浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1604-1616.DOI: 10.3969/j.issn.1004-1524.20220960
李必聪1,2(), 李慧英1,2, 肖遥1,2, 罗莎1,2, 周庆红1,2, 黄英金1,2, 朱强龙1,2,*(
)
收稿日期:
2022-06-26
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
李必聪(1997—),男,江西抚州人,博士研究生,研究方向为薯芋生物学研究。E-mail: lbc012138@163.com
通讯作者:
*朱强龙,E-mail: longzhu2011@126.com
基金资助:
LI Bicong1,2(), LI Huiying1,2, XIAO Yao1,2, LUO Sha1,2, ZHOU Qinghong1,2, HUANG Yingjin1,2, ZHU Qianglong1,2,*(
)
Received:
2022-06-26
Online:
2023-07-25
Published:
2023-08-17
Contact:
ZHU Qianglong
摘要:
扩展蛋白是一类具有促进细胞壁伸长和增加细胞壁柔韧性作用的蛋白。本研究基于芋全基因组范围鉴定扩展蛋白基因,并分析该家族基因结构特征、系统发育及其在芋球茎膨大中的表达模式。结果表明,芋全基因组包含31个扩展蛋白基因,分布在芋8条染色体及2个重叠群上。在芋和拟南芥、水稻、马铃薯等4个物种中的扩展蛋白基因进行系统发育树分析中,所有的扩展蛋白基因划分到4个亚家族中,其中EXPA有23个,EXPB有5个,EXLA有1个,EXLB有2个。共线性分析表明,芋和拟南芥之间存在7对共线性扩展蛋白基因。基因表达分析发现,芋扩展蛋白基因家族不同成员在不同组织中有不同的表达模式,其中CeEXPA2、CeEXPA11、CeEXPA13、CeEXPA23和CeEXLA1等5个基因在球茎膨大过程中高表达且差异显著,表明它们可能对芋球茎的膨大发挥了重要的调控作用。本研究结果将有助于了解芋扩展蛋白基因家族的特征及其在球茎膨大中的分子功能,为揭示芋球茎生长发育的分子调控机理提供理论依据。
中图分类号:
李必聪, 李慧英, 肖遥, 罗莎, 周庆红, 黄英金, 朱强龙. 芋扩展蛋白基因家族的全基因组鉴定及其在球茎膨大中的表达分析[J]. 浙江农业学报, 2023, 35(7): 1604-1616.
LI Bicong, LI Huiying, XIAO Yao, LUO Sha, ZHOU Qinghong, HUANG Yingjin, ZHU Qianglong. Genome-wide identification and expression analysis of expansin gene family in corm expansion of Colocasia esculenta[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1604-1616.
基因名称Gene name | 引物序列Primer sequence(5'→3') |
---|---|
CeEXPA2 | F: CCTTGCTCTTCTTCTCCCTCTG; R: AAGCTCCACCCATTGTGCC |
CeEXPA11 | F: GCTGCTGCCATTTCTTTCTCA; R: ACCTCCATAGAAGGTGGCATG |
CeEXPA13 | F: GCTGAGTGAGGCTATGTTCGAG; R: GCTGAGTGAGGCTATGTTCGAG |
CeEXPA23 | F: GCTGCTGCCATTTCTTTCTCA; R: TCCACCCATTGTGCCAGAG |
CeEXLA1 | F: CCTCTTCCTGTCCTGCCTTCT; R: CCAAGGAGCCATACCCACAA |
actin | F: CTAGTGGTCGCACAACAGGT; R: TTCACGCTCAGCAGTGGTAG |
表1 扩展蛋白基因qRT-PCR引物
Table 1 qRT-PCR Primers of expansin gene
基因名称Gene name | 引物序列Primer sequence(5'→3') |
---|---|
CeEXPA2 | F: CCTTGCTCTTCTTCTCCCTCTG; R: AAGCTCCACCCATTGTGCC |
CeEXPA11 | F: GCTGCTGCCATTTCTTTCTCA; R: ACCTCCATAGAAGGTGGCATG |
CeEXPA13 | F: GCTGAGTGAGGCTATGTTCGAG; R: GCTGAGTGAGGCTATGTTCGAG |
CeEXPA23 | F: GCTGCTGCCATTTCTTTCTCA; R: TCCACCCATTGTGCCAGAG |
CeEXLA1 | F: CCTCTTCCTGTCCTGCCTTCT; R: CCAAGGAGCCATACCCACAA |
actin | F: CTAGTGGTCGCACAACAGGT; R: TTCACGCTCAGCAGTGGTAG |
基因名称 Gene names | 基因序列号 Gene ID | 染色体位置 Location | 氨基酸长度 Length of protein/aa | 信号肽 Signal peptide/ aa | 分子量 Molecular weight/ku | 理论等 电点 pI | 总平均疏水性 Grand average of hydropathicity (GRAVY) | 蛋白不 稳定 Instability index (Ⅱ) | 脂溶指数 Aliphatic index (AI) | 内含子 数量 Number of intron | 外显子 数量 Number of exon | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CeEXPA1 | EVM0026182.1 | chr01:200921296.. 200922918(+) | 249 | 23 | 26.432 58 | 8.08 | -0.055 | 35.9 | 67.15 | 2 | 3 | 细胞外 Extracellular |
