浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 651-661.DOI: 10.3969/j.issn.1004-1524.20230202
刘彦岑a(), 郭俊先a,*(
), 郭阳a, 史勇a, 黄华b, 李龙杰a, 张振振a
收稿日期:
2023-02-20
出版日期:
2024-03-25
发布日期:
2024-04-09
作者简介:
刘彦岑(1998—),男,重庆人,硕士研究生,研究方向为农产品无损检测。E-mail:1015431957@qq.com
通讯作者:
*郭俊先,E-mail:基金资助:
LIU Yancena(), GUO Junxiana,*(
), GUO Yanga, SHI Yonga, HUANG Huab, LI Longjiea, ZHANG Zhenzhena
Received:
2023-02-20
Online:
2024-03-25
Published:
2024-04-09
摘要:
为探究快速无损获取大田哈密瓜完整冠层相对叶绿素含量的可行性,首先,利用自制的图像采集小车搭载面阵相机,获取不同水肥处理下大田哈密瓜伸蔓期、开花期、膨果期的378张完整冠层图像;然后,对图像进行处理后,提取32种颜色特征和6种纹理特征,分析图像特征与冠层相对叶绿素含量的相关性;接着,对图像特征进行预处理后,选取相应的主成分作为模型输入,分别建立用于预测不同时期冠层相对叶绿素含量的多元线性回归(MLR)、支持向量机回归(SVR)、随机森林(RF)模型。对比建模效果发现,SVR模型的效果最好,在伸蔓期、开花期、膨果期,该模型预测值与实测值回归的决定系数分别为0.73、0.73、0.83,均方根误差分别为0.90、0.91、0.76。研究表明,利用数字图像技术能实现对大田哈密瓜不同时期冠层相对叶绿素含量的快速无损检测,可为大田哈密瓜田间管理提供技术参考。
中图分类号:
刘彦岑, 郭俊先, 郭阳, 史勇, 黄华, 李龙杰, 张振振. 基于数字图像的大田哈密瓜不同时期冠层相对叶绿素含量检测研究[J]. 浙江农业学报, 2024, 36(3): 651-661.
LIU Yancen, GUO Junxian, GUO Yang, SHI Yong, HUANG Hua, LI Longjie, ZHANG Zhenzhen. Detection of relative chlorophyll content of field cantaloupe canopy at different growth stages based on digital images[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 651-661.
图2 冠层图像采集装置示意图 1,试验地;2,导轨;3,挡光铝箔;4,光源开关;5,镜头;6,面阵相机;7,图像采集小车;8,电脑;9,固定光源;10,冠层叶片。
Fig.2 Schematic diagram of canopy image acquisition device 1, Test site; 2, Guide rail; 3, Light blocking aluminum foil; 4, Light source switch; 5, Lens; 6, Area array camera; 7, Image acquisition car; 8, Computer; 9, Fixed light source; 10, Canopy blade.
