浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 651-661.DOI: 10.3969/j.issn.1004-1524.20230202

• 生物系统工程 • 上一篇    下一篇

基于数字图像的大田哈密瓜不同时期冠层相对叶绿素含量检测研究

刘彦岑a(), 郭俊先a,*(), 郭阳a, 史勇a, 黄华b, 李龙杰a, 张振振a   

  1. 新疆农业大学 a. 机电工程学院;b. 数理学院,新疆 乌鲁木齐 830052
  • 收稿日期:2023-02-20 出版日期:2024-03-25 发布日期:2024-04-09
  • 作者简介:刘彦岑(1998—),男,重庆人,硕士研究生,研究方向为农产品无损检测。E-mail:1015431957@qq.com
  • 通讯作者: *郭俊先,E-mail:junxianguo@163.com
  • 基金资助:
    新疆维吾尔自治区高校科研计划自然科学重点项目(XJEDU2020I009);国家自然科学基金(61367001)

Detection of relative chlorophyll content of field cantaloupe canopy at different growth stages based on digital images

LIU Yancena(), GUO Junxiana,*(), GUO Yanga, SHI Yonga, HUANG Huab, LI Longjiea, ZHANG Zhenzhena   

  1. a. Mechanical and Electrical Engineering Institute; b. School of Mathematics and Science, Xinjiang Agricultural University, Urumqi 830052, China
  • Received:2023-02-20 Online:2024-03-25 Published:2024-04-09

摘要:

为探究快速无损获取大田哈密瓜完整冠层相对叶绿素含量的可行性,首先,利用自制的图像采集小车搭载面阵相机,获取不同水肥处理下大田哈密瓜伸蔓期、开花期、膨果期的378张完整冠层图像;然后,对图像进行处理后,提取32种颜色特征和6种纹理特征,分析图像特征与冠层相对叶绿素含量的相关性;接着,对图像特征进行预处理后,选取相应的主成分作为模型输入,分别建立用于预测不同时期冠层相对叶绿素含量的多元线性回归(MLR)、支持向量机回归(SVR)、随机森林(RF)模型。对比建模效果发现,SVR模型的效果最好,在伸蔓期、开花期、膨果期,该模型预测值与实测值回归的决定系数分别为0.73、0.73、0.83,均方根误差分别为0.90、0.91、0.76。研究表明,利用数字图像技术能实现对大田哈密瓜不同时期冠层相对叶绿素含量的快速无损检测,可为大田哈密瓜田间管理提供技术参考。

关键词: 哈密瓜冠层图像, 叶绿素, 图像特征, 支持向量机回归, 关键生育期

Abstract:

To explore the feasibility of quickly and non-destructively obtaining the relative chlorophyll content of the complete canopy of field cantaloupe, a self-made image acquisition vehicle equipped with a plane array camera was used in the present study to collect a total of 378 complete canopy images of field cantaloupe during the vine stretching stage, the flowering stage, and the fruit expansion stage, under different water and fertilizer treatments. After image processing, 32 color features and 6 texture features were extracted, and the correlation between image features and relative chlorophyll content of canopy was analyzed. After image features being preprocessed, principal components were selected as model inputs to establish multiple linear regression (MLR), support vector regression (SVR), and random forest (RF) prediction models for the relative chlorophyll content of field cantaloupe canopy at different growth stages. By comparison, it was found that the SVR models had the best performance, as the determination coefficients of the regression within the predicted values and the measured values were 0.73, 0.73 and 0.83, respectively, and the root mean squre errors were 0.90, 0.91 and 0.76 for the vine stretching stage, the flowering stage and the fruit expansion stage, respectively. It was proved that digital image technology may enable rapid and non-destructive detection of relative chlorophyll content of the field cantaloupe canopy at different growth stages, which could provide technical references for the field management of cantaloupe production.

Key words: canopy image of cantaloupe, chlorophyll, image features, support vector regression, critical growth period

中图分类号: