浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1680-1689.DOI: 10.3969/j.issn.1004-1524.20220991
王可1(), 邵烨瑶2, 张培云2, 杜妍纯2, 徐强龙2, 王燕燕2, 阮文斌2, 徐思捷2, 葛杰克2, 叶铎2, 刘鹏2, 邢承华1,*(
)
收稿日期:
2022-07-04
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
王可(1993—),女,浙江金华人,博士研究生,讲师,研究方向为风景园林植物。E-mail: 995374641@qq.com
通讯作者:
*邢承华,E-mail: xingchenghua@hotmail.com
基金资助:
WANG Ke1(), SHAO Yeyao2, ZHANG Peiyun2, DU Yanchun2, XU Qianglong2, WANG Yanyan2, RUAN Wenbin2, XU Sijie2, GE Jieke2, YE Duo2, LIU Peng2, XING Chenghua1,*(
)
Received:
2022-07-04
Online:
2023-07-25
Published:
2023-08-17
Contact:
XING Chenghua
摘要:
为探究接种混合菌株对园林废弃物堆腐的影响,及其产物对植物栽培基质中泥炭的替代效果,选取黄孢原毛平革菌(Phanerochaete chrysosporium)和康氏木霉(Trichoderma koningii)作为供试菌株开展试验。首先,进行两种菌的共生兼容性测试和混菌接种时序优化;然后,针对堆腐中的含水率、接菌量、菌种比例,分别通过单因素试验和响应面分析进行优化,得到最优条件,并在此条件下堆腐,测定堆体温度,以及营养成分和种子发芽指数的变化;最后,将堆腐产物与泥炭按不同比例混合,用于绿萝栽培,培养30 d后,测定其对植株生长和叶绿素含量的影响。结果显示,先接种黄孢原毛平革菌3 d后再接种康氏木霉能提升纤维素降解率和木质素降解率。经过优化的最优发酵条件为含水率60%,接菌量15%,康氏木霉与黄孢原毛平革菌的菌种比例1.1∶2。在此条件下,木质素降解率和纤维素降解率分别达到28.37%、31.56%。堆腐过程中,添加混菌的试验组较不加菌的对照先完成堆腐,且其堆体中的总腐殖酸、碱解氮、有效磷含量均更高,种子发芽指数也更早达到标准要求。与其他处理相比,将泥炭、蛭石与加菌堆腐产物以5∶3∶2的比例混合的基质,更适于种植绿萝,植物的株高、根长、生物量、叶绿素含量更高。综上,向园林废弃物中添加康氏木霉和黄孢原毛平革菌进行发酵,可以更快地实现腐熟,提高堆腐效率和产物质量。将泥炭、蛭石、加菌堆腐产物以5∶3∶2的比例混合,可用于绿萝栽培,并减少泥炭消耗量。
中图分类号:
王可, 邵烨瑶, 张培云, 杜妍纯, 徐强龙, 王燕燕, 阮文斌, 徐思捷, 葛杰克, 叶铎, 刘鹏, 邢承华. 园林废弃物混菌堆腐方法及其产物对泥炭的替代效果研究[J]. 浙江农业学报, 2023, 35(7): 1680-1689.
WANG Ke, SHAO Yeyao, ZHANG Peiyun, DU Yanchun, XU Qianglong, WANG Yanyan, RUAN Wenbin, XU Sijie, GE Jieke, YE Duo, LIU Peng, XING Chenghua. Study on composting method of green waste and its potential in replacing peat[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1680-1689.
