浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 630-638.DOI: 10.3969/j.issn.1004-1524.2023.03.16
收稿日期:
2022-04-22
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
*毛碧增,E-mail:maobz@zju.edu.cn
作者简介:
冯林(1994—),男,云南昆明人,硕士研究生,研究方向为温郁金细菌性枯萎病的综合防治。E-mail:21716411@zju.edu.cn
基金资助:
FENG Lin(), ZHOU Quan, CHEN Weiliang, MAO Bizeng*(
)
Received:
2022-04-22
Online:
2023-03-25
Published:
2023-04-07
摘要:
茄科劳尔氏菌(Ralstonia solanaceraum)引起的温郁金(Curcuma wenyujin Y.H.Chen et C.Ling)细菌性枯萎病是目前温郁金种植中的毁灭性病害。本文利用2株高效拮抗菌Paenibacillus jamila ZJU-C612-3和Bacillus amyloliquefaciens ZJU-C612-4研制生物有机肥,并进行田间防治效果试验。温室盆栽试验结果显示,施生物有机肥的温郁金发病率下降了60百分点;田间试验显示,每667 m2施200 kg生物有机肥作为基肥的田块中,健康根茎的发病率降低17.66百分点,且植株生长健壮。此外,施生物有机肥能缓解温郁金的连作障碍,在5 a连作田块施该肥后,在病害高发期的7月和8月,连作根茎的发病率分别下降9.43百分点和19.75百分点。研究结果可为今后防治温郁金细菌性枯萎病的专用生物有机肥的产业化开发提供依据。
中图分类号:
冯林, 周铨, 陈卫良, 毛碧增. 防控温郁金细菌性枯萎病的生物有机肥研制与应用[J]. 浙江农业学报, 2023, 35(3): 630-638.
FENG Lin, ZHOU Quan, CHEN Weiliang, MAO Bizeng. Development and application of bio-organic fertilizers for prevention and control of bacterial wilt of Curcuma wenyujin[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 630-638.
图1 不同拮抗菌对茄科劳尔氏菌的平板抑制效果 柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.1 Inhibition effect of antagonistic bacteria on Ralstonia solanaceraum Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
质荷比 Mass-to- charge ratio | 离子型 Ionic type | 化合物 Compound | P. jamilae ZJU-C612-3 |
---|---|---|---|
883.56 | [M+H]+ | C15 Fusaricidin A | + |
897.58 | [M+H]+ | C15 Fusaricidin B | + |
911.59 | [M+H]+ | C15 Fusaricidin E | + |
925.61 | [M+H]+ | C15 Fusaricidin F | + |
947.56 | [M+H]+ | C15 Fusaricidin C | + |
961.57 | [M+H]+ | C15 Fusaricidin D | + |
975.59 | [M+H]+ | C15 Fusaricidin G | + |
931.56 | [M+H]+ | C15 Fusaricidin H | + |
945.58 | [M+H]+ | C15 Fusaricidin I | + |
959.90 | [M+H]+ | C15 Fusaricidin J | + |
939.62 | [M+H]+ | C17 Fusaricidin E | + |
953.64 | [M+H]+ | C17 Fusaricidin F | — |
957.59 | [M+H]+ | C17 Fusaricidin C | — |
989.60 | [M+H]+ | C17 Fusaricidin D | + |
1003.62 | [M+H]+ | C17 Fusaricidin G | — |
973.61 | [M+H]+ | C15 Fusaricidin I | + |
987.62 | [M+H]+ | C15 Fusaricidin J | — |
981.67 | [M+H]+ | C18 Fusaricidin F | — |
1 017.63 | [M+H]+ | C18 Fusaricidin D | — |
1 031.65 | [M+H]+ | C18 Fusaricidin G | — |