特征来源 Features source | 数量 Number | 特征参数 Feature parameters |
---|---|---|
RGB | 22 | R、G、B、R-B、G-R、G-B、G/R、B/G、B/R、R/(R+B+G)、G/(R+B+G)、B/(R+B+G)、1.4R-G、(R-B)/(R+B)、(G-B)/(G+B)、(G-R)/(G+R)、2G-R-B、(2G-R-B)/(2G+R+B)、(G2-RB)/(G2+RB)、3G-2.4R-B、(G2-R2)/(G2+R2)、0.44R-0.88G-0.39B+18.787 5 |
Gray | 1 | Gray |
HSV | 3 | H、S、V |
NTSC | 3 | YNTSC、I、Q |
YCbCr | 3 | Y、Cb、Cr |
表1 颜色特征的基本信息
Table 1 Brief introduction of color features
特征来源 Features source | 数量 Number | 特征参数 Feature parameters |
---|---|---|
RGB | 22 | R、G、B、R-B、G-R、G-B、G/R、B/G、B/R、R/(R+B+G)、G/(R+B+G)、B/(R+B+G)、1.4R-G、(R-B)/(R+B)、(G-B)/(G+B)、(G-R)/(G+R)、2G-R-B、(2G-R-B)/(2G+R+B)、(G2-RB)/(G2+RB)、3G-2.4R-B、(G2-R2)/(G2+R2)、0.44R-0.88G-0.39B+18.787 5 |
Gray | 1 | Gray |
HSV | 3 | H、S、V |
NTSC | 3 | YNTSC、I、Q |
YCbCr | 3 | Y、Cb、Cr |
纹理特征名称 Texture feature name | 符号 Symbol | 表达式 Expression | 纹理度量 Texture measurement |
---|---|---|---|
平均值 Mean | m | 平均亮度 Average brightness | |
标准偏差 Standard deviation | S | 平均对比度 Average contrast | |
平滑度 Smoothness | F | 区域中亮度的相对平滑度 Relative smoothness of brightness in the area | |
三阶矩 Third moment | T3 | 直方图偏斜程度 Degree of histogram deviation | |
一致性 Consistency | U | 灰度值一致性 Consistency of gray value | |
熵 Entropy | e | 灰度级混乱程度 Grayscale confusion |
表2 纹理特征的基本情况
Table 2 Brief introduction of texture features
纹理特征名称 Texture feature name | 符号 Symbol | 表达式 Expression | 纹理度量 Texture measurement |
---|---|---|---|
平均值 Mean | m | 平均亮度 Average brightness | |
标准偏差 Standard deviation | S | 平均对比度 Average contrast | |
平滑度 Smoothness | F | 区域中亮度的相对平滑度 Relative smoothness of brightness in the area | |
三阶矩 Third moment | T3 | 直方图偏斜程度 Degree of histogram deviation | |
一致性 Consistency | U | 灰度值一致性 Consistency of gray value | |
熵 Entropy | e | 灰度级混乱程度 Grayscale confusion |
处理 Treatment | 样本数 Sample size | 各时期的相对叶绿素含量Relative chlorophyll content at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
W1N1 | 18 | 36.98±2.27 d | 44.83±2.33 e | 52.68±2.64 d |
W1N2 | 18 | 37.14±2.43 cd | 45.94±3.01 de | 54.03±2.82 bcd |
W1N3 | 18 | 36.72±3.10 d | 45.44±1.85 de | 53.77±3.28 cd |
W2N1 | 18 | 39.18±2.22 ab | 47.49±2.08 bc | 54.85±2.31 abc |
W2N2 | 18 | 39.84±2.63 a | 49.37±1.87 a | 56.27±2.93 a |
W2N3 | 18 | 39.64±2.58 ab | 47.92±2.82 b | 55.56±2.73 ab |
CK | 18 | 38.34±2.67 bc | 46.55±2.57 cd | 54.89±2.56 abc |
表3 不同处理下大田哈密瓜的冠层相对叶绿素含量
Table 3 Relative chlorophyll content of field cantaloupe canopy under treatments
处理 Treatment | 样本数 Sample size | 各时期的相对叶绿素含量Relative chlorophyll content at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
W1N1 | 18 | 36.98±2.27 d | 44.83±2.33 e | 52.68±2.64 d |
W1N2 | 18 | 37.14±2.43 cd | 45.94±3.01 de | 54.03±2.82 bcd |
W1N3 | 18 | 36.72±3.10 d | 45.44±1.85 de | 53.77±3.28 cd |
W2N1 | 18 | 39.18±2.22 ab | 47.49±2.08 bc | 54.85±2.31 abc |
W2N2 | 18 | 39.84±2.63 a | 49.37±1.87 a | 56.27±2.93 a |
W2N3 | 18 | 39.64±2.58 ab | 47.92±2.82 b | 55.56±2.73 ab |
CK | 18 | 38.34±2.67 bc | 46.55±2.57 cd | 54.89±2.56 abc |
图像特征 Image features | 不同时期的相关系数Correlation coefficient at different growth stages | ||
---|---|---|---|
伸蔓期Vine stretching stage | 开花期Flowering stage | 膨果期Friut expansion stage | |
R | 0.72** | 0.69** | 0.84** |
G | 0.73** | 0.79** | 0.80** |
B | 0.73** | 0.18 | 0.38* |
R-B | 0.69** | 0.61** | 0.68** |
G-R | 0.73** | 0.86** | 0.55** |
G-B | 0.72** | 0.78** | 0.82** |
G/R | 0.46** | 0.29 | -0.12 |
B/G | 0.25 | 0.42* | 0.11 |
B/R | 0.13 | -0.35 | -0.38* |
R/(R+B+G) | -0.42** | 0.24 | 0.28 |
G/(R+B+G) | 0.27 | 0.38* | 0.37* |
B/(R+B+G) | 0.01 | -0.36* | -0.41** |
(R-B)/(R+B) | -0.13 | 0.35 | 0.38* |
(G-B)/(G+B) | 0.06 | 0.37* | 0.42** |
(G-R)/(G+R) | 0.46** | 0.31 | -0.11 |
(G2-RB)/(G2+RB) | 0.24 | 0.38* | 0.41* |
2G-R-B | 0.72** | 0.83** | 0.79** |
1.4R-G | -0.70** | -0.60** | -0.02 |
3G-2.4R-B | 0.72** | 0.82** | 0.70** |
(G2-R2)/(G2+R2) | 0.46* | 0.3 | -0.1 |
(2G-R-B)/(2G+R+B) | 0.26 | 0.21 | 0.11 |
0.44R-0.88G-0.39B+18.787 5 | -0.73** | -0.72** | -0.70** |
Gray | 0.73** | 0.65** | 0.78** |
H | 0.73** | 0.74** | 0.17 |
S | 0.72** | 0.63** | 0.47** |
V | 0.73** | 0.79** | 0.80** |
YNTSC | 0.73** | 0.75** | 0.81** |
I | -0.62** | 0.13 | 0.30 |
Q | -0.72** | -0.82** | -0.80** |
Y | 0.73** | 0.75** | 0.81** |
Cb | -0.72** | -0.75** | -0.81** |
Cr | -0.72** | -0.82** | -0.80** |
m | 0.73** | 0.75** | 0.81** |
S | 0.53** | -0.24 | 0.17 |
F | 0.52** | -0.24 | 0.16 |
T3 | -0.65** | -0.33* | -0.22 |
U | -0.73** | -0.75** | -0.31* |
e | 0.73** | 0.77** | 0.47** |
表4 不同时期图像特征与冠层相对叶绿素含量的相关系数
Table 4 Correlation coefficient between image features and relative chlorophyll content of field cantaloupe canopy at different growth stages
图像特征 Image features | 不同时期的相关系数Correlation coefficient at different growth stages | ||
---|---|---|---|
伸蔓期Vine stretching stage | 开花期Flowering stage | 膨果期Friut expansion stage | |
R | 0.72** | 0.69** | 0.84** |
G | 0.73** | 0.79** | 0.80** |
B | 0.73** | 0.18 | 0.38* |
R-B | 0.69** | 0.61** | 0.68** |
G-R | 0.73** | 0.86** | 0.55** |
G-B | 0.72** | 0.78** | 0.82** |
G/R | 0.46** | 0.29 | -0.12 |
B/G | 0.25 | 0.42* | 0.11 |
B/R | 0.13 | -0.35 | -0.38* |
R/(R+B+G) | -0.42** | 0.24 | 0.28 |
G/(R+B+G) | 0.27 | 0.38* | 0.37* |
B/(R+B+G) | 0.01 | -0.36* | -0.41** |
(R-B)/(R+B) | -0.13 | 0.35 | 0.38* |
(G-B)/(G+B) | 0.06 | 0.37* | 0.42** |
(G-R)/(G+R) | 0.46** | 0.31 | -0.11 |
(G2-RB)/(G2+RB) | 0.24 | 0.38* | 0.41* |
2G-R-B | 0.72** | 0.83** | 0.79** |
1.4R-G | -0.70** | -0.60** | -0.02 |