序号No. | A | B | C |
---|---|---|---|
1 | -1 | -1 | 0 |
2 | 1 | -1 | 0 |
3 | -1 | 1 | 0 |
4 | 1 | 1 | 0 |
5 | -1 | 0 | -1 |
6 | 1 | 0 | -1 |
7 | -1 | 0 | 1 |
8 | 1 | 0 | 1 |
9 | 0 | -1 | -1 |
10 | 0 | 1 | -1 |
11 | 0 | -1 | 1 |
12 | 0 | 1 | 1 |
13 | 0 | 0 | 0 |
表1 发酵条件优化的Box-Behnken响应面试验设计
Table 1 Box-Behnken response surface experiment design for optimization of fermentation conditions
序号No. | A | B | C |
---|---|---|---|
1 | -1 | -1 | 0 |
2 | 1 | -1 | 0 |
3 | -1 | 1 | 0 |
4 | 1 | 1 | 0 |
5 | -1 | 0 | -1 |
6 | 1 | 0 | -1 |
7 | -1 | 0 | 1 |
8 | 1 | 0 | 1 |
9 | 0 | -1 | -1 |
10 | 0 | 1 | -1 |
11 | 0 | -1 | 1 |
12 | 0 | 1 | 1 |
13 | 0 | 0 | 0 |
图2 不同组合的木质素、纤维素降解率 H3+K6代表接种黄孢原毛平革菌培养3 d后接种康氏木霉培养6 d。其余依此类似。H16、K16分别代表单独接种黄孢原毛平革菌、康氏木霉培养16 d。同一指标下柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.2 Degradation rate of lignin and cellulose under different combinations H3+K6 stands for inoculation of Trichoderma koningii for 6 days after inoculation of Phanerochaete chrysosporium for 3 days. The rest could be deduced by analogy. H16, K16 stands for single inoculation of Phanerochaete chrysosporium or Trichoderma koningii for 16 days. Bars marked without the same letters indicate significant difference within treatments at P<0.05 under the same index.
因素 Factor | 水平 Level | 纤维素降解率 Cellulose degradation rate/% | 木质素降解率 Lignin degradation rate/% |
---|---|---|---|
含水率 | 70 | 25.57±0.40 b | 23.14±0.25 b |
Water content/% | 65 | 25.85±0.10 ab | 23.38±0.12 b |
60 | 26.16±0.12 a | 25.28±0.31 a | |
55 | 24.37±0.30 c | 22.58±0.30 c | |
50 | 22.74±0.17 d | 20.23±0.16 d | |
接菌量 | 0 | 22.76±0.18 e | 21.38±0.33 d |
Inoculation | 10 | 25.57±0.05 b | 23.13±0.24 b |
amount/% | 12 | 23.52±0.29 d | 22.49±0.34 c |
14 | 26.24±0.16 a | 24.74±0.28 a | |
16 | 24.47±0.11 c | 23.65±0.07 b | |
18 | 22.73±0.32 f | 22.84±0.13 c | |
20 | 22.56±0.18 f | 21.29±0.28 d | |
菌种比例 | 1.5∶2 | 24.37±0.12 b | 21.06±0.26 d |
Ratio of strains | 1.3∶2 | 25.26±0.10 b | 21.32±0.33 d |
1.1∶2 | 27.24±0.16 a | 24.51±0.33 a | |
0.9∶2 | 25.07±0.13 b | 22.12±0.08 c | |
0.7∶2 | 24.96±0.23 b | 23.98±0.29 b | |
0.5∶2 | 22.76±0.27 c | 20.67±0.15 e |
表2 单因素试验下不同水平对木质素、纤维素降解率的影响
Table 2 Influence of factor levels on degradation rates of lignin and cellulose under single-factor experiments
因素 Factor | 水平 Level | 纤维素降解率 Cellulose degradation rate/% | 木质素降解率 Lignin degradation rate/% |
---|---|---|---|
含水率 | 70 | 25.57±0.40 b | 23.14±0.25 b |
Water content/% | 65 | 25.85±0.10 ab | 23.38±0.12 b |
60 | 26.16±0.12 a | 25.28±0.31 a | |
55 | 24.37±0.30 c | 22.58±0.30 c | |
50 | 22.74±0.17 d | 20.23±0.16 d | |
接菌量 | 0 | 22.76±0.18 e | 21.38±0.33 d |
Inoculation | 10 | 25.57±0.05 b | 23.13±0.24 b |
amount/% | 12 | 23.52±0.29 d | 22.49±0.34 c |
14 | 26.24±0.16 a | 24.74±0.28 a | |
16 | 24.47±0.11 c | 23.65±0.07 b | |