1 001.64 | [M+H]+ | C18 Fusaricidin I | + |
1015.65 | [M+H]+ | C18 Fusaricidin J | — |
919.8 | [M+Na]+ | Fusaricidin B | + |
935.8 | [M+K]+ | Fusaricidin B | + |
961.9 | [M+H]+ | FusaricidinD | + |
968.9 | [M+H]+ | NI | + |
1 191.9 | [M+H]+ | C9 Polymyxin P | + |
1 213.9 | [M+Na]+ | C9 Polymyxin P | — |
1 203.9 | [M+H]+ | C9 Polymyxin B | — |
1 225.9 | [M+Na]+ | C9 Polymyxin B | — |
表1 类芽孢杆菌ZJU-C612-3杀镰孢菌素和多粘菌素检测结果
Table 1 Fusaricidins and polymyxin detected in surface extracts of P. jamilae ZJU-C612-3 by MALDI-TOF MS
质荷比 Mass-to- charge ratio | 离子型 Ionic type | 化合物 Compound | P. jamilae ZJU-C612-3 |
---|---|---|---|
883.56 | [M+H]+ | C15 Fusaricidin A | + |
897.58 | [M+H]+ | C15 Fusaricidin B | + |
911.59 | [M+H]+ | C15 Fusaricidin E | + |
925.61 | [M+H]+ | C15 Fusaricidin F | + |
947.56 | [M+H]+ | C15 Fusaricidin C | + |
961.57 | [M+H]+ | C15 Fusaricidin D | + |
975.59 | [M+H]+ | C15 Fusaricidin G | + |
931.56 | [M+H]+ | C15 Fusaricidin H | + |
945.58 | [M+H]+ | C15 Fusaricidin I | + |
959.90 | [M+H]+ | C15 Fusaricidin J | + |
939.62 | [M+H]+ | C17 Fusaricidin E | + |
953.64 | [M+H]+ | C17 Fusaricidin F | — |
957.59 | [M+H]+ | C17 Fusaricidin C | — |
989.60 | [M+H]+ | C17 Fusaricidin D | + |
1003.62 | [M+H]+ | C17 Fusaricidin G | — |
973.61 | [M+H]+ | C15 Fusaricidin I | + |
987.62 | [M+H]+ | C15 Fusaricidin J | — |
981.67 | [M+H]+ | C18 Fusaricidin F | — |
1 017.63 | [M+H]+ | C18 Fusaricidin D | — |
1 031.65 | [M+H]+ | C18 Fusaricidin G | — |
1 001.64 | [M+H]+ | C18 Fusaricidin I | + |
1015.65 | [M+H]+ | C18 Fusaricidin J | — |
919.8 | [M+Na]+ | Fusaricidin B | + |
935.8 | [M+K]+ | Fusaricidin B | + |
961.9 | [M+H]+ | FusaricidinD | + |
968.9 | [M+H]+ | NI | + |
1 191.9 | [M+H]+ | C9 Polymyxin P | + |
1 213.9 | [M+Na]+ | C9 Polymyxin P | — |
1 203.9 | [M+H]+ | C9 Polymyxin B | — |
1 225.9 | [M+Na]+ | C9 Polymyxin B | — |
质荷比 Mass-to- charge ratio | 离子型 Ionic type | 化合物 Compound | B. amyloli- quefaciens ZJU-C612-4 |
---|---|---|---|
1 045.693 | [M+K]+ | C13 Surfactin | — |
1 060.793 | [M+K]+ | C14 Surfactin | + |
1 069.694 | [M+K]+ | C14 Bacillomycin D | + |
1 075.861 | [M+K]+ | C15 Surfactin | + |
1 083.742 | [M+K]+ | C15 Bacillomycin D | + |
1 097.788 | [M+K]+ | C16 Bacillomycin D | + |
1 109.733 | [M+K]+ | C16 Bacillomycin F | + |
1 436.194 | [M+H]+ | C14 Fengycin | — |