3G-2.4R-B | 0.72** | 0.82** | 0.70** |
(G2-R2)/(G2+R2) | 0.46* | 0.3 | -0.1 |
(2G-R-B)/(2G+R+B) | 0.26 | 0.21 | 0.11 |
0.44R-0.88G-0.39B+18.787 5 | -0.73** | -0.72** | -0.70** |
Gray | 0.73** | 0.65** | 0.78** |
H | 0.73** | 0.74** | 0.17 |
S | 0.72** | 0.63** | 0.47** |
V | 0.73** | 0.79** | 0.80** |
YNTSC | 0.73** | 0.75** | 0.81** |
I | -0.62** | 0.13 | 0.30 |
Q | -0.72** | -0.82** | -0.80** |
Y | 0.73** | 0.75** | 0.81** |
Cb | -0.72** | -0.75** | -0.81** |
Cr | -0.72** | -0.82** | -0.80** |
m | 0.73** | 0.75** | 0.81** |
S | 0.53** | -0.24 | 0.17 |
F | 0.52** | -0.24 | 0.16 |
T3 | -0.65** | -0.33* | -0.22 |
U | -0.73** | -0.75** | -0.31* |
e | 0.73** | 0.77** | 0.47** |
图4 不同时期图像特征及冠层相对叶绿素含量的相关性 R、G、B分别表示RGB模型的红、绿、蓝三基色;Gray表示灰度模型的灰度值;H、S、V分别表示HSV模型的色调、色饱和度和明度;YNTSC、I、Q分别表示NTSC模型的光亮度、色调、饱和度;Y、Cb、Cr分别表示YcbCr模型的亮度分量、蓝色色度分量、红色色度分量;m,平均值;S,标准偏差;F,平滑度;T3,三阶矩;U,一致性;e,熵;D,相对叶绿素含量。“*”表示相关性达到显著水平(P<0.05)。
Fig.4 Correlation of image features and relaitve chlorophyll content of field cantaloupe canopy at different growth stages R, G, B represent the red, green and blue primary colors of RGB model, respectively; Gray denotes the gray value of the grayscale model ;H, S, V represent the hue, color saturation and value of HSV model, respectively; YNTSC, I, Q represent the brightness, hue and saturation of NTSC model, respectively; Y, Cb, Cr represent the luminance component, blue chromaticity component and red chromaticity component of YcbCr model, respectively; m, Mean; S, Standard deviation; F, Smoothness; T3, Third moment; U, Consistency; e, Entropy; D, Relative chlorophyll content of canopy. “*” indicate significant correlation at P<0.05.
主成分 Principle component | 各时期的方差贡献率 Variance contribution rate at different growth stages | 各时期的累积方差贡献率 Cumulative variance contribution rate at different growth stages | ||||
---|---|---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | 伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | |
P1 | 0.562 1 | 0.504 4 | 0.517 7 | 0.562 1 | 0.504 4 | 0.517 7 |
P2 | 0.169 3 | 0.245 1 | 0.206 8 | 0.731 4 | 0.749 5 | 0.724 5 |
P3 | 0.104 2 | 0.117 3 | 0.104 4 | 0.835 6 | 0.866 8 | 0.828 9 |
P4 | 0.071 1 | 0.062 6 | 0.082 3 | 0.906 7 | 0.929 4 | 0.911 2 |
P5 | 0.040 7 | 0.033 7 | 0.044 6 | 0.947 4 | 0.963 1 | 0.955 8 |
P6 | 0.020 4 | 0.012 4 | 0.022 5 | 0.967 8 | 0.975 5 | 0.978 3 |
P7 | 0.010 6 | 0.008 8 | 0.009 6 | 0.978 4 | 0.984 3 | 0.987 9 |
P8 | 0.008 8 | 0.005 2 | 0.004 8 | 0.987 2 | 0.989 5 | 0.992 7 |
P9 | 0.007 3 | 0.003 8 | 0.003 6 | 0.994 5 | 0.993 3 | 0.996 3 |
P10 | 0.004 3 | 0.003 2 | 0.003 3 | 0.998 8 | 0.996 5 | 0.999 6 |
表5 主成分的方差贡献率
Table 5 Variance contribution rate of principal components
主成分 Principle component | 各时期的方差贡献率 Variance contribution rate at different growth stages | 各时期的累积方差贡献率 Cumulative variance contribution rate at different growth stages | ||||
---|---|---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | 伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | |
P1 | 0.562 1 | 0.504 4 | 0.517 7 | 0.562 1 | 0.504 4 | 0.517 7 |
P2 | 0.169 3 | 0.245 1 | 0.206 8 | 0.731 4 | 0.749 5 | 0.724 5 |
P3 | 0.104 2 | 0.117 3 | 0.104 4 | 0.835 6 | 0.866 8 | 0.828 9 |
P4 | 0.071 1 | 0.062 6 | 0.082 3 | 0.906 7 | 0.929 4 | 0.911 2 |
P5 | 0.040 7 | 0.033 7 | 0.044 6 | 0.947 4 | 0.963 1 | 0.955 8 |
P6 | 0.020 4 | 0.012 4 | 0.022 5 | 0.967 8 | 0.975 5 | 0.978 3 |
P7 | 0.010 6 | 0.008 8 | 0.009 6 | 0.978 4 | 0.984 3 | 0.987 9 |
P8 | 0.008 8 | 0.005 2 | 0.004 8 | 0.987 2 | 0.989 5 | 0.992 7 |
P9 | 0.007 3 | 0.003 8 | 0.003 6 | 0.994 5 | 0.993 3 | 0.996 3 |
P10 | 0.004 3 | 0.003 2 | 0.003 3 | 0.998 8 | 0.996 5 | 0.999 6 |
模型 Model | 模型参数 Model parameter | 各时期的参数值Parameter value at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
MLR | β0 | 40.004 | 42.621 | 47.692 |
β1 | 0.538 | 0.471 | 0.685 | |
β2 | -0.167 | 0.612 | -0.623 | |
β3 | 0.042 | 0.147 | -0.553 | |
β4 | 0.151 | 0.035 | 0.237 | |
β5 | 0.738 | 0.175 | -1.048 | |
SVM | C | 64 | 42 | 26 |
g | 0.2 | 0.1 | 0.1 | |
RF | ntree | 300 | 200 | 200 |
mtry | 3 | 3 | 2 |
表6 建模参数表
Table 6 Modeling parameters
模型 Model | 模型参数 Model parameter | 各时期的参数值Parameter value at different growth stages | ||
---|---|---|---|---|
伸蔓期 Vine stretching stage | 开花期 Flowering stage | 膨果期 Fruit expansion stage | ||
MLR | β0 | 40.004 | 42.621 | 47.692 |
β1 | 0.538 | 0.471 | 0.685 | |
β2 | -0.167 | 0.612 | -0.623 | |
β3 | 0.042 | 0.147 | -0.553 | |
β4 | 0.151 | 0.035 | 0.237 | |
β5 | 0.738 | 0.175 | -1.048 | |
SVM | C | 64 | 42 | 26 |
g | 0.2 | 0.1 | 0.1 | |
RF | ntree | 300 | 200 | 200 |
mtry | 3 | 3 | 2 |
模型 Model | 时期 Period | RMSE | R2 | ||
---|---|---|---|---|---|
训练集Training set | 测试集Test set | 训练集Training set | 测试集Test set | ||
MLR | 伸蔓期Vine stretching stage | 1.72 | 2.52 | 0.70 | 0.56 |
开花期Flowering stage | 1.61 | 1.78 | 0.69 | 0.61 | |
膨果期Fruit expansion stage | 1.78 | 2.12 | 0.74 | 0.72 | |
SVR | 伸蔓期Vine stretching stage | 0.92 | 0.97 | 0.78 | 0.71 |
开花期Flowering stage | 0.92 | 0.93 | 0.80 | 0.77 | |
膨果期Fruit expansion stage | 0.66 | 0.73 | 0.83 | 0.81 | |
RF | 伸蔓期Vine stretching stage | 0.91 | 1.03 | 0.79 | 0.75 |
开花期Flowering stage | 1.28 | 1.32 | 0.77 | 0.76 | |
膨果期Fruit expansion stage | 0.81 | 0.99 | 0.81 | 0.78 |
表7 建模效果对比
Table 7 Comparison of modeling effect
模型 Model | 时期 Period | RMSE | R2 | ||
---|---|---|---|---|---|
训练集Training set | 测试集Test set | 训练集Training set | 测试集Test set | ||