18 | 22.73±0.32 f | 22.84±0.13 c | |
20 | 22.56±0.18 f | 21.29±0.28 d | |
菌种比例 | 1.5∶2 | 24.37±0.12 b | 21.06±0.26 d |
Ratio of strains | 1.3∶2 | 25.26±0.10 b | 21.32±0.33 d |
1.1∶2 | 27.24±0.16 a | 24.51±0.33 a | |
0.9∶2 | 25.07±0.13 b | 22.12±0.08 c | |
0.7∶2 | 24.96±0.23 b | 23.98±0.29 b | |
0.5∶2 | 22.76±0.27 c | 20.67±0.15 e |
t/d | 总腐殖酸 Total humic acid/% | 有效磷 Available phosphorus/(mg·kg-1) | 碱解氮 Available nitrogen/(mg·kg-1) | 发芽指数 Germination index/% | ||||
---|---|---|---|---|---|---|---|---|
试验组 Test group | 对照组 CK | 试验组 Test group | 对照组 CK | 试验组 Test group | 对照组 CK | 试验组 Test group | 对照组 CK | |
0 | 14.10±0.33 a | 14.07±0.06 a | 280.89±2.47 a | 280.59±1.53 a | 80.97±0.23 a | 80.97±0.23 a | — | — |
5 | 12.58±0.09 a | 12.48±0.04 a | 306.99±1.92 a | 283.12±1.92 b | 93.57±0.84 a | 87.97±0.84 b | 14.83±0.66 a | 4.66±0.18 b |
10 | 11.65±0.09 b | 12.66±0.09 a | 321.65±2.17 a | 289.95±1.99 b | 97.30±0.70 a | 91.23±0.40 b | 36.39±1.06 a | 10.25±0.59 b |
15 | 13.10±0.07 a | 11.93±0.09 b | 362.95±8.33 a | 293.33±2.80 b | 97.77±0.81 a | 94.87±1.07 b | 60.29±0.62 a | 54.86±0.64 b |
20 | 14.35±0.13 a | 13.27±0.03 b | 340.38±9.08 a | 318.04±1.80 a | 95.20±1.40 a | 93.10±0.40 a | 59.28±0.82 a | 57.57±0.75 a |
25 | 15.17±0.07 a | 13.72±0.09 b | 348.13±3.97 a | 303.62±3.19 b | 97.07±0.23 a | 93.33±0.62 b | 85.50±0.64 a | 74.18±0.61 b |
30 | 15.79±0.09 a | 14.24±0.04 b | 343.07±7.09 a | 307.45±2.49 b | 95.90±0.70 a | 89.60±0.70 b | 92.88±0.93 a | 86.77±0.93 b |
表3 堆腐过程中物料营养成分与发芽指数的变化
Table 3 Changes of nutrients and germination index during composting
t/d | 总腐殖酸 Total humic acid/% | 有效磷 Available phosphorus/(mg·kg-1) | 碱解氮 Available nitrogen/(mg·kg-1) | 发芽指数 Germination index/% | ||||
---|---|---|---|---|---|---|---|---|
试验组 Test group | 对照组 CK | 试验组 Test group | 对照组 CK | 试验组 Test group | 对照组 CK | 试验组 Test group | 对照组 CK | |
0 | 14.10±0.33 a | 14.07±0.06 a | 280.89±2.47 a | 280.59±1.53 a | 80.97±0.23 a | 80.97±0.23 a | — | — |
5 | 12.58±0.09 a | 12.48±0.04 a | 306.99±1.92 a | 283.12±1.92 b | 93.57±0.84 a | 87.97±0.84 b | 14.83±0.66 a | 4.66±0.18 b |
10 | 11.65±0.09 b | 12.66±0.09 a | 321.65±2.17 a | 289.95±1.99 b | 97.30±0.70 a | 91.23±0.40 b | 36.39±1.06 a | 10.25±0.59 b |
15 | 13.10±0.07 a | 11.93±0.09 b | 362.95±8.33 a | 293.33±2.80 b | 97.77±0.81 a | 94.87±1.07 b | 60.29±0.62 a | 54.86±0.64 b |
20 | 14.35±0.13 a | 13.27±0.03 b | 340.38±9.08 a | 318.04±1.80 a | 95.20±1.40 a | 93.10±0.40 a | 59.28±0.82 a | 57.57±0.75 a |
25 | 15.17±0.07 a | 13.72±0.09 b | 348.13±3.97 a | 303.62±3.19 b | 97.07±0.23 a | 93.33±0.62 b | 85.50±0.64 a | 74.18±0.61 b |
30 | 15.79±0.09 a | 14.24±0.04 b | 343.07±7.09 a | 307.45±2.49 b | 95.90±0.70 a | 89.60±0.70 b | 92.88±0.93 a | 86.77±0.93 b |