1 466.251 | NI | NI | + |
1 478.274 | [M+H]+ | C17 Fengycin A | + |
1 502.230 | [M+K]+ | C16 Fengycin A | + |
1 516.267 | [M+K]+ | C17 Fengycin A | + |
1 529.8 | [M+K]+ | C18 Fengycin A | + |
1 557.8 | [M+K]+ | C20 Fengycin A | + |
表2 解淀粉芽孢杆菌ZJU-C612-4环脂肽类物质检测结果
Table 2 Assignments of cyclodepsipeptides detected in surface extracts of B. amyloliquefaciens ZJU-C612-4
质荷比 Mass-to- charge ratio | 离子型 Ionic type | 化合物 Compound | B. amyloli- quefaciens ZJU-C612-4 |
---|---|---|---|
1 045.693 | [M+K]+ | C13 Surfactin | — |
1 060.793 | [M+K]+ | C14 Surfactin | + |
1 069.694 | [M+K]+ | C14 Bacillomycin D | + |
1 075.861 | [M+K]+ | C15 Surfactin | + |
1 083.742 | [M+K]+ | C15 Bacillomycin D | + |
1 097.788 | [M+K]+ | C16 Bacillomycin D | + |
1 109.733 | [M+K]+ | C16 Bacillomycin F | + |
1 436.194 | [M+H]+ | C14 Fengycin | — |
1 466.251 | NI | NI | + |
1 478.274 | [M+H]+ | C17 Fengycin A | + |
1 502.230 | [M+K]+ | C16 Fengycin A | + |
1 516.267 | [M+K]+ | C17 Fengycin A | + |
1 529.8 | [M+K]+ | C18 Fengycin A | + |
1 557.8 | [M+K]+ | C20 Fengycin A | + |
项目名称 Entry name | NY884—2012规定指标 NY884—2012 specified indicators | NY525—2012规定指标 NY525—2012 specified indicators | 生物有机肥实测指标 Bio organic fertilizer index |
---|---|---|---|
有效活菌数Effective viable count/(108 g-1) | ≥0.2 | — | 10 |
有机质(以烘干计)Organic matter/% | ≥40 | ≥45 | 54.40 |
总养分(N+P2O5+K2O) Total nutrient/% | — | ≥5 | 2.40+3.28+1.78 |
水分Water content/% | ≤30 | ≤30 | 19.30 |
pH | 5.5~8.5 | 5.5~8.5 | 6.9 |
总砷(以干基计)As/(mg·kg-1) | ≤15 | ≤15 | 3.40 |
总汞(以干基计)Hg/(mg·kg-1) | ≤2 | ≤2 | 0.10 |
总铅(以干基计)Pb/(mg·kg-1) | ≤50 | ≤50 | 12.20 |
总镉(以干基计)Cd/(mg·kg-1) | ≤3 | ≤3 | 0.30 |
总铬(以干基计)Cr/(mg·kg-1) | ≤150 | ≤150 | 57.60 |
粪大肠埃希菌群Fecal coliform/g-1 | ≤100 | ≤100 | <0.3 |
蛔虫卵死亡率Ascaris egg mortality/% | ≥95 | ≥95 | 100.00 |
表3 生物有机肥的成分指标分析
Table 3 Analysis of the component indexes of bio-organic fertilizer
项目名称 Entry name | NY884—2012规定指标 NY884—2012 specified indicators | NY525—2012规定指标 NY525—2012 specified indicators | 生物有机肥实测指标 Bio organic fertilizer index |
---|---|---|---|
有效活菌数Effective viable count/(108 g-1) | ≥0.2 | — | 10 |
有机质(以烘干计)Organic matter/% | ≥40 | ≥45 | 54.40 |
总养分(N+P2O5+K2O) Total nutrient/% | — | ≥5 | 2.40+3.28+1.78 |
水分Water content/% | ≤30 | ≤30 | 19.30 |
pH | 5.5~8.5 | 5.5~8.5 | 6.9 |
总砷(以干基计)As/(mg·kg-1) | ≤15 | ≤15 | 3.40 |
总汞(以干基计)Hg/(mg·kg-1) | ≤2 | ≤2 | 0.10 |
总铅(以干基计)Pb/(mg·kg-1) | ≤50 | ≤50 | 12.20 |
总镉(以干基计)Cd/(mg·kg-1) | ≤3 | ≤3 | 0.30 |
总铬(以干基计)Cr/(mg·kg-1) | ≤150 | ≤150 | 57.60 |
粪大肠埃希菌群Fecal coliform/g-1 | ≤100 | ≤100 | <0.3 |
蛔虫卵死亡率Ascaris egg mortality/% | ≥95 | ≥95 | 100.00 |
处理 Treatment | 发病率 Incidence rate/% | 生长状况 Growth status |
---|---|---|
1 | 100 a | 所有植株枯萎死亡All plants wither and die |
2 | 66.70±6.67 b | 存活植株长势较差,叶片褪绿,叶缘枯黄 |
The surviving plants grew poorly, leaf edges were withered and yellow | ||
3 | 40.00±6.67 c | 存活植株长势较为健壮,叶片未褪色The surviving plants grew well and the leaves were not faded |
4 | 66.70±13.33 b | 存活植株长势较差,叶片褪绿The surviving plants grew poorly and their leaves faded |
表4 生物有机肥对温郁金发病率的影响盆栽试验
Table 4 Incidences rate of Curcuma wenyujin treated with BOF in pot
处理 Treatment | 发病率 Incidence rate/% | 生长状况 Growth status |
---|---|---|
1 | 100 a | 所有植株枯萎死亡All plants wither and die |
2 | 66.70±6.67 b | 存活植株长势较差,叶片褪绿,叶缘枯黄 |
The surviving plants grew poorly, leaf edges were withered and yellow | ||
3 | 40.00±6.67 c | 存活植株长势较为健壮,叶片未褪色The surviving plants grew well and the leaves were not faded |
4 | 66.70±13.33 b | 存活植株长势较差,叶片褪绿The surviving plants grew poorly and their leaves faded |
图3 田间使用生物有机肥的温郁金发病率 处理1,健康根茎+每667 m2施生物有机肥200 kg;处理2,带菌根茎+每667 m2施生物有机肥200 kg;处理3,健康根茎+每667 m2施复合肥50 kg。
Fig.3 Incidence rate of Curcuma wenyujin by using bio-organic fertilizer in field Treatment 1, Healthy tuber+bio-organic fertilizer 200 kg per 667 m2; Treatment 2, Infected tuber+bio-organic fertilizer 200 kg per 667 m2; Treatment 3, Healthy tuber+compound fertilizer 50 kg per 667 m2.
图4 田间温郁金在7月和8月的发病率 处理1,常规根茎+复合肥;处理2,连作根茎+复合肥;处理3,常规根茎+BOF;处理4,连作根茎+BOF。
Fig.4 Incidence rate of Curcuma wenyujin on July and August Treatment 1, Conventional tuber+compound fertilizer; Treatment 2, Continuous cropping tuber+compound fertilizer; Treatment 3, Conventional tuber+bio-organic fertilizer; Treatment 4, Continuous cropping tuber+bio-organic fertilizer.
图5 不同处理温郁金田间发病情况 A,常规根茎+复合肥;B,连作根茎+复合肥;C,常规根茎+BOF;D,连作根茎+BOF。
Fig.5 Incidence of Curcuma wenyujin under different treatments A, Conventional tuber+compound fertilizer; B, Continuous cropping tuber+compound fertilizer; C, Conventional tuber+BOF; D, Continuous cropping tuber+BOF.