CeEXPA2 | EVM0012344.1 | chr01:202183325.. 202186948(-) | 257 | 20 | 27.397 03 | 9.03 | 0.011 | 33.44 | 72.53 | 2 | 3 | 细胞外 Extracellular |
CeEXPA3 | EVM0024333.1 | chr05:150932420.. 150934537(+) | 269 | 22 | 29.240 10 | 9.70 | -0.185 | 32.45 | 67.43 | 2 | 3 | 细胞外 Extracellular |
CeEXPA4 | EVM0006021.1 | chr05:170577592.. 170579397(+) | 270 | - | 29.416 22 | 6.43 | -0.203 | 40.65 | 69.07 | 1 | 2 | 细胞外 Extracellular |
CeEXPA5 | EVM0027397.1 | chr05:170583755.. 170584943(-) | 243 | 27 | 25.661 22 | 8.54 | 0.151 | 38.89 | 76.3 | 1 | 2 | 细胞外 Extracellular |
CeEXPA6 | EVM0000590.1 | chr05:170587143.. 170588191(-) | 250 | 24 | 26.582 28 | 9.03 | -0.002 | 32.79 | 71.48 | 1 | 2 | 细胞外 Extracellular |
CeEXPA7 | EVM0018716.1 | chr05:170595320.. 170596335(+) | 251 | 24 | 26.688 49 | 8.98 | -0.031 | 31.42 | 71.16 | 1 | 2 | 细胞外 Extracellular |
CeEXPA8 | EVM0000741.1 | chr05:170597431.. 170598613(+) | 243 | 27 | 25.658 21 | 8.54 | 0.143 | 38.54 | 76.30 | 1 | 2 | 细胞外 Extracellular |
CeEXPA9 | EVM0004428.1 | chr05:24336630.. 24338260(-) | 242 | 23 | 25.840 91 | 8.08 | -0.017 | 37.28 | 65.37 | 2 | 3 | 细胞外 Extracellular |
CeEXPA10 | EVM0003200.1 | chr05:2472822.. 2474110(+) | 247 | 20 | 25.953 08 | 7.58 | 0.039 | 31.64 | 71.13 | 2 | 3 | 细胞外 Extracellular |
CeEXPA11 | EVM0006482.1 | chr06:89724779.. 89726644(+) | 242 | 22 | 25.474 60 | 6.98 | 0.040 | 23.16 | 78.64 | 3 | 4 | 细胞外 Extracellular |
CeEXPA12 | EVM0017929.1 | chr07:145329881.. 145331408(+) | 310 | - | 34.004 85 | 9.13 | -0.358 | 55.08 | 73.03 | 2 | 3 | 细胞外 Extracellular |
CeEXPA13 | EVM0001733.1 | chr07:145471800.. 145473372(+) | 307 | - | 33.605 43 | 8.83 | -0.275 | 53.39 | 73.13 | 3 | 4 | 细胞外 Extracellular |
CeEXPA14 | EVM0014313.1 | chr07:87019796.. 87023201(-) | 287 | - | 31.198 69 | 8.98 | 0.008 | 37.82 | 78.82 | 2 | 3 | 细胞外 Extracellular |
CeEXPA15 | EVM0010866.1 | chr07:88579339.. 88581309(-) | 254 | 25 | 26.939 53 | 8.42 | 0.069 | 51.06 | 72.99 | 2 | 3 | 细胞外 Extracellular |
CeEXPA16 | EVM0014177.1 | chr07:88694369.. 88696346(-) | 254 | 25 | 26.939 53 | 8.42 | 0.069 | 51.06 | 72.99 | 2 | 3 | 细胞外 Extracellular |
CeEXPA17 | EVM0017235.1 | chr08:25144199.. 25146621(-) | 257 | 27 | 28.278 75 | 8.64 | -0.291 | 29.81 | 61.48 | 3 | 4 | 细胞外 Extracellular |
CeEXPA18 | EVM0018313.1 | chr09:153364305.. 153365614(-) | 261 | 33 | 27.892 56 | 9.23 | 0.062 | 35.02 | 61.03 | 2 | 3 | 细胞外 Extracellular |
CeEXPA19 | EVM0012337.1 | chr12:21154444.. 21155548(-) | 285 | 28 | 31.574 69 | 9.01 | -0.354 | 36.61 | 68.81 | 2 | 3 | 细胞外 Extracellular |