处理 Treatment | 株高 Plant height/cm | 根长 Root length/cm | 单株鲜重 Fresh weight per plant/g | 单株干重 Dry weight per plant/g | 叶绿素a含量 Content of chlorophyll a/(mg·g-1) | 叶绿素b含量 Content of chlorophyll b/(mg·g-1) | 叶绿素(a+b)含量 Content of chlorophyll (a+b)/(mg·g-1) |
---|---|---|---|---|---|---|---|
J1 | 26.10±0.38 a | 23.17±0.38 a | 56.81±0.47 a | 3.19±0.32 a | 0.73±0.03 a | 0.23±0.01 b | 0.96±0.04 a |
J2 | 22.87±0.45 b | 18.50±0.70 c | 50.54±0.49 c | 2.58±0.16 bc | 0.50±0.02 c | 0.14±0.01 c | 0.64±0.03 c |
CK1 | 25.43±0.27 a | 21.37±0.18 b | 54.13±0.50 b | 3.12±0.38 a | 0.58±0.02 b | 0.29±0.02 a | 0.87±0.03 b |
CK2 | 21.47±0.18 c | 18.50±0.31 c | 48.84±0.34 c | 2.37±0.32 c | 0.42±0.02 d | 0.09±0.01 e | 0.51±0.03 d |
CK3 | 23.13±0.52 b | 21.23±0.47 b | 51.33±0.38 b | 2.76±1.20 b | 0.42±0.02 d | 0.12±0.01 d | 0.54±0.02 d |
表4 不同处理对植物生长指标和叶绿素含量的影响
Table 4 Effect of different treatments on growth index and chlorophyll content
处理 Treatment | 株高 Plant height/cm | 根长 Root length/cm | 单株鲜重 Fresh weight per plant/g | 单株干重 Dry weight per plant/g | 叶绿素a含量 Content of chlorophyll a/(mg·g-1) | 叶绿素b含量 Content of chlorophyll b/(mg·g-1) | 叶绿素(a+b)含量 Content of chlorophyll (a+b)/(mg·g-1) |
---|---|---|---|---|---|---|---|
J1 | 26.10±0.38 a | 23.17±0.38 a | 56.81±0.47 a | 3.19±0.32 a | 0.73±0.03 a | 0.23±0.01 b | 0.96±0.04 a |
J2 | 22.87±0.45 b | 18.50±0.70 c | 50.54±0.49 c | 2.58±0.16 bc | 0.50±0.02 c | 0.14±0.01 c | 0.64±0.03 c |
CK1 | 25.43±0.27 a | 21.37±0.18 b | 54.13±0.50 b | 3.12±0.38 a | 0.58±0.02 b | 0.29±0.02 a | 0.87±0.03 b |
CK2 | 21.47±0.18 c | 18.50±0.31 c | 48.84±0.34 c | 2.37±0.32 c | 0.42±0.02 d | 0.09±0.01 e | 0.51±0.03 d |
CK3 | 23.13±0.52 b | 21.23±0.47 b | 51.33±0.38 b | 2.76±1.20 b | 0.42±0.02 d | 0.12±0.01 d | 0.54±0.02 d |
[1] | 卢燕, 居萍. 园林绿化废弃物资源化利用途径[J]. 绿色科技, 2021, 23(15): 65-67. |
LU Y, JU P. Ways of resource utilization of landscaping waste[J]. Journal of Green Science and Technology, 2021, 23(15): 65-67. (in Chinese with English abstract) | |
[2] | 刘瑜, 赵佳颖, 周晚来, 等. 城市园林废弃物资源化利用研究进展[J]. 环境科学与技术, 2020, 43(4): 32-38. |
LIU Y, ZHAO J Y, ZHOU W L, et al. Progress on resource utilization of urban garden waste[J]. Environmental Science & Technology, 2020, 43(4): 32-38. (in Chinese with English abstract) | |
[3] | 戴小红, 黄鹂鸣. 蚯蚓粪配比的泥炭基质特性及其栽培的小型西瓜幼苗生长状况[J]. 热带作物学报, 2019, 40(9): 1685-1692. |
DAI X H, HUANG L M. Properties of peat based substrates mixed with vermicompost and growth of mini-watermelon seedlings cultivated in the mixed substrates[J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1685-1692. (in Chinese with English abstract) | |
[4] | 赵霞, 胡自航, 郑景明, 等. 污泥与园林废弃物混合堆肥对波斯菊生长及重金属积累的影响[J]. 生态学杂志, 2019, 38(3): 810-817. |
ZHAO X, HU Z H, ZHENG J M, et al. Effects of mixed compost of sewage sludge and green waste on growth and heavy metal accumulation of Cosmos bipinnatus[J]. Chinese Journal of Ecology, 2019, 38(3): 810-817. (in Chinese with English abstract) | |
[5] | HEMATI A, ALIASGHARZAD N, KHAKVAR R, et al. Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production[J]. Waste Management, 2021, 119: 122-134. |
[6] | WANG J Q, SUZUKI T, MORI T, et al. Transcriptomics analysis reveals the high biodegradation efficiency of white-rot fungus Phanerochaete sordida YK-624 on native lignin[J]. Journal of Bioscience and Bioengineering, 2021, 132(3): 253-257. |
[7] | 王占军. 不同添加剂对园林废弃物堆肥的影响研究[D]. 大连: 大连理工大学, 2019. |
WANG Z J. Study of different agent effect on the green waste composting[D]. Dalian: Dalian University of Technology, 2019. (in Chinese with English abstract) | |
[8] | 焦有宙, 高赞, 李刚, 等. 不同土著菌及其复合菌对玉米秸秆降解的影响[J]. 农业工程学报, 2015, 31(23): 201-207. |
JIAO Y Z, GAO Z, LI G, et al. Effect of different indigenous microorganisms and its composite microbes on degradation of corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 201-207. (in Chinese with English abstract) | |
[9] | 高晓梅, 刘晓辉, 桓明辉, 等. 木霉菌和白腐菌对水稻秸秆降解的影响[J]. 山东农业科学, 2012, 44(11): 78-80. |
GAO X M, LIU X H, HUAN M H, et al. Effects of Trichoderma koningii and Phanerochaete chrysosporium on degradation of rice straw[J]. Shandong Agricultural Sciences, 2012, 44(11): 78-80. (in Chinese with English abstract) | |
[10] | 韦宜慧, 农春兰, 周明晟, 等. 有机废弃物堆肥在桉树容器苗生产中的应用效果[J]. 中南林业科技大学学报, 2021, 41(10): 83-89. |
WEI Y H, NONG C L, ZHOU M S, et al. Application of organic waste compost in Eucalyptus container seedlings[J]. Journal of Central South University of Forestry & Technology, 2021, 41(10): 83-89. (in Chinese with English abstract) | |
[11] | LI Y S, SUN B, DENG T Y, et al. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112497. |
[12] | 陈霜. 低纤维素植物原料化学成分定量分析方法研究[D]. 上海: 东华大学, 2017. |
CHEN S. Quantitative analysis of chemical compositions of low cellulosic plant materials[D]. Shanghai: Donghua University, 2017. (in Chinese with English abstract) | |
[13] | 沈志群, 张琪, 刘琳娟, 等. 碳酸氢钠浸提-钼锑抗分光光度法测定土壤中的有效磷[J]. 环境监控与预警, 2011, 3(5): 12-15. |
SHEN Z Q, ZHANG Q, LIU L J, et al. Determination of available phosphorus in soil by sodium bicarbonate extraction Mo-Sb anti-spectrophotometry method[J]. Environmental Monitoring and Forewarning, 2011, 3(5): 12-15. (in Chinese with English abstract) | |
[14] | PIRI M, SEPEHR E, RENGEL Z. Citric acid decreased and humic acid increased Zn sorption in soils[J]. Geoderma, 2019, 341: 39-45. |
[15] | JIN M Y, LI X H, LI F Z, et al. Effects of mixed saline-alkali stress on germination of rice[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 566-574. |
[16] | 胡秉芬, 黄华梨, 季元祖, 等. 分光光度法测定叶绿素含量的提取液的适宜浓度[J]. 草业科学, 2018, 35(8): 1965-1974. |
HU B F, HUANG H L, JI Y Z, et al. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry[J]. Pratacultural Science, 2018, 35(8): 1965-1974. (in Chinese with English abstract) | |