MLR | 伸蔓期Vine stretching stage | 1.72 | 2.52 | 0.70 | 0.56 |
开花期Flowering stage | 1.61 | 1.78 | 0.69 | 0.61 | |
膨果期Fruit expansion stage | 1.78 | 2.12 | 0.74 | 0.72 | |
SVR | 伸蔓期Vine stretching stage | 0.92 | 0.97 | 0.78 | 0.71 |
开花期Flowering stage | 0.92 | 0.93 | 0.80 | 0.77 | |
膨果期Fruit expansion stage | 0.66 | 0.73 | 0.83 | 0.81 | |
RF | 伸蔓期Vine stretching stage | 0.91 | 1.03 | 0.79 | 0.75 |
开花期Flowering stage | 1.28 | 1.32 | 0.77 | 0.76 | |
膨果期Fruit expansion stage | 0.81 | 0.99 | 0.81 | 0.78 |
图5 不同时期支持向量机回归(SVR)模型预测值与实测值的回归散点图 RMSE,均方根误差;R2,决定系数。
Fig.5 Regression scatter diagram of the predicted value by support vector regression (SVR) model and the measure value at different growth stages RMSE, Root mean square error; R2, Coefficient of determination.
[1] | ZARCO-TEJADA P J, MILLER J R, MORALES A, et al. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops[J]. Remote Sensing of Environment, 2004, 90(4): 463-476. |
[2] | RORIE R L, PURCELL L C, MOZAFFARI M, et al. Association of “greenness” in corn with yield and leaf nitrogen concentration[J]. Agronomy Journal, 2011, 103(2): 529-535. |
[3] | 殷星, 侯振安, 冶军, 等. 应用多酚-叶绿素仪监测棉花氮素营养状况研究[J]. 植物营养与肥料学报, 2021, 27(7): 1198-1212. |
YIN X, HOU Z A, YE J, et al. Application of polyphenol-chlorophyll meter to monitor cotton N nutrition status[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1198-1212. (in Chinese with English abstract) | |
[4] | VOLLMANN J, WALTER H, SATO T, et al. Digital image analysis and chlorophyll metering for phenotyping the effects of nodulation in soybean[J]. Computers and Electronics in Agriculture, 2011, 75(1): 190-195. |
[5] | 张伏, 张亚坤, 毛鹏军, 等. 植物叶绿素测量方法研究现状及发展[J]. 农机化研究, 2014, 36(4): 238-241. |
ZHANG F, ZHANG Y K, MAO P J, et al. Status and development of measuring method in plant chlorophyll content[J]. Journal of Agricultural Mechanization Research, 2014, 36(4): 238-241. (in Chinese with English abstract) | |
[6] | ZHANG H C, GE Y F, XIE X Y, et al. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion[J]. Plant Methods, 2022, 18(1): 60. |
[7] | 焦颖. 叶绿素仪在东北春播玉米营养诊断施肥中的应用[J]. 安徽农业科学, 2017, 45(31): 18-19. |
JIAO Y. Application of chlorophyll meter in nutrient diagnosis and fertilization of spring maize in northeast China[J]. Journal of Anhui Agricultural Sciences, 2017, 45(31): 18-19. (in Chinese with English abstract) | |
[8] | 李丽, 程灵. 基于RGB模型建立快速检测番茄叶片叶绿素含量的方法[J]. 分子植物育种, 2021, 19(20): 6906-6909. |
LI L, CHENG L. A method for rapid detection of chlorophyll content in tomato leaves based on RGB model[J]. Molecular Plant Breeding, 2021, 19(20): 6906-6909. (in Chinese with English abstract) | |
[9] | SARKER U, OBA S. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables[J]. Journal of the Science of Food and Agriculture, 2019, 99(5): 2275-2284. |
[10] | 程立真, 朱西存, 高璐璐, 等. 基于RGB模型的苹果叶片叶绿素含量估测[J]. 园艺学报, 2017, 44(2): 381-390. |
CHENG L Z, ZHU X C, GAO L L, et al. Estimation of chlorophyll content in apple leaves based on RGB model using digital camera[J]. Acta Horticulturae Sinica, 2017, 44(2): 381-390. (in Chinese with English abstract) | |
[11] | SÁNCHEZ-SASTRE L F, ALTE DA VEIGA N M S, RUIZ-POTOSME N M, et al. Assessment of RGB vegetation indices to estimate chlorophyll content in sugar beet leaves in the final cultivation stage[J]. AgriEngineering, 2020, 2(1): 128-149. |
[12] | 娄卫东, 林宝刚, 周洪奎, 等. 基于图像特征的油菜叶绿素含量快速估算[J]. 浙江农业科学, 2022, 63(3): 480-484. |
LOU W D, LIN B G, ZHOU H K, et al. Rapid estimation of chlorophyll content for rape based on image features[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(3): 480-484. (in Chinese) | |
[13] | 周利亚, 苑迎春, 宋宇斐, 等. 基于图像处理的小麦叶绿素估测模型研究[J]. 河北农业大学学报, 2018, 41(2): 105-109. |
ZHOU L Y, YUAN Y C, SONG Y F, et al. Research on estimation of wheat chlorophyll using image processing technology[J]. Journal of Hebei Agricultural University, 2018, 41(2): 105-109. (in Chinese with English abstract) | |
[14] | 孙宇露, 王德海, 朱国建. 基于图像分析检测青菜叶绿素含量[J]. 食品与发酵工业, 2016, 42(8): 194-198. |
SUN Y L, WANG D H, ZHU G J. Detection of chlorophyll content of green vegetables leaves based on image analysis technology[J]. Food and Fermentation Industries, 2016, 42(8): 194-198. (in Chinese with English abstract) | |
[15] | 李源彬, 李凌, 穆炯. 基于图像特征的黄瓜叶片叶绿素含量分布测试方法[J]. 山东农业大学学报(自然科学版), 2020, 51(6): 1004-1009. |
LI Y B, LI L, MU J. A test method for chlorophyll content distribution in cucumber leaves based on image features[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(6): 1004-1009. (in Chinese with English abstract) | |
[16] | 郭阳, 郭俊先, 史勇, 等. 基于BiPLS-CARS-PLS的哈密瓜冠层叶片SPAD值反演建模[J]. 浙江农业学报, 2022, 34(10): 2286-2295. |
GUO Y, GUO J X, SHI Y, et al. SPAD inversion model of cantaloupe canopy leaf based on BiPLS-CARS-PLS[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2286-2295. (in Chinese with English abstract) | |
[17] | 范军亮, 王涵, 廖振棋, 等. 基于纹理-颜色特征与植被指数融合的冬小麦LAI估测[J]. 农业机械学报, 2023, 54(7): 347-359. |
FAN J L, WANG H, LIAO Z Q, et al. Winter wheat leaf area index estimation based on texture-color features and vegetation indices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 347-359. (in Chinese with English abstract) | |
[18] | SANTIAGO C B, GUO J Y, SIGMAN M S. Predictive and mechanistic multivariate linear regression models for reaction development[J]. Chemical Science, 2018, 9(9): 2398-2412. |
[19] | 陈鹏, 齐超, 刘人玮, 等. 基于支持向量机回归的LIBS飞灰含碳量定量分析[J]. 光学学报, 2022, 42(9): 278-285. |
CHEN P, QI C, LIU R W, et al. Quantitative analysis of carbon content in fly ash using LIBS based on support vector machine regression[J]. Acta Optica Sinica, 2022, 42(9): 278-285. (in Chinese with English abstract) | |
[20] | DRUCKER H, BURGES C J C, KAUFMAN L, et al. Support vector regression machines[C]// Proceedings of the 9th International Conference on Neural Information Processing Systems. December 3-5, 1996, Denver, Colorado. New York: ACM, 1996: 155-161. |
[21] | 闫文豪, 杨晓莹, 耿鑫, 等. 手持式LIBS结合随机森林用于鱼产品的快速鉴别分析[J]. 光谱学与光谱分析, 2022, 42(12): 3714-3718. |
YAN W H, YANG X Y, GENG X, et al. Rapid identification of fish products using handheld laser induced breakdown spectroscopy combined with random forest[J]. Spectroscopy and Spectral Analysis, 2022, 42(12): 3714-3718. (in Chinese with English abstract) | |
[22] | 李修华, 卢显杰, 奚金阳, 等. 智能手机RGB图像检测植物叶片叶绿素含量的通用方法[J]. 农业工程学报, 2021, 37(22): 145-151. |
LI X H, LU X J, XI J Y, et al. Univeisal method to detect the chlorophyll content in plant leaves with RGB images captured by smart phones[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 145-151. (in Chinese with English abstract) | |
[23] | 孙玉婷, 王映龙, 杨红云, 等. RGB与HSI色彩空间下预测叶绿素相对含量的研究[J]. 浙江农业学报, 2018, 30(10): 1782-1789. |
SUN Y T, WANG Y L, YANG H Y, et al. Prediction of SPAD in rice leaf based on RGB and HSI color space[J]. Acta Agriculturae Zhejiangensis, 2018, 30(10): 1782-1789. (in Chinese with English abstract) |
[1] | 虎丽霞, 张婧, 高彦强, 毛尔晔, 韩康宁, 杨滟, 颉建明. 长时间镁胁迫对芹菜叶绿素荧光特性与抗氧化能力的影响[J]. 浙江农业学报, 2024, 36(2): 295-307. |
[2] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
[3] | 李小霞, 李丹, 李万星, 靳鲲鹏, 刘永忠, 韩文清, 黄学芳, 刘鑫, 田岗, 曹晋军. 不同轮作模式对谷子灌浆期生理特性、产量和品质的影响[J]. 浙江农业学报, 2023, 35(7): 1499-1510. |
[4] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[5] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[6] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[7] | 张志国, 丛琳, 张世杰, 李荣光, 邹维娜, 迟法安, 张宝, 姜玉萍. 根区温度对萱草生长发育及其开花的影响[J]. 浙江农业学报, 2022, 34(5): 1005-1014. |
[8] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[9] | 孙守霞, 陈虹, 吕威, 朴涵琪, 周光辉, 王贺松, 张述斌, 郝金莲. 降尘对阿克苏地区主栽果树叶片光合特性及叶绿素荧光特性的影响[J]. 浙江农业学报, 2022, 34(12): 2659-2668. |
[10] | 王佳, 慕瑞瑞, 杨乔乔, 刘伟, 张月荷, 康建宏. 滴灌水肥一体化下施钾量对宁夏春玉米叶绿素荧光特性与产量的影响[J]. 浙江农业学报, 2021, 33(8): 1347-1357. |
[11] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[12] | 肖志云, 王伊凝. 基于RF-VR的紫丁香叶片叶绿素含量高光谱反演[J]. 浙江农业学报, 2021, 33(11): 2164-2173. |
[13] | 刘寒, 戴远兴, 吕明芳, 袁正杰, 李静, 严成其, 张恒木. 外源水杨酸对水稻苗期生长与防卫相关基因表达的影响[J]. 浙江农业学报, 2021, 33(10): 1789-1796. |
[14] | 宋新丹, 陈斌斌, 马增岭, 徐丽丽, 林立东, 吴明江. 盐度对羊栖菜(Sargassum fusiforme)幼体光合特性的影响[J]. 浙江农业学报, 2020, 32(9): 1634-1644. |
[15] | 刘艺平, 苏少文, 张琳, 刘莹, 黄志远, 贺丹, 孔德政. 外源钙对荷花适应盐胁迫的影响[J]. 浙江农业学报, 2020, 32(2): 243-252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||