CeEXPA20 | EVM0025460.1 | chr13:2511469.. 2512473(+) | 251 | 26 | 26.690 07 | 8.78 | -0.109 | 33.06 | 66.65 | 2 | 3 | 细胞外 Extracellular |
CeEXPA21 | EVM0024521.1 | chr13:6625282.. 6626372(-) | 247 | 26 | 26.799 49 | 9.24 | -0.065 | 25.59 | 71.17 | 2 | 3 | 细胞外 Extracellular |
CeEXPA22 | EVM0003144.1 | chr13:6823896.. 6825773(+) | 259 | 26 | 27.757 24 | 7.48 | -0.074 | 33.97 | 67.53 | 2 | 3 | 细胞外 Extracellular |
CeEXPA23 | EVM0023051.1 | Contig09732:18818.. 21605(-) | 257 | 22 | 27.425 84 | 9.25 | -0.102 | 28.85 | 68.72 | 2 | 3 | 细胞外 Extracellular |
CeEXPB1 | EVM0002402.1 | chr06:54257974.. 54259186(-) | 290 | - | 29.923 40 | 6.02 | 0.018 | 45.28 | 66.03 | 3 | 4 | 细胞外 Extracellular |
CeEXPB2 | EVM0000778.1 | chr06:54269693.. 54270918(-) | 267 | 27 | 27.980 57 | 8.67 | 0.034 | 45.28 | 66.03 | 3 | 4 | 细胞外 Extracellular |
CeEXPB3 | EVM0011802.1 | chr06:54278359.. 54279577(-) | 260 | 25 | 26.663 96 | 8.39 | 0.079 | 36.77 | 69.50 | 3 | 4 | 细胞外 Extracellular |
CeEXPB4 | EVM0008727.1 | chr06:54293245.. 54294599(-) | 261 | 36 | 27.278 48 | 5.85 | -0.071 | 54.75 | 68.89 | 3 | 4 | 细胞外 Extracellular |
CeEXPB5 | EVM0016278.1 | chr07:142847771.. 142852026(-) | 263 | 27 | 28.890 93 | 8.81 | -0.190 | 48.57 | 70.46 | 3 | 4 | 细胞外 Extracellular |
CeEXLA1 | EVM0003292.1 | chr13:17445338.. 17447787(+) | 262 | 19 | 28.263 43 | 8.55 | 0.043 | 33.82 | 80.04 | 4 | 5 | 细胞外 Extracellular |
CeEXLB1 | EVM0028468.1 | chr01:10814898.. 10817362(-) | 247 | 18 | 16.753 37 | 5.95 | -0.22 | 41.41 | 76.19 | 3 | 4 | 细胞外 Extracellular |
CeEXLB2 | EVM0005790.1 | Contig01299:473365.. 475635(+) | 259 | 25 | 27.487 76 | 4.84 | -0.013 | 35.15 | 76.10 | 4 | 5 | 细胞外 Extracellular |
表2 芋扩展蛋白基因基本理化性质分析
Table 2 Basic physicochemical property of expansin genes in taro
基因名称 Gene names | 基因序列号 Gene ID | 染色体位置 Location | 氨基酸长度 Length of protein/aa | 信号肽 Signal peptide/ aa | 分子量 Molecular weight/ku | 理论等 电点 pI | 总平均疏水性 Grand average of hydropathicity (GRAVY) | 蛋白不 稳定 Instability index (Ⅱ) | 脂溶指数 Aliphatic index (AI) | 内含子 数量 Number of intron | 外显子 数量 Number of exon | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CeEXPA1 | EVM0026182.1 | chr01:200921296.. 200922918(+) | 249 | 23 | 26.432 58 | 8.08 | -0.055 | 35.9 | 67.15 | 2 | 3 | 细胞外 Extracellular |
CeEXPA2 | EVM0012344.1 | chr01:202183325.. 202186948(-) | 257 | 20 | 27.397 03 | 9.03 | 0.011 | 33.44 | 72.53 | 2 | 3 | 细胞外 Extracellular |
CeEXPA3 | EVM0024333.1 | chr05:150932420.. 150934537(+) | 269 | 22 | 29.240 10 | 9.70 | -0.185 | 32.45 | 67.43 | 2 | 3 | 细胞外 Extracellular |
CeEXPA4 | EVM0006021.1 | chr05:170577592.. 170579397(+) | 270 | - | 29.416 22 | 6.43 | -0.203 | 40.65 | 69.07 | 1 | 2 | 细胞外 Extracellular |
CeEXPA5 | EVM0027397.1 | chr05:170583755.. 170584943(-) | 243 | 27 | 25.661 22 | 8.54 | 0.151 | 38.89 | 76.3 | 1 | 2 | 细胞外 Extracellular |
CeEXPA6 | EVM0000590.1 | chr05:170587143.. 170588191(-) | 250 | 24 | 26.582 28 | 9.03 | -0.002 | 32.79 | 71.48 | 1 | 2 | 细胞外 Extracellular |
CeEXPA7 | EVM0018716.1 | chr05:170595320.. 170596335(+) | 251 | 24 | 26.688 49 | 8.98 | -0.031 | 31.42 | 71.16 | 1 | 2 | 细胞外 Extracellular |
CeEXPA8 | EVM0000741.1 | chr05:170597431.. 170598613(+) | 243 | 27 | 25.658 21 | 8.54 | 0.143 | 38.54 | 76.30 | 1 | 2 | 细胞外 Extracellular |
CeEXPA9 | EVM0004428.1 | chr05:24336630.. 24338260(-) | 242 | 23 | 25.840 91 | 8.08 | -0.017 | 37.28 | 65.37 | 2 | 3 | 细胞外 Extracellular |
CeEXPA10 | EVM0003200.1 | chr05:2472822.. 2474110(+) | 247 | 20 | 25.953 08 | 7.58 | 0.039 | 31.64 | 71.13 | 2 | 3 | 细胞外 Extracellular |
CeEXPA11 | EVM0006482.1 | chr06:89724779.. 89726644(+) | 242 | 22 | 25.474 60 | 6.98 | 0.040 | 23.16 | 78.64 | 3 | 4 | 细胞外 Extracellular |
CeEXPA12 | EVM0017929.1 | chr07:145329881.. 145331408(+) | 310 | - | 34.004 85 | 9.13 | -0.358 | 55.08 | 73.03 | 2 | 3 | 细胞外 Extracellular |
CeEXPA13 | EVM0001733.1 | chr07:145471800.. 145473372(+) | 307 | - | 33.605 43 | 8.83 | -0.275 | 53.39 | 73.13 | 3 | 4 | 细胞外 Extracellular |
CeEXPA14 | EVM0014313.1 | chr07:87019796.. 87023201(-) | 287 | - | 31.198 69 | 8.98 | 0.008 | 37.82 | 78.82 | 2 | 3 | 细胞外 Extracellular |
CeEXPA15 | EVM0010866.1 | chr07:88579339.. 88581309(-) | 254 | 25 | 26.939 53 | 8.42 | 0.069 | 51.06 | 72.99 | 2 | 3 | 细胞外 Extracellular |
CeEXPA16 | EVM0014177.1 | chr07:88694369.. 88696346(-) | 254 | 25 | 26.939 53 | 8.42 | 0.069 | 51.06 | 72.99 | 2 | 3 | 细胞外 Extracellular |
CeEXPA17 | EVM0017235.1 | chr08:25144199.. 25146621(-) | 257 | 27 | 28.278 75 | 8.64 | -0.291 | 29.81 | 61.48 | 3 | 4 | 细胞外 Extracellular |
CeEXPA18 | EVM0018313.1 | chr09:153364305.. 153365614(-) | 261 | 33 | 27.892 56 | 9.23 | 0.062 | 35.02 | 61.03 | 2 | 3 | 细胞外 Extracellular |
CeEXPA19 | EVM0012337.1 | chr12:21154444.. 21155548(-) | 285 | 28 | 31.574 69 | 9.01 | -0.354 | 36.61 | 68.81 | 2 | 3 | 细胞外 Extracellular |
CeEXPA20 | EVM0025460.1 | chr13:2511469.. 2512473(+) | 251 | 26 | 26.690 07 | 8.78 | -0.109 | 33.06 | 66.65 | 2 | 3 | 细胞外 Extracellular |
CeEXPA21 | EVM0024521.1 | chr13:6625282.. 6626372(-) | 247 | 26 | 26.799 49 | 9.24 | -0.065 | 25.59 | 71.17 | 2 | 3 | 细胞外 Extracellular |
CeEXPA22 | EVM0003144.1 | chr13:6823896.. 6825773(+) | 259 | 26 | 27.757 24 | 7.48 | -0.074 | 33.97 | 67.53 | 2 | 3 | 细胞外 Extracellular |
