[1] |
ÇETINER H. Citrus disease detection and classification using based on convolution deep neural network[J]. Microprocessors and Microsystems, 2022, 95: 104687.
|
[2] |
TYAGI A C. Towards a second green revolution[J]. Irrigation and Drainage, 2016, 65(4): 388-389.
|
[3] |
NEUPANE K, BAYSAL-GUREL F. Automatic identification and monitoring of plant diseases using unmanned aerial vehicles: a review[J]. Remote Sensing, 2021, 13(19): 3841.
|
[4] |
DANANJAYAN S, TANG Y, ZHUANG J J, et al. Assessment of state-of-the-art deep learning based citrus disease detection techniques using annotated optical leaf images[J]. Computers and Electronics in Agriculture, 2022, 193: 106658.
|
[5] |
BARMAN U, CHOUDHURY R D, SAHU D, et al. Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease[J]. Computers and Electronics in Agriculture, 2020, 177: 105661.
|
[6] |
樊湘鹏, 许燕, 周建平, 等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报, 2021, 37(6): 151-159.
|
|
FAN X P, XU Y, ZHOU J P, et al. Detection system for grape leaf diseases based on transfer learning and updated CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 151-159. (in Chinese with English abstract)
|
[7] |
李鑫然, 李书琴, 刘斌. 基于改进Faster R_CNN的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304.
|
|
LI X R, LI S Q, LIU B. Apple leaf diseases detection model based on improved Faster R_CNN[J]. Computer Engineering, 2021, 47(11): 298-304. (in Chinese with English abstract)
|
[8] |
SHARIF M, KHAN M A, IQBAL Z, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection[J]. Computers and Electronics in Agriculture, 2018, 150(C): 220-234.
|
[9] |
王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159.
|
|
WANG Y L, WU J F, LAN P, et al. Apple disease identification using improved Faster R-CNN[J]. Journal of Forestry Engineering, 2022, 7(1): 153-159. (in Chinese with English abstract)
|
[10] |
李辉, 严康华, 景浩, 等. 基于改进SSD的苹果叶部病理检测识别[J]. 传感器与微系统, 2022, 41(10): 134-137.
|
|
LI H, YAN K H, JING H, et al. Apple leaf pathology detection and recognition based on improved SSD[J]. Transducer and Microsystem Technologies, 2022, 41(10): 134-137. (in Chinese with English abstract)
|
[11] |
陈家栋, 雷斌. 基于改进SSD轻量化的交通路口目标检测[J]. 传感器与微系统, 2022, 41(10): 117-121.
|
|
CHEN J D, LEI B. Traffic intersection target detection based on improved SSD lightweight[J]. Transducer and Microsystem Technologies, 2022, 41(10): 117-121. (in Chinese with English abstract)
|
[12] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
[13] |
汝承印, 张仕海, 张子淼, 等. 基于轻量级MobileNet-SSD和MobileNetV2-DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022, 48(9): 3670-3679.
|
|
RU C Y, ZHANG S H, ZHANG Z M, et al. Fault identification method for high voltage power grid insulator based on lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+network[J]. High Voltage Engineering, 2022, 48(9): 3670-3679. (in Chinese with English abstract)
|
[14] |
吴天成, 王晓荃, 蔡艺军, 等. 基于特征融合的轻量级SSD目标检测方法[J]. 液晶与显示, 2021, 36(10): 1437-1444.
|
|
WU T C, WANG X Q, CAI Y J, et al. Lightweight SSD object detection method based on feature fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1437-1444. (in Chinese with English abstract)
|
[15] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 4510-4520.
|
[16] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13713-13722.
|
[17] |
LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// European Conference on Computer Vision. Cham: Springer, 2018: 404-419.
|
[18] |
张岚, 邢博闻, 李彩, 等. 采用改进SSD网络的海参目标检测算法[J]. 农业工程学报, 2022, 38(8): 297-303.
|
|
ZHANG L, XING B W, LI C, et al. Algorithm for detecting sea cucumbers based on improved SSD[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(8): 297-303. (in Chinese with English abstract)
|