[17] | MILINKOVIĆ M, LALEVIĆ B, JOVIČIĆ-PETROVIĆ J, et al. Biopotential of compost and compost products derived from horticultural waste: effect on plant growth and plant pathogens’ suppression[J]. Process Safety and Environmental Protection, 2019, 121: 299-306. |
[18] | ZHOU G P, CAO W D, BAI J S, et al. Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen (N) and reduce carbon and N losses: an incubation study[J]. Pedosphere, 2020, 30(5): 661-670. |
[19] | 曲继松, 张丽娟, 朱倩楠, 等. 微生物菌剂对枸杞枝条粉发酵堆体腐熟效果的影响[J]. 环境科学研究, 2019, 32(2): 332-339. |
QU J S, ZHANG L J, ZHU Q N, et al. Effect of microbial inoculum on the humification degree of Lycium barbarum L.branches powder substrate fermentation[J]. Research of Environmental Sciences, 2019, 32(2): 332-339. (in Chinese with English abstract) | |
[20] | 王永泽, 王实玉, 陈雄. 康氏木霉和白腐菌混菌处理稻草桔杆的研究[C]//2008年生物产业技术研讨会论文集. 北京: 中国生物工程学会, 2008: 192-196. |
[21] | 杨琴, 杜双田, 张桂香. 环境因素对大肥蘑菇菌丝生长的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(3): 128-133. |
YANG Q, DU S T, ZHANG G X. Effect of environmental factors on growth of Agaricus bitorquis mycelium[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46(3): 128-133. (in Chinese with English abstract) | |
[22] | 黄磊, 刘玫, 浦媛媛, 等. 食用菌固体培养基的开发与应用综述[J]. 湖北农业科学, 2013, 52(10): 2246-2249. |
HUANG L, LIU M, PU Y Y, et al. Review on the development and application of edible fungus solid culture medium[J]. Hubei Agricultural Sciences, 2013, 52(10): 2246-2249. (in Chinese with English abstract) | |
[23] | YAN Z Y, SONG Z L, LI D, et al. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw[J]. Bioresource Technology, 2015, 177: 266-273. |
[24] | 杨立敏. 污泥堆肥过程温度与酶活性动态变化规律研究[J]. 广东化工, 2020, 47(16): 134-136. |
YANG L M. Temperature and enzyme activity dynamic changes during sewage sludge composting[J]. Guangdong Chemical Industry, 2020, 47(16): 134-136. (in Chinese with English abstract) | |
[25] | 李瑞琴, 徐瑞, 于安芬, 等. 基于微生物发酵的废弃菜叶无害化处理及腐熟安全性评价[J]. 水土保持通报, 2019, 39(3): 163-169. |
LI R Q, XU R, YU A F, et al. Harmless treatment and composting safety evaluation of discarded cabbage based on microbial fermentation[J]. Bulletin of Soil and Water Conservation, 2019, 39(3): 163-169. (in Chinese with English abstract) | |
[26] | GUO X X, LIU H T, WU S B. Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functions[J]. Science of the Total Environment, 2019, 662: 501-510. |
[27] | 吴华山, 常志州, 靳红梅, 等. 不同腐熟度猪粪、奶牛粪在小白菜和香瓜上施用的农学效应研究[J]. 农业资源与环境学报, 2014, 31(5): 417-424. |
WU H S, CHANG Z Z, JIN H M, et al. Agricultural effects of application of pig manure and cow manure composts with different maturity extent on seedling of Chinese cabbage and muskmelon[J]. Journal of Agricultural Resources and Environment, 2014, 31(5): 417-424. (in Chinese with English abstract) | |
[28] | 黄红英, 孙恩惠, 武国峰, 等. 麦秸秸秆花盆堆肥化研究及评价[J]. 农业环境科学学报, 2015, 34(12): 2386-2393. |