CeEXPA23 | EVM0023051.1 | Contig09732:18818.. 21605(-) | 257 | 22 | 27.425 84 | 9.25 | -0.102 | 28.85 | 68.72 | 2 | 3 | 细胞外 Extracellular |
CeEXPB1 | EVM0002402.1 | chr06:54257974.. 54259186(-) | 290 | - | 29.923 40 | 6.02 | 0.018 | 45.28 | 66.03 | 3 | 4 | 细胞外 Extracellular |
CeEXPB2 | EVM0000778.1 | chr06:54269693.. 54270918(-) | 267 | 27 | 27.980 57 | 8.67 | 0.034 | 45.28 | 66.03 | 3 | 4 | 细胞外 Extracellular |
CeEXPB3 | EVM0011802.1 | chr06:54278359.. 54279577(-) | 260 | 25 | 26.663 96 | 8.39 | 0.079 | 36.77 | 69.50 | 3 | 4 | 细胞外 Extracellular |
CeEXPB4 | EVM0008727.1 | chr06:54293245.. 54294599(-) | 261 | 36 | 27.278 48 | 5.85 | -0.071 | 54.75 | 68.89 | 3 | 4 | 细胞外 Extracellular |
CeEXPB5 | EVM0016278.1 | chr07:142847771.. 142852026(-) | 263 | 27 | 28.890 93 | 8.81 | -0.190 | 48.57 | 70.46 | 3 | 4 | 细胞外 Extracellular |
CeEXLA1 | EVM0003292.1 | chr13:17445338.. 17447787(+) | 262 | 19 | 28.263 43 | 8.55 | 0.043 | 33.82 | 80.04 | 4 | 5 | 细胞外 Extracellular |
CeEXLB1 | EVM0028468.1 | chr01:10814898.. 10817362(-) | 247 | 18 | 16.753 37 | 5.95 | -0.22 | 41.41 | 76.19 | 3 | 4 | 细胞外 Extracellular |
CeEXLB2 | EVM0005790.1 | Contig01299:473365.. 475635(+) | 259 | 25 | 27.487 76 | 4.84 | -0.013 | 35.15 | 76.10 | 4 | 5 | 细胞外 Extracellular |
图2 芋扩展蛋白基因的染色体定位 基因密度以热图的形式在染色体呈现,红色和蓝色区域分别表示高、低基因密度。黑线连接表示串联重复基因对。
Fig.2 Distribution of expansin genes on chromosomes in taro The gene density is displayed in the form of heat maps on the chromosomes, high and low gene density are represented by red and blue, respectively. Tandem duplication pairs are represented by the blue lines.
图3 芋、拟南芥、水稻和马铃薯中扩展蛋白基因系统进化树蓝色、红色、黑色和绿色的字体分别代表芋、拟南芥、水稻和马铃薯中的扩展蛋白基因。
Fig.3 The phylogenetic tree of expansin genes in taro, Arabidopsis, rice and potato Blue, red, black and green fonts indicate expansin genes in taro, Arabidopsis, rice and potato.
图4 芋与拟南芥之间的扩展蛋白基因的共线性分析 黑色、红色和绿色的线表示芋与拟南芥之间、芋内和拟南芥内的共线性基因。
Fig.4 Collinearity analysis of expansin genes between taro and Arabidopsis Black, red, and green lines indicate collinear gene pairs between taro and Arabidopsis, taro and taro, and Arabidopsis and Arabidopsis.
图5 扩展蛋白基因在芋不同组织中的转录表达(A)和相对表达量(B)分析 Tuber-S1,球茎膨大前期;Tuber-S2,球茎膨大中期;Tuber-S3,球茎膨大后期。不同小写字母表示不同发育时期芋球茎的相对表达量在0.05水平上的差异显著性。
Fig.5 Transcriptional expression (A) and qRT-PCR (B) analysis of expansin genes in different tissues of taro Tuber-S1, Initiation stage; Tuber-S2, Enlargement stage; Tuber-S3, Maturation stage. Different lowercase letters indicated that the relative expression levels of taro corms at different developmental stages were significantly different at 0.05 level.