处理 Treatment | 处理方式 Treatment method | 平均单株产量 Average yield per plant/kg |
---|---|---|
1 | 常规根茎+复合肥 Conventional tuber+compound fertilizer | 0.60±0.32 |
2 | 连作根茎+复合肥 Continuous cropping tuber+ compound fertilizer | 0.37±0.16 |
3 | 常规根茎+BOF Conventional tuber+BOF | 1.16±0.41 |
4 | 连作根茎+BOF Continuous cropping tuber+BOF | 0.71±0.29 |
表5 连作田间有机肥试验测产结果
Table 5 Yield of organic fertilizer test in continuous cropping field
处理 Treatment | 处理方式 Treatment method | 平均单株产量 Average yield per plant/kg |
---|---|---|
1 | 常规根茎+复合肥 Conventional tuber+compound fertilizer | 0.60±0.32 |
2 | 连作根茎+复合肥 Continuous cropping tuber+ compound fertilizer | 0.37±0.16 |
3 | 常规根茎+BOF Conventional tuber+BOF | 1.16±0.41 |
4 | 连作根茎+BOF Continuous cropping tuber+BOF | 0.71±0.29 |
[1] | 马蕾, 徐丹彬, 陈红金, 等. 浙江省中药材产业提升发展现状与对策[J]. 浙江林业科技, 2016, 36(4): 75-80. |
MA L, XU D B, CHEN H J, et al. Current situation and countermeasures of traditional Chinese medicines in Zhejiang[J]. Journal of Zhejiang Forestry Science and Technology, 2016, 36(4): 75-80. (in Chinese with English abstract) | |
[2] | 冯林. 温郁金细菌性枯萎病菌的鉴定及其生防菌的筛选与应用研究[D]. 杭州: 浙江大学, 2020. |
FENG L. The identification of pathogen and the screeing and application of bio-control bacterial strains on the bacterial wilt of Curcuma wenyujin[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract) | |
[3] | 曾欣, 练美林, 毛碧增. 温郁金化学成分、药理作用及病害研究进展[J]. 药物生物技术, 2017, 24(6): 554-560. |
ZENG X, LIAN M L, MAO B Z. The research progress in chemical components, pharmacological activity and main pathogenic diseases in Curcuma wenyujin[J]. Pharmaceutical Biotechnology, 2017, 24(6): 554-560. (in Chinese with English abstract) | |
[4] | 顾艳, 梅瑜, 徐世强, 等. 药用植物连作障碍研究进展[J]. 广东农业科学, 2021, 48(12): 162-173. |
GU Y, MEI Y, XU S Q, et al. Research progress on continuous cropping obstacles of medicinal plants[J]. Guangdong Agricultural Sciences, 2021, 48(12): 162-173. (in Chinese with English abstract) | |
[5] | 常肖锐, 叶项宇, 王政, 等. 生物有机肥研究及应用进展[J]. 现代农业科技, 2021(22): 145-148. |
CHANG X R, YE X Y, WANG Z, et al. Research and application progress on bio-organic fertilizer[J]. Modern Agricultural Science and Technology, 2021(22): 145-148. (in Chinese with English abstract) | |
[6] | 王连平, 谢昀烨, 方丽, 等. 温郁金细菌性枯萎病防控药剂筛选[J]. 浙江农业科学, 2017, 58(8): 1415-1418. |
WANG L P, XIE Y Y, FANG L, et al. Screening of control agents for bacterial wilt of Curcuma wenyujin[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(8): 1415-1418. (in Chinese) | |
[7] | 李庆康, 张永春, 杨其飞, 等. 生物有机肥肥效机理及应用前景展望[J]. 中国生态农业学报, 2003, 11(2): 78-80. |
LI Q K, ZHANG Y C, YANG Q F, et al. The concept, mechanism, affecting factors and prospect of applying bio-organic fertilizer[J]. Chinese Journal of Eco-Agriculture, 2003, 11(2): 78-80. (in Chinese with English abstract) | |
[8] | 刘玮琦, 茆振川, 杨宇红, 等. 应用16S rRNA基因文库技术分析土壤细菌群落的多样性[J]. 微生物学报, 2008, 48(10): 1344-1350. |
LIU W Q, MAO Z C, YANG Y H, et al. Analysis of soil bacterial diversity by Using the 16S rRNA gene Library[J]. Acta Microbiologica Sinica, 2008, 48(10): 1344-1350. (in Chinese with English abstract) | |
[9] | 陈谦, 张新雄, 赵海, 等. 生物有机肥中几种功能微生物的研究及应用概况[J]. 应用与环境生物学报, 2010, 16(2): 294-300. |
CHEN Q, ZHANG X X, ZHAO H, et al. Advance in research and application of some functional microbes in bio-organic fertilizer[J]. Chinese Journal of Applied & Environmental Biology, 2010, 16(2): 294-300. (in Chinese with English abstract) | |
