A |
Cluster-10348.0 | 312 | C | T |
Cluster-10348.0 | 339 | A | G |
Cluster-10348.0 | 378 | T | C |
Cluster-10348.0 | 419 | A | T |
Cluster-10348.0 | 420 | T | A |
Cluster-10348.0 | 480 | C | T |
Cluster-10348.0 | 933 | T | A |
Cluster-10348.0 | 975 | T | C |
Cluster-10348.0 | 1 122 | G | A |
Cluster-10348.0 | 1 335 | A | G |
Cluster-10348.0 | 1 438 | T | C |
Cluster-10348.0 | 1 443 | G | A |
Cluster-10348.0 | 1 519 | G | C |
Cluster-10348.0 | 1 749 | A | C |
Cluster-10348.0 | 1 884 | A | G |
Cluster-10348.0 | 1 993 | G | A |
Cluster-10348.0 | 2 016 | G | A |
Cluster-10348.0 | 2 029 | A | G |
基因ID Gene ID | SSR类型 SSR type | 重复序列的核苷酸构成以及重复数 Nucleotide composition and number of repeats | 大小 Size/bp | 开始位置 Start | 结尾位置 End | SSR位置区域 SSR position |
---|---|---|---|---|---|---|
Cluster-8671.0 | p1 | (A)12 | 12 | 243 | 254 | undetermined |
Cluster-8532.707 | p2 | (TC)7 | 14 | 46 | 59 | undetermined |
Cluster-4711.0 | p1 | (A)11 | 11 | 349 | 359 | undetermined |
Cluster-15386.0 | p2 | (AT)8 | 16 | 477 | 492 | undetermined |
Cluster-12681.1 | p1 | (A)15 | 15 | 1 | 15 | undetermined |
Cluster-9382.0 | p1 | (T)10 | 10 | 705 | 714 | undetermined |
Cluster-9382.0 | p1 | (A)10 | 10 | 1 203 | 1 212 | undetermined |
Cluster-9382.0 | p1 | (T)10 | 10 | 1 499 | 1 508 | undetermined |
Cluster-4739.0 | c | (A)10(AAAT)11 | 108 | 9 | 116 | undetermined |
Cluster-8532.12872 | p4 | (ATTT)5 | 20 | 5 026 | 5 045 | undetermined |
Cluster-8532.12872 | p2 | (TA)6 | 12 | 5 178 | 5 189 | undetermined |
Cluster-8532.12872 | p4 | (TTTA)5 | 20 | 5 291 | 5 310 | undetermined |
Cluster-8532.12872 | p1 | (T)11 | 11 | 5 504 | 5 514 | undetermined |
Cluster-8532.12870 | p1 | (A)13 | 13 | 45 | 57 | undetermined |
Cluster-8532.12877 | p1 | (T)10 | 10 | 1 056 | 1 065 | undetermined |
Cluster-8532.12875 | c | (AAAT)5(AAG)6 | 38 | 353 | 390 | undetermined |
Cluster-8532.13795 | p1 | (A)12 | 12 | 303 | 314 | utr5 |
Cluster-8532.12878 | p2 | (CT)7 | 14 | 1 047 | 1 060 | utr3 |
Cluster-8532.12878 | p1 | (A)18 | 18 | 1 402 | 1 419 | utr3 |
Cluster-10579.0 | p2 | (AT)10 | 20 | 916 | 935 | undetermined |
表6 部分SSR检测结果
Table 6 Part of SSR test results
基因ID Gene ID | SSR类型 SSR type | 重复序列的核苷酸构成以及重复数 Nucleotide composition and number of repeats | 大小 Size/bp | 开始位置 Start | 结尾位置 End | SSR位置区域 SSR position |
---|---|---|---|---|---|---|
Cluster-8671.0 | p1 | (A)12 | 12 | 243 | 254 | undetermined |
Cluster-8532.707 | p2 | (TC)7 | 14 | 46 | 59 | undetermined |
Cluster-4711.0 | p1 | (A)11 | 11 | 349 | 359 | undetermined |
Cluster-15386.0 | p2 | (AT)8 | 16 | 477 | 492 | undetermined |
Cluster-12681.1 | p1 | (A)15 | 15 | 1 | 15 | undetermined |