HUANG H Y, SUN E H, WU G F, et al. Composting of wheat straw flowerpots and its evaluation[J]. Journal of Agro-Environment Science, 2015, 34(12): 2386-2393. (in Chinese with English abstract) | |
[29] | 王国英, 袁京, 孔艺霖, 等. 堆肥种子发芽指数测定方法与敏感性种子筛选[J]. 农业工程学报, 2021, 37(19): 220-227. |
WANG G Y, YUAN J, KONG Y L, et al. Determination of seed germination index and selection of sensitive seeds for phytotoxicity evaluation of composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 220-227. (in Chinese with English abstract) | |
[30] | 付冰妍, 孙向阳, 余克非, 等. 降解园林废弃物专用固体复合菌的构建及其堆肥效应研究[J]. 环境科学研究, 2021, 34(5): 1231-1237. |
FU B Y, SUN X Y, YU K F, et al. Construction of solid composite inoculum for green waste degradation and its effect on composting[J]. Research of Environmental Sciences, 2021, 34(5): 1231-1237. (in Chinese with English abstract) | |
[31] | WANG Y C, VILLAMIL M B, DAVIDSON P C, et al. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis[J]. Science of the Total Environment, 2019, 685: 741-752. |
[32] | 铁得祥, 胡红玲, 喻秀艳, 等. 桢楠幼树光合特性对镉胁迫的响应[J]. 生态学报, 2020, 40(11): 3738-3746. |
TIE D X, HU H L, YU X Y, et al. Responses of photosynthetic characteristics and chlorophyll fluorescence parameters of Phoebe zhennan saplings to cadmium stress[J]. Acta Ecologica Sinica, 2020, 40(11): 3738-3746. (in Chinese with English abstract) | |
[33] | 庾富文, 周俊辉, 袁丽珍, 等. 园林废弃物堆腐产品在花卉基质栽培中的应用研究[J]. 广东农业科学, 2019, 46(9): 47-55. |
YU F W, ZHOU J H, YUAN L Z, et al. Application of garden waste composting products in flower substrate cultivation[J]. Guangdong Agricultural Sciences, 2019, 46(9): 47-55. (in Chinese with English abstract) | |
[34] | 余韵, 刘勇, 烟亚萍, 等. 园林废弃物堆肥对楸树苗木生长和养分状况的影响[J]. 福建农林大学学报(自然科学版), 2020, 49(4): 492-497. |
YU Y, LIU Y, YAN Y P, et al. Effects of garden waste compost on the growth and nutrient status of Catalpa bungei seedlings[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2020, 49(4): 492-497. (in Chinese with English abstract) | |
[35] | 魏乐, 李素艳, 李燕, 等. 园林废弃物堆肥替代泥炭用于天竺葵和金盏菊栽培[J]. 浙江农林大学学报, 2016, 33(5): 849-854. |
WEI L, LI S Y, LI Y, et al. Growth of Pelargonium zonale and Calendula officinalis when utilizing green waste compost as a peat substitute[J]. Journal of Zhejiang A & F University, 2016, 33(5): 849-854. (in Chinese with English abstract) |
[1] | 周文志, 李素艳, 孙向阳, 李啸冲, 查贵超, 魏宁娴. 不同改良材料对滨海盐碱土盐分淋溶特征的影响[J]. 浙江农业学报, 2022, 34(7): 1485-1492. |
[2] | 朱诗君, 金树权, 汪峰, 韩永江, 孙杰. 典型城市废弃物混合好氧堆肥的基本特征及其育苗应用潜力[J]. 浙江农业学报, 2021, 33(6): 1069-1077. |
[3] | 李倩, 许之扬, 阮文权. 黄孢原毛平革菌后处理深度提升醋糟产甲烷潜力[J]. 浙江农业学报, 2020, 32(5): 904-911. |
[4] | 周文志, 孙向阳, 李素艳, 张乐. 生物有机材料对滨海盐碱土的改良效果[J]. 浙江农业学报, 2019, 31(4): 607-615. |
[5] | 李艳丽1,2,陈列忠1,2,*,陶瑛妮3. 黄孢原毛平革菌茶皂素脱色酶的粗分离及酶学性质[J]. 浙江农业学报, 2014, 26(4): 976-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||