[10] | 黄新琦, 雍晓雨, 沈其荣, 等. 土传黄瓜立枯病高效拮抗菌的筛选鉴定及其生物效应[J]. 植物保护学报, 2012, 39(1): 45-50. |
HUANG X Q, YONG X Y, SHEN Q R, et al. Screening and identifying antagonistic bacteria against Rhizoctonia solani and their biological control effects on soil-born damping-off disease of cucumber[J]. Journal of Plant Protection, 2012, 39(1): 45-50. (in Chinese with English abstract) | |
[11] | 张斌, 乔俊卿, 梁雪杰, 等. 番茄枯萎病菌和青枯病菌拮抗细菌的评价[J]. 植物保护学报, 2015, 42(3): 353-361. |
ZHANG B, QIAO J Q, LIANG X J, et al. Evaluation of antagonistic bacteria against Fusarium oxysporum f.sp.lycopersici and Ralstonia solanacearum[J]. Journal of Plant Protection, 2015, 42(3): 353-361. (in Chinese with English abstract) | |
[12] | 康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌的筛选及鉴定[J]. 微生物学报, 2010, 50(7): 853-861. |
KANG Y J, CHENG J, MEI L J, et al. Screening and identification of plant growth-promoting rhizobacteria[J]. Acta Microbiologica Sinica, 2010, 50(7): 853-861. (in Chinese with English abstract) | |
[13] | 赵文娟, 付博, 徐升运, 等. 生防菌SF1103、SF1104对黄瓜枯萎病菌的拮抗作用[J]. 西北农业学报, 2017, 26(10):1537-1543. |
ZHAO W J, FU B, XU S Y, et al. Antagonism of biocontrol bacteria SF1103 and SF1104 on wilt pathogen in cucumber[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(10):1537-1543. (in Chinese with English abstract) | |
[14] |
GHOSE T K. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2): 257-268.
DOI URL |
[15] |
SHIN S H, LIM Y, LEE S E, et al. CAS agar diffusion assay for the measurement of siderophores in biological fluids[J]. Journal of Microbiological Methods, 2001, 44(1): 89-95.
PMID |
[16] |
JOACHIM V, BEN N, KRISTIN D, et al. Characterization of novel fusaricidins produced by Paenibacillus polymyxa-M1 using MALDI-TOF mass spectrometry[J]. Journal of The American Society for Mass Spectrometry, 2015, 26(9):1548-1558.
DOI URL |
[17] | 李兴玉, 毛自朝, 吴毅歆, 等. 芽孢杆菌环脂肽类次生代谢产物的快速检测[J]. 植物病理学报, 2014, 44(6): 718-722. |
LI X Y, MAO Z C, WU Y X, et al. Rapid detection of cyclic lipopeptide metabolites from Bacillus[J]. Acta Phytopathologica Sinica, 2014, 44(6): 718-722. (in Chinese with English abstract) | |
[18] | 王佳宁, 王玉鑫, 侯如娇, 等. 噬菌体鸡尾酒联合生物有机肥防控番茄青枯病的效果研究[J]. 微生物学通报, 2021, 48(9): 3194-3204. |
WANG J N, WANG Y X, HOU R J, et al. Biocontrol of phage cocktail combined with bio-organic fertilizer on tomato bacterial wilt[J]. Microbiology China, 2021, 48(9): 3194-3204. (in Chinese with English abstract) | |
[19] | 郭赛赛, 张敬泽. 多黏类芽孢杆菌及其脂肽化合物研究进展[J]. 农药学学报, 2019, 21(S1): 787-798. |
GUO S S, ZHANG J Z. Research progress of Paenibacillus polymyxa and its lipopeptide compounds[J]. Chinese Journal of Pesticide Science, 2019, 21(S1): 787-798. (in Chinese with English abstract) | |
[20] |
IDRISS E E, MAKAREWICZ O, FAROUK A, et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect[J]. Microbiology(Reading, England), 2002, 148(7): 2097-2109.
DOI URL |
[21] | 汪汉成, 黄艳飞, 龙明锦, 等. 烟草青枯病菌与其拮抗菌解淀粉芽胞杆菌的代谢表型差异分析[J]. 植物保护学报, 2017, 44(5): 753-762. |
WANG H C, HUANG Y F, LONG M J, et al. Analysis of the difference in metabolic phenotypes between Ralstonia solanacearum from tobacco and its antagonistic bacterium Bacillus amyloliquefaciens[J]. Journal of Plant Protection, 2017, 44(5): 753-762. (in Chinese with English abstract) | |
[22] |
TIMMUSK S, VAN WEST P, GOW N A R, et al. Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum[J]. Journal of Applied Microbiology, 2009, 106(5): 1473-1481.