[1] | LI Y, JONES L, MCQUEEN-MASON S. Expansins and cell growth[J]. Current Opinion in Plant Biology, 2003, 6(6): 603-610. |
[2] | SAMPEDRO J, COSGROVE D J. The expansin superfamily[J]. Genome Biology, 2005, 6(12): 242. |
[3] | KENDE H, BRADFORD K, BRUMMELL D, et al. Nomenclature for members of the expansin superfamily of genes and proteins[J]. Plant Molecular Biology, 2004, 55(3): 311-314. |
[4] | MCQUEEN-MASON S, DURACHKO D M, COSGROVE D J. Two endogenous proteins that induce cell wall extension in plants[J]. The Plant Cell, 1992, 4(11): 1425-1433. |
[5] | ZHANG W, YAN H W, CHEN W J, et al. Genome-wide identification and characterization of maize expansin genes expressed in endosperm[J]. Molecular Genetics and Genomics, 2014, 289(6): 1061-1074. |
[6] | ZHU Y, WU N N, SONG W L, et al. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies[J]. BMC Plant Biology, 2014, 14: 93. |
[7] | LU Y E, LIU L F, WANG X, et al. Genome-wide identification and expression analysis of the expansin gene family in tomato[J]. Molecular Genetics and Genomics, 2016, 291(2): 597-608. |
[8] | DING A M, MAROWA P, KONG Y Z. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum)[J]. Molecular Genetics and Genomics, 2016, 291(5): 1891-1907. |
[9] | CHEN Y K, ZHANG B, LI C H, et al. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances[J]. PLoS One, 2019, 14(7): e0219837. |
[10] | HOU L, ZHANG Z Y, DOU S H, et al. Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.)[J]. Planta, 2018, 249: 815-829. |
[11] | JIN K M, ZHUO R Y, XU D, et al. Genome-wide identification of the expansin gene family and its potential association with drought stress in moso bamboo[J]. International Journal of Molecular Sciences, 2020, 21(24): 9491. |
[12] | BORDOLOI K, DIHINGIA P, KRISHNATREYA D, et al. Genome-wide identification, characterization and expression analysis of the expansin gene family under drought stress in tea (Camellia sinensis L.)[J]. Plant Science Today, 2021, 8(1): 32-44. |
[13] | 吴涛, 曾妮, 李巍, 等. 甘蓝型油菜扩展蛋白家族的全基因组鉴定及其对缺硼胁迫响应的差异分析[J]. 植物科学学报, 2021, 39(1): 59-75. |
WU T, ZENG N, LI W, et al. Genome-wide identification of the expansin gene family and differences in transcriptional responses to boron deficiency in Brassica napus L[J]. Plant Science Journal, 2021, 39(1): 59-75. (in Chinese with English abstract) | |
[14] | JUNG J, O’DONOGHUE E M, DIJKWEL P P, et al. Expression of multiple expansin genes is associated with cell expansion in potato organs[J]. Plant Science, 2010, 179(1/2): 77-85. |
[15] | 蔡兆琴, 龙婷晞, 肖冬, 等. 甘薯扩展蛋白IbEXPA2基因克隆和表达分析[J]. 分子植物育种, 2023, 21(5): 1401-1407. |
CAI Z Q, LONG T X, XIAO D, et al. Cloning and expression analysis of IbEXPA2 from sweet potato[J]. Molecular Plant Breeding, 2023, 21(5): 1401-1407. (in Chinese with English abstract) | |
[16] | 蔡兆琴, 吴强, 陈慧, 等. 甘薯扩展蛋白基因IbEXPA4的克隆和表达分析[J]. 农业生物技术学报, 2021, 29(10): 1914-1925. |
CAI Z Q, WU Q, CHEN H, et al. Cloning and expression analysis of expansin gene IbEXPA4 in sweet potato(Ipomoea batatas)[J]. Journal of Agricultural Biotechnology, 2021, 29(10): 1914-1925. (in Chinese with English abstract) | |
[17] | LV L M, ZUO D Y, WANG X F, et al. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton[J]. BMC Plant Biology, 2020, DOI:10.21203/rs.2.14830/v4. |
[18] | KULUEV B R, KNYAZEV A B, LEBEDEV Y P, et al. Morphological and physiological characteristics of transgenic tobacco plants expressing expansin genes: AtEXP10 from Arabidopsis and PnEXPA1 from poplar[J]. Russian Journal of Plant Physiology, 2012, 59(1): 97-104. |
[19] | WEI P C, ZHANG X Q, ZHAO P, et al. Regulation of stomatal opening by the guard cell expansin AtEXPA1[J]. Plant Signaling & Behavior, 2011, 6(5): 740-742. |
[20] | 李雪娇, 早浩龙, 卢迎春, 等. 三七Expansin家族基因的鉴定及生物信息分析[J]. 分子植物育种, 2021, 19(19): 6365-6375. |
LI X J, ZAO H L, LU Y C, et al. Identification and bioinformatics analysis of expansin family genes in Panax notoginseng[J]. Molecular Plant Breeding, 2021, 19(19): 6365-6375. (in Chinese with English abstract) | |
[21] | YIN J M, JIANG L, WANG L, et al. A high-quality genome of taro (Colocasia esculenta(L.) Schott), one of the world’s oldest crops[J]. Molecular Ecology Resources, 2021, 21(1): 68-77. |
[22] | MITHARWAL S, KUMAR A, CHAUHAN K, et al. Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: a review[J]. Food Chemistry, 2022, 383: 132406. |
[23] | SÁNCHEZ CHINO X M, CORZO RÍOS L J, JIMÉNEZ MARTÍNEZ C, et al. Nutritional chemical analysis of taro (Colocasia esculenta schott) accessions from the state of Tabasco, Mexico[J]. Agro Productividad, 2021, 14: 173. |
[24] | 荆赞革, 柳李旺, 龚义勤, 等. 萝卜扩展蛋白基因RsEXPB1克隆与表达特征分析[J]. 分子植物育种, 2009, 7(4): 801-805. |
JING Z G, LIU L W, GONG Y Q, et al. Cloning and expression characterization of the expansin gene RsEXPB1 in radish[J]. Molecular Plant Breeding, 2009, 7(4): 801-805. (in Chinese with English abstract) | |
[25] | 郭丽君, 羽健宾, 李钰婷, 等. 氯吡脲对葛根Ptexp1基因表达的影响及其与产量品质形成的关系[J]. 分子植物育种, 2021, 19(3): 840-848. |
GUO L J, YU J B, LI Y T, et al. Effects of CPPU on the expression of Ptexp1 gene and its relationship with yield and quality formation[J]. Molecular Plant Breeding, 2021, 19(3): 840-848. (in Chinese with English abstract) | |
[26] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
[27] | MISTRY J, CHUGURANSKY S, WILLIAMS L, et al. Pfam: the protein families database in 2021[J]. Nucleic Acids Research, 2021, 49(D1): D412-D419. |
[28] | LETUNIC I, KHEDKAR S, BORK P. SMART: recent updates, new developments and status in 2020[J]. Nucleic Acids Research, 2021, 49(D1): D458-D460. |
[29] | WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server[M]//2-D Proteome Analysis Protocols. New Jersey: Humana Press, 2003: 531-552. |
[30] | TEUFEL F, ALMAGRO ARMENTEROS J J, JOHANSEN A R, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models[J]. Nature Biotechnology, 2022, 40(7): 1023-1025. |
[31] | BAILEY T L, JOHNSON J, GRANT C E, et al. The MEME suite[J]. Nucleic Acids Research, 2015, 43(W1): W39-W49. |
[32] | TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. |
[33] | WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. |
[34] | KRZYWINSKI M, SCHEIN J, BIROL I, et al. Circos: an information aesthetic for comparative genomics[J]. Genome Research, 2009, 19(9): 1639-1645. |