Cluster-9382.0 | p1 | (T)10 | 10 | 705 | 714 | undetermined |
Cluster-9382.0 | p1 | (A)10 | 10 | 1 203 | 1 212 | undetermined |
Cluster-9382.0 | p1 | (T)10 | 10 | 1 499 | 1 508 | undetermined |
Cluster-4739.0 | c | (A)10(AAAT)11 | 108 | 9 | 116 | undetermined |
Cluster-8532.12872 | p4 | (ATTT)5 | 20 | 5 026 | 5 045 | undetermined |
Cluster-8532.12872 | p2 | (TA)6 | 12 | 5 178 | 5 189 | undetermined |
Cluster-8532.12872 | p4 | (TTTA)5 | 20 | 5 291 | 5 310 | undetermined |
Cluster-8532.12872 | p1 | (T)11 | 11 | 5 504 | 5 514 | undetermined |
Cluster-8532.12870 | p1 | (A)13 | 13 | 45 | 57 | undetermined |
Cluster-8532.12877 | p1 | (T)10 | 10 | 1 056 | 1 065 | undetermined |
Cluster-8532.12875 | c | (AAAT)5(AAG)6 | 38 | 353 | 390 | undetermined |
Cluster-8532.13795 | p1 | (A)12 | 12 | 303 | 314 | utr5 |
Cluster-8532.12878 | p2 | (CT)7 | 14 | 1 047 | 1 060 | utr3 |
Cluster-8532.12878 | p1 | (A)18 | 18 | 1 402 | 1 419 | utr3 |
Cluster-10579.0 | p2 | (AT)10 | 20 | 916 | 935 | undetermined |
目的基因 Target gene | RNA-Seq | qRT-PCR | ||
---|---|---|---|---|
QJS | TGSY | QJS | TGSY | |
淀粉合成酶3 | 29.61 | 5.93 | 1 a | 0.584 b |
Starch synthase 3 | ||||
α-淀粉酶3 | 41.41 | 16 | 1 a | 0.558 b |
Alpha-amylase 3 | ||||
β-淀粉酶 Beta-amylase | 41.42 | 9.61 | 1 a | 0.413 b |
颗粒结合淀粉合酶2 | 32.23 | 106.97 | 1 b | 1.815 a |
Granule-bound starch synthase 2 | ||||
蔗糖合酶1 | 223.73 | 840.19 | 1 b | 2.733 a |
Sucrose synthase 1 | ||||
扩展蛋白2 Expansin 2 | 0.63 | 62.31 | 1 b | 5.487 a |
类黄酮3'-单加氧酶 | 12.72 | 0.72 | 1 a | 0.097 b |
Flavonoid 3'-monooxygenase | ||||
类黄酮3'-羟化酶 | 24.89 | 2.66 | 1 a | 0.320 b |
Flavonoid 3'-hydroxylase | ||||
苯丙氨酸解氨酶 | 0 | 10.04 | 1 b | 1.610 a |
Phenylalanine ammonia lyase | ||||
花青素合酶 | 25.18 | 4.05 | 1 a | 0.596 b |
Anthocyanin synthase |
表7 差异表达基因的qRT-PCR验证
Table 7 qRT-PCR verification of differentially expressed genes
目的基因 Target gene | RNA-Seq | qRT-PCR | ||
---|---|---|---|---|
QJS | TGSY | QJS | TGSY | |
淀粉合成酶3 | 29.61 | 5.93 | 1 a | 0.584 b |
Starch synthase 3 | ||||
α-淀粉酶3 | 41.41 | 16 | 1 a | 0.558 b |
Alpha-amylase 3 | ||||
β-淀粉酶 Beta-amylase | 41.42 | 9.61 | 1 a | 0.413 b |
颗粒结合淀粉合酶2 | 32.23 | 106.97 | 1 b | 1.815 a |
Granule-bound starch synthase 2 | ||||
蔗糖合酶1 | 223.73 | 840.19 | 1 b | 2.733 a |
Sucrose synthase 1 | ||||
扩展蛋白2 Expansin 2 | 0.63 | 62.31 | 1 b | 5.487 a |
类黄酮3'-单加氧酶 | 12.72 | 0.72 | 1 a | 0.097 b |
Flavonoid 3'-monooxygenase | ||||
类黄酮3'-羟化酶 | 24.89 | 2.66 | 1 a | 0.320 b |
Flavonoid 3'-hydroxylase | ||||
苯丙氨酸解氨酶 | 0 | 10.04 | 1 b | 1.610 a |
Phenylalanine ammonia lyase | ||||
花青素合酶 | 25.18 | 4.05 | 1 a | 0.596 b |
Anthocyanin synthase |
[1] |
柯维忠, 王丽, 杨星鹏, 等. 广丰千金薯驯化移栽苗对PEG干旱胁迫的光合生理响应[J]. 浙江农业学报, 2016, 28(9): 1462-1475.