DOI URL |
[23] | 吴李芳. 西红花球茎腐烂病的致病菌鉴定及其生防菌解淀粉芽孢杆菌C612的筛选和应用[D]. 杭州: 浙江大学, 2017. |
WU L F. Identification of Crocus sativus corm rot pathogenic fungi and application on screening Bacillus amyloliquefaciens C612[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) | |
[24] |
OOSTENDORP M, KUNZ W, DIETRICH B, et al. Induced disease resistance in plants by chemicals[J]. European Journal of Plant Pathology, 2001, 107(1): 19-28.
DOI URL |
[1] | 茹朝, 郁继华, 武玥, 冯致, 缑兆辉, 金宁, 王舒亚, 刘泽慈, 吕剑. 化肥减量配施生物有机肥对露地大白菜产量及品质的影响[J]. 浙江农业学报, 2022, 34(8): 1626-1637. |
[2] | 张健利, 王振华, 陈睿, 王东旺, 梁永辉, 刘茹华. 水肥互作对滴灌红枣产量、品质与土壤养分的影响[J]. 浙江农业学报, 2022, 34(11): 2428-2437. |
[3] | 刘艳伟, 周潇, 杨启良, 茶品元. 不同施肥和灌溉水平对三七生长特性和发病率的影响[J]. 浙江农业学报, 2021, 33(8): 1426-1435. |
[4] | 李菊, 颉博杰, 魏守辉, 张国斌, 武玥, 唐中祺, 肖雪梅, 郁继华. 有机肥与化肥配施对松花菜花球营养品质和挥发性物质的影响[J]. 浙江农业学报, 2021, 33(7): 1199-1211. |
[5] | 沈璐, 李勤超, 田中贵, 稻村达也, 伊日布斯. 太阳热处理对小白菜根肿病防治效果的研究[J]. 浙江农业学报, 2020, 32(1): 98-107. |
[6] | 林瑞, 任海英, 安笑笑, 郑锡良, 梁森苗, 张淑文, 戚行江. 生物有机肥对杨梅凋萎病防控及其树势恢复的影响[J]. 浙江农业学报, 2019, 31(7): 1096-1104. |
[7] | 王燕云, 赵龙杰, 郝春莉, 蔡尽忠. 生物有机肥对不同连作年限设施黄瓜土壤微生物数量和酶活性的影响[J]. 浙江农业学报, 2019, 31(4): 631-638. |
[8] | 周艳超, 吴艳红, 田兴武, 周海霞, 韩泽宇, 刘吉青, 兰挚谦, 张雪艳. 纳米碳与枯草菌对黄瓜幼苗生长及土壤环境的影响[J]. 浙江农业学报, 2019, 31(3): 392-400. |
[9] | 廖倩1,2,张治军2,张玉秀2,吕要斌1,2,*. 西花蓟马数量与番茄斑萎病毒发生流行的关系[J]. 浙江农业学报, 2015, 27(9): 1601-. |
[10] | 赵敏1,严成其2,黄元杰1,李荣1,张国忠1,郑超2,王华弟3,陈剑平2,*. 浙西北单季稻白叶枯病发病率与稻谷损失关系的研究[J]. 浙江农业学报, 2015, 27(12): 2147-. |
[11] | 陈曦1,张明哲1,林晓佳1,吴志毅1,陈吴健1,吴蓉2,夏拯1. 玉米细菌性枯萎病和玉米内州萎焉病的酶联免疫—实时荧光PCR检测[J]. 浙江农业学报, 2014, 26(5): 1273-. |
[12] | 吴志刚;潘永地;张剑;陶正明;*;冷春鸿. 基于GIS的地道药材温郁金种植适宜性评价[J]. , 2010, 22(5): 648-652. |
[13] | 陶正明;冷春鸿;吴志刚;李 林. 温郁金遗传多样性的ISSR分析[J]. , 2009, 21(3): 0-210. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 360
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||