[35] | METSALU T, VILO J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap[J]. Nucleic Acids Research, 2015, 43(W1): W566-W570. |
[36] | LALITHA S. Primer premier 5[J]. Biotech Software & Internet Report, 2000, 1(6): 270-272. |
[37] | KAROLINA B A, BRAM V L, DMITRY S, et al. Over-expression of AtEXLA2 alters etiolated Arabidopsis hypocotyl growth[J]. Annals of Botany, 2015, 115(1): 67-80. |
[38] | RIBAS A F, SILVA N V E, DOS SANTOS T B, et al. Regulation of α-expansins genes in Arabidopsis thaliana seeds during post-osmopriming germination[J]. Physiology and Molecular Biology of Plants, 2019, 25(2): 511-522. |
[39] | ILIAS I A, AIRIANAH O B, BAHARUM S N, et al. Transcriptomic data of Arabidopsis thaliana hypocotyl upon suppression of expansin genes[J]. Genomics Data, 2017, 12: 132-133. |
[40] | WIECZOREK K, GOLECKI B, GERDES L, et al. Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana[J]. The Plant Journal, 2006, 48(1): 98-112. |
[41] | 赵美荣. 植物扩展蛋白基因及其表达调控的研究进展[J]. 赤峰学院学报(自然科学版), 2014, 30(14): 1-5. |
ZHAO M R. Research progress of plant expansin gene and its expression regulation[J]. Journal of Chifeng University(Natural Science Edition), 2014, 30(14): 1-5. (in Chinese) | |
[42] | VALDIVIA E R, SAMPEDRO J, LAMB J C, et al. Recent proliferation and translocation of pollen group 1 allergen genes in the maize genome[J]. Plant Physiology, 2007, 143(3): 1269-1281. |
[43] | 施杨, 徐筱, 李昊阳, 等. 水稻扩展蛋白家族的生物信息学分析[J]. 遗传, 2014, 36(8): 809-820. |
SHI Y, XU X, LI H Y, et al. Bioinformatics analysis of the expansin gene family in rice[J]. Hereditas, 2014, 36(8): 809-820. (in Chinese with English abstract) | |
[44] | CHEN S K, REN H Y, LUO Y X, et al. Genome-wide identification of wheat (Triticum aestivum L.) expansin genes and functional characterization of TaEXPB1A[J]. Environmental and Experimental Botany, 2021, 182: 104307. |
[45] | 理向阳, 代丹丹, 杨铁钢, 等. 马铃薯扩展蛋白基因家族的鉴定与表达分析[J]. 华北农学报, 2017, 32(5): 37-44. |
LI X Y, DAI D D, YANG T G, et al. Genome-wide identification and expression analysis of the expansin gene family in potato[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(5): 37-44. (in Chinese with English abstract) | |
[46] | LEE Y, KENDE H. Expression of α-expansin and expansin-like genes in deepwater rice[J]. Plant Physiology, 2002, 130(3): 1396-1405. |
[1] | 唐国亮, 张玉宝, 王若愚, 王亚军, 赵霞, 苏学思, 金卫杰. 魔芋花叶病毒衣壳蛋白的原核表达和多克隆抗体制备[J]. 浙江农业学报, 2022, 34(11): 2471-2481. |
[2] | 尹明华, 曹晴, 陈红, 邓思宇, 邓燕梅. 江西铅山红芽芋和青秆芋的转录组比较分析[J]. 浙江农业学报, 2020, 32(9): 1533-1543. |
[3] | 洪霞, 赵永彬, 屈为栋, 陈银龙, 邱莉萍, 王娇阳. 基于表型性状与简单重复序列标记的浙江省芋种质资源遗传多样性比较[J]. 浙江农业学报, 2020, 32(9): 1544-1554. |
[4] | 赵孟良, 钟启文, 刘明池, 李莉. 二十二份引进菊芋种质资源的叶片性状分析[J]. 浙江农业学报, 2017, 29(7): 1151-1157. |
[5] | 张家洋. 重金属及盐胁迫对绿金合果芋生理特性的影响[J]. 浙江农业学报, 2016, 28(4): 601-. |
[6] | 尹明华,洪森荣*,王艾平,林国卫,王爱斌,柯维忠. 江西铅山红芽芋再生苗遗传稳定性的RAPD分析和流式细胞术检测[J]. 浙江农业学报, 2015, 27(12): 2053-. |
[7] | 马胜超,韩睿,任鹏鸿,杨世鹏,李莉*. 三十份菊芋资源亲缘关系的SRAP分析 [J]. 浙江农业学报, 2014, 26(5): 1212-. |
[8] | 郝艳玲1,刘增1,牟婷婷2,骆跃1. 乌洋芋与紫薯营养成分比较 [J]. 浙江农业学报, 2014, 26(5): 1336-. |
[9] | 赵孟良;韩睿;李莉*. 菊芋不同部位DNA提取的比较研究[J]. , 2013, 25(5): 0-996. |
[10] | 邵雪玲;吴良欢;林钊沐;庄亚其;马建芳;张仁杰. 芋艿残体降解物对芋艿生长、产量和品质的影响[J]. , 2008, 20(6): 0-483. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||