DOI |
KE W Z, WANG L, YANG X P, et al. Photosynthetic physiological responses of Dioscorea opposite Thunb. cv. Guangfeng Qianjin acclimated and transplanted plantlets under PEG drought stress[J]. Acta Agriculturae Zhejiangensis, 2016, 28(9): 1462-1475. (in Chinese with English abstract) | |
[2] | 尹明华, 徐志坚, 章省琴, 等. 广丰千金薯离体快繁及其气孔观察、染色体倍数FCM分析和DNA变异ISSR检测[J]. 中药材, 2016, 39(7): 1446-1451. |
YIN M H, XU Z J, ZHANG S Q, et al. Rapid propagation in vitro of Dioscorea opposita ‘Guangfeng’ and its stomatal observation, FCM analysis of chromosome ploidy and ISSR detection of DNA mutation[J]. Journal of Chinese Medicinal Materials, 2016, 39(7): 1446-1451. (in Chinese with English abstract) | |
[3] | 邱翠金, 何鸿弘, 叶为波, 等. 广丰千金薯高产栽培主要技术措施[J]. 现代园艺, 2009(6): 27, 31. |
QIU C J, HE H H, YE W B, et al. Main technical measures for high yield cultivation of Dioscorea opposite Thunb. Cv. Guangfeng Qianjin[J]. Xiandai Horticulture, 2009(6): 27, 31. (in Chinese) | |
[4] | 方利平, 尤玉英, 邱翠金, 等. 广丰千金薯高产栽培技术[J]. 安徽农学通报(下半月刊), 2009, 15(6): 147-148. |
FANG L P, YOU Y Y, QIU C J, et al. High yield cultivation techniques of Dioscorea opposite Thunb. Cv. Guangfeng Qianjin[J]. Anhui Agricultural Science Bulletin, 2009, 15(6): 147-148. (in Chinese) | |
[5] | 尹明华, 徐志坚, 黄玮, 等. 江西山药种质资源遗传多样性及其组培苗遗传稳定性的RAPD检测[J]. 中草药, 2016, 47(19): 3486-3493. |
YIN M H, XU Z J, HUANG W, et al. RAPD analysis of genetic diversity of Dioscorea opposita germplasm resources from Jiangxi and genetic stability of their plantlets[J]. Chinese Traditional and Herbal Drugs, 2016, 47(19): 3486-3493. (in Chinese with English abstract) | |
[6] | 王运英, 张晓丽, 白英豪, 等. 山药微型块茎萌发影响因素研究[J]. 北方园艺, 2015(17): 194-196. |
WANG Y Y, ZHANG X L, BAI Y H, et al. Impact factors in germination of microtubers from Dioscorea opposita[J]. Northern Horticulture, 2015(17): 194-196. (in Chinese with English abstract) | |
[7] | 李明军, 刘欣英, 李萍, 等. 山药微型块茎诱导形成的影响因子研究[J]. 中草药, 2008, 39(6): 905-910. |
LI M J, LIU X Y, LI P, et al. Impact factors in in vitro induction of microtubers from Dioscorea opposita[J]. Chinese Traditional and Herbal Drugs, 2008, 39(6): 905-910. (in Chinese with English abstract) | |
[8] | 冯昱, 白明, 苗明三. 零余子药用探讨[J]. 中医学报, 2019, 34(3): 509-512. |
FENG Y, BAI M, MIAO M S. Discussion on the medicinal use of bulbil[J]. Acta Chinese Medicine, 2019, 34(3): 509-512. (in Chinese with English abstract) | |
[9] | 王泽涵, 于文涛, 王鹏杰, 等. 茶树花不同发育时期的转录组分析[J]. 福建农林大学学报(自然科学版), 2022, 51(1): 46-52. |
WANG Z H, YU W T, WANG P J, et al. Transcriptome analysis at different flowering developmental stages of tea plant[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2022, 51(1): 46-52. (in Chinese with English abstract) | |
[10] | 柯维忠, 钟雯娟, 刘凯盈, 等. 黄独微型块茎鲨烯合酶的基因克隆与序列分析[J]. 植物研究, 2021, 41(2): 243-250. |
KE W Z, ZHONG W J, LIU K Y, et al. Cloning and sequence analysis of squalene synthase (SQS) gene from Dioscorea bulbifera L. microtuber[J]. Bulletin of Botanical Research, 2021, 41(2): 243-250. (in Chinese with English abstract) | |
[11] |
李俊华, 刘世宇, 李成龙, 等. 铁棍山药微型块茎遗传转化体系的建立[J]. 植物学报, 2019, 54(1): 72-80.
DOI |
LI J H, LIU S Y, LI C L, et al. Establishment of a genetic transformation system for Dioscorea opposita using microtuber[J]. Chinese Bulletin of Botany, 2019, 54(1): 72-80. (in Chinese with English abstract) | |
[12] | 李明军, 刘世宇, 刘雯, 等. 怀山药微型块茎形成过程中的生理生化变化[J]. 植物生理学报, 2017, 53(5): 807-814. |
LI M J, LIU S Y, LIU W, et al. Physiological and biochemical changes in Dioscorea opposita during the process of microtuber formation[J]. Plant Physiology Journal, 2017, 53(5): 807-814. (in Chinese with English abstract) | |
[13] | 王运英, 张晓丽, 白英豪, 等. 山药微型块茎萌发影响因素研究[J]. 北方园艺, 2015(17): 194-196. |
WANG Y Y, ZHANG X L, BAI Y H, et al. Impact factors in germination of microtubers from Dioscorea opposita[J]. Northern Horticulture, 2015(17): 194-196. (in Chinese with English abstract) | |
[14] | 南怀林, 王耀琴, 刘建平, 等. 山药零余子EMS诱变处理的研究[J]. 农学学报, 2021, 11(9): 7-10. |
NAN H L, WANG Y Q, LIU J P, et al. EMS mutagenesis of Chinese yam tuber[J]. Journal of Agriculture, 2021, 11(9): 7-10. (in Chinese with English abstract) | |
[15] | 王艺儒, 索玉静, 傅建敏. 小果甜柿果实转录组的SSR、SNP和InDel特征分析[J]. 西北农林科技大学学报(自然科学版), 2022, 50(7): 147-154. |
WANG Y R, SUO Y J, FU J M. SSR, SNP and InDel analysis based on transcriptome data of Diospyros kaki ‘Xiaoguo-tianshi’ fruit[J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(7): 147-154. (in Chinese with English abstract) | |
[16] | 周军永, 陆丽娟, 刘茂, 等. 基于李府贡枣转录组测序的SSR和SNP特征分析[J]. 江苏农业科学, 2019, 47(4): 51-54. |
ZHOU J Y, LU L J, LIU M, et al. Analysis of SSR and SNP characteristics based on transcriptome sequencing of Lifugongzao jujube[J]. Jiangsu Agricultural Sciences, 2019, 47(4): 51-54. (in Chinese) | |
[17] | 韩俊杰, 王昊龙, 李淼淼, 等. 小麦淀粉合成酶SSⅡa基因克隆及生物学分析[J]. 麦类作物学报, 2015, 35(7): 903-909. |
HAN J J, WANG H L, LI M M, et al. Cloning and biological analysis of wheat SSⅡa gene[J]. Journal of Triticeae Crops, 2015, 35(7): 903-909. (in Chinese with English abstract) | |
[18] |
CORPET F, GOUZY J, KAHN D. The ProDom database of protein domain families[J]. Nucleic Acids Research, 1998, 26(1): 323-326.
PMID |
[19] | 王自布, 黄燕芬, 吴坤, 等. 籽粒淀粉合成酶与淀粉合成关系的研究进展[J]. 生物技术进展, 2013, 3(5): 336-341. |
WANG Z B, HUANG Y F, WU K, et al. Progress on correlation between starch synthase and starch synthesis in the grain[J]. Current Biotechnology, 2013, 3(5): 336-341. (in Chinese with English abstract) | |
[20] |
JEON J S, RYOO N, HAHN T R, et al. Starch biosynthesis in cereal endosperm[J]. Plant Physiology and Biochemistry, 2010, 48(6): 383-392.
DOI URL |
[21] |
GUZMÁN C, ALVAREZ J B. Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties[J]. Theoretical and Applied Genetics, 2016, 129(1): 1-16.
DOI PMID |
[22] |
YAO D Y, GONZALES-VIGIL E, MANSFIELD S D. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem[J]. Journal of Experimental Botany, 2019, 71(6): 1858-1869.
DOI URL |
[23] |
KOCH K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development[J]. Current Opinion in Plant Biology, 2004, 7(3): 235-246.
DOI PMID |
[24] |
ZEEMAN S C, DELATTE T, MESSERLI G, et al. Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms[J]. Functional Plant Biology: FPB, 2007, 34(6): 465-473.
DOI PMID |
[25] |
SAUER J, SIGURSKJOLD B W, CHRISTENSEN U, et al. Glucoamylase: structure/function relationships, and protein engineering[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2000, 1543(2): 275-293.
PMID |
[26] | DOYLE E A, LANE A M, SIDES J M, et al. An alpha-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress[J]. Plant, Cell & Environment, 2007, 30(4): 388-398. |
[27] |
LLOYD J R, KOSSMANN J, RITTE G. Leaf starch degradation comes out of the shadows[J]. Trends in Plant Science, 2005, 10(3): 130-137.
PMID |
[28] |
MASON-GAMER R J. The{beta}-amylase genes of grasses and a phylogenetic analysis of the Triticeae(Poaceae)[J]. American Journal of Botany, 2005, 92(6): 1045-1058.
DOI URL |
[29] | 赵莹, 杨欣宇, 赵晓丹, 等. 植物类黄酮化合物生物合成调控研究进展[J]. 食品工业科技, 2021, 42(21): 454-463. |
ZHAO Y, YANG X Y, ZHAO X D, et al. Research progress on regulation of plant flavonoids biosynthesis[J]. Science and Technology of Food Industry, 2021, 42(21): 454-463. (in Chinese with English abstract) | |
[30] |
KIM B C, TENNESSEN D J, LAST R L. UV-B-induced photomorphogenesis in Arabidopsis thaliana[J]. The Plant Journal, 1998, 15(5): 667-674.
DOI URL |
[31] |
GRAF D, SEIFERT S, JAUDSZUS A, et al. Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in Fischer rats[J]. PLoS One, 2013, 8(6): e66690.
DOI URL |
[32] | 姚建忠. 毛白杨花青素合酶基因的克隆与特性分析[J]. 中国细胞生物学学报, 2018, 40(3): 349-356. |
YAO J Z. Molecular cloning and characterization of two genes encoding anthocyanin synthase from Populus tomentosa[J]. Chinese Journal of Cell Biology, 2018, 40(3): 349-356. (in Chinese with English abstract) | |
[33] | MCQUEEN-MASON S, COSGROVE D J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(14): 6574-6578. |
[34] | COSGROVE D J, LI L C, CHO H T, et al. The growing world of expansins[J]. Plant & Cell Physiology, 2002, 43(12): 1436-1444. |
[35] |
JIANG F L, LOPEZ A, JEON S, et al. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking[J]. Horticulture Research, 2019, 6(1): 17-31.
DOI URL |
[36] |
MOHIB M, AFNAN K, PARAN T Z, et al. Beneficial role of citrus fruit polyphenols against hepatic dysfunctions: a review[J]. Journal of Dietary Supplements, 2018, 15(2): 223-250.
DOI PMID |
[1] | 尹明华, 曹晴, 陈红, 邓思宇, 邓燕梅. 江西铅山红芽芋和青秆芋的转录组比较分析[J]. 浙江农业学报, 2020, 32(9): 1533-1543. |
[2] | 朱晓林, 魏小红, 王宝强, 王贤, 张明君. c-GMP诱导对盐胁迫下番茄的转录组分析[J]. 浙江农业学报, 2020, 32(10): 1788-1797. |
[3] | 陈英, 肖春林, 罗燕娜, 张西英, 刘江娜. 红颜草莓脱毒优化及病毒检测的研究[J]. 浙江农业学报, 2017, 29(6): 966-970. |
[4] | 洪森荣, 吴夏俊鹏, 徐文慧, 占学林, 谢妮妮, 蒋妍, 汪金华, 凌飞, 吴丽霞, 万琳. 低温离体保存黄独微型块茎转录组、蛋白质组和代谢组的关联分析[J]. 浙江农业学报, 2017, 29(11): 1827-1834. |
[5] | 尹明华, 周宇瑶, 杨星鹏, 徐玉琴, 刘郑英, 舒荣建, 魏志敏, 夏华炎, 洪森荣. 上饶早梨主栽品种病毒种类分析及其茎尖脱毒技术效率比较[J]. 浙江农业学报, 2017, 29(1): 89-100. |
[6] | 柯维忠, 王丽, 杨星鹏, 徐玉琴, 吴丹, 江霞, 夏瑾华, 尹明华, 洪森荣. 广丰千金薯驯化移栽苗对PEG干旱胁迫的光合生理响应[J]. 浙江农业学报, 2016, 28(9): 1462-1475. |
[7] | 王兰菊,李鹏鹤,屠琼芳. 不同贮藏方式对铁棍山药生理特性及品质的影响[J]. 浙江农业学报, 2015, 27(10): 1745-. |
[8] | 杨婷;崔志刚;陈段芬;*. 不同处理方法对3种大丽花病毒的脱毒效果比较[J]. , 2014, 26(3): 0-621625. |
[9] | 杨光;金桂花;董俊;张青;龚娜. 状元红葡萄的脱毒与快繁技术研究[J]. , 2014, 26(1): 0-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||