浙江农业学报 ›› 2020, Vol. 32 ›› Issue (12): 2211-2217.DOI: 10.3969/j.issn.1004-1524.2020.12.12
喻歆茹(), 何红梅, 王祥云, 李艳杰, 徐玲英, 赵学平, 张昌朋*(
)
收稿日期:
2020-05-14
出版日期:
2020-12-25
发布日期:
2020-12-25
通讯作者:
张昌朋
作者简介:
*张昌朋,E-mail: cpzhang1215@126.com基金资助:
YU Xinru(), HE Hongmei, WANG Xiangyun, LI Yanjie, XU Lingying, ZHAO Xueping, ZHANG Changpeng*(
)
Received:
2020-05-14
Online:
2020-12-25
Published:
2020-12-25
Contact:
ZHANG Changpeng
摘要:
通过田间试验,研究了芹菜设施栽培条件下啶虫脒的沉积与残留规律,并建立了芹菜叶、茎、根,以及土壤中的啶虫咪经乙腈提取、QuEChERs萃取净化和液相色谱串联质谱检测的方法。结果表明:啶虫脒在芹菜叶、茎、根和土壤中的平均回收率分别为100.2%~102.5%、83.9%~93.5%、97.0%~100.1%和90.8%~94.4%,在芹菜设施栽培体系中啶虫脒的沉积量由大到小依次为芹菜叶>土壤>芹菜茎>芹菜根。啶虫脒在芹菜叶的残留消解动态符合一级动力学方程,消解半衰期为4.2~19.4 d。按有效成分18 g·hm-2和27 g·hm-2施药后7 d,设施栽培条件下芹菜叶和茎的啶虫咪残留量分别为0.330 0~2.570 0、0.004 7~0.030 0 mg·kg-1,均低于GB 2763—2019规定的最大残留限量(3 mg·kg-1)。研究结果可为啶虫脒在芹菜设施栽培体系下的合理使用提供科学参考。
中图分类号:
喻歆茹, 何红梅, 王祥云, 李艳杰, 徐玲英, 赵学平, 张昌朋. 啶虫脒在芹菜设施栽培体系下的沉积与残留[J]. 浙江农业学报, 2020, 32(12): 2211-2217.
YU Xinru, HE Hongmei, WANG Xiangyun, LI Yanjie, XU Lingying, ZHAO Xueping, ZHANG Changpeng. Deposition and residue of acetamiprid under protected celery cultivation[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2211-2217.
样品 Sample | 添加水平 Spike level/(mg·kg-1) | 回收率Recovery/% | 平均回收率 Average recovery/% | 相对标准偏差 RSD/% | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
芹菜叶 | 0.05 | 107.2 | 104.2 | 99.2 | 95.2 | 98.0 | 104.7 | 101.4 | 4.6 |
Celery leaf | 0.10 | 101.4 | 100.4 | 107.5 | 105.2 | 93.8 | 93.1 | 100.2 | 5.8 |
1.00 | 103.5 | 112.0 | 97.1 | 98.8 | 93.3 | 110.4 | 102.5 | 7.3 | |
芹菜茎 | 0.05 | 81.1 | 81.2 | 83.8 | 87.3 | 81.9 | 88.3 | 83.9 | 3.7 |
Celery stem | 0.10 | 82.2 | 89.6 | 95.7 | 87.9 | 105.0 | 100.7 | 93.5 | 9.1 |
1.00 | 87.2 | 96.2 | 92.8 | 92.5 | 90.2 