浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 662-670.DOI: 10.3969/j.issn.1004-1524.20230159

• 生物系统工程 • 上一篇    下一篇

基于改进SSD模型的柑橘叶片病害轻量化检测模型

李大华1,2(), 孔舒1,2,*(), 李栋1,2, 于晓1,2   

  1. 1.天津理工大学 电气工程与自动化学院,天津 300380
    2.天津市新能源电力变换传输与智能控制重点实验室,天津 300380
  • 收稿日期:2023-02-14 出版日期:2024-03-25 发布日期:2024-04-09
  • 作者简介:李大华(1978-),男,天津人,硕士,副教授,研究方向为人工智能、智能微电网等。E-mail:18802218638@163.com
  • 通讯作者: *孔舒,E-mail:kongshu0606@163.com
  • 基金资助:
    国家自然科学基金(61502340);天津市自然科学基金(18JCQNJC01000);天津理工大学教学基金项目(YB20-05);天津市复杂系统控制理论与应用重点实验室开放基金项目(TJKL-CATCS-201907)

Lightweight detection model of citrus leaf disease based on improved SSD

LI Dahua1,2(), KONG Shu1,2,*(), LI Dong1,2, YU Xiao1,2   

  1. 1. College of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin 300380, China
    2. Tianjin Key Laboratory of New Energy Power Conversion, Transmission and Intelligent Control, Tianjin 300380, China
  • Received:2023-02-14 Online:2024-03-25 Published:2024-04-09

摘要:

针对当前目标检测算法存在模型占比大,对柑橘叶片病害检测速度较慢、精度较低等问题,提出了一种基于改进SSD(single shot multibox detector)的柑橘叶片病害轻量化检测方法。引入了轻量化卷积神经网络MobileNetV2作为SSD网络的骨架,以减小模型规模、提高检测速度。引入感受野模块(receptive field block, RFB)来扩大浅层特征感受野,以提高模型对小目标的检测效果。并引入CA(coordinate attention)注意力机制,以强化不同深度的特征信息,进一步提升柑橘叶片病害的识别精度。结果表明,与VGG16-SSD相比,改进模型(MR-CA-SSD)在柑橘叶片病害检测上平均精度均值(mAP)提升4.4百分点,模型占比减小52.3 MB,每秒检测帧数提升3.15。MR-CA-SSD综合性能也优于YOLOv4、CenterNet、Efficientnet-YoloV3等模型。该改进模型可实现对柑橘叶片病害的快速准确诊断,有助于对病害部位及时精准施药。

关键词: 柑橘,叶片病害, 轻量化网络, 感受野模块, 注意力机制

Abstract:

Aiming at the problems of large model proportion, slow detection speed, and low accuracy in the current target detection algorithm for citrus leaf disease, a lightweight detection method based on improved single shot multibox detector (SSD) for citrus leaf disease was proposed. MobileNetV2, a lightweight convolutional neural network, was introduced as the backbone of the SSD network to reduce the model size and improve the detection speed. The RFB (receptive field block) was introduced into the shallow prediction feature map to expand its receptive field, so as to improve the detection effect of the model on small targets. Additionally, the coordinate attention (CA) was introduced to strengthen feature information at different depths, further enhancing the recognition accuracy of citrus leaf disease. The results showed that compared with the VGG16-SSD network, the improved model (MR-CA-SSD) achieved an mean average precision (mAP) increase of 4.4 percentage points in citrus leaf disease detection, reduced the model proportion by 52.3 MB, and improved the frames per seconds by 3.15. The comprehensive performance of MR-CA-SSD also outperformed algorithms such as YOLOv4, CenterNet, and Efficientnet-YoloV3. This improved model could achieve rapid and accurate diagnosis of citrus leaf disease, contributing to timely and precise pesticide application for diseased areas.

Key words: citrus, leaf disease, lightweight network, receptive field block, attention mechanism

中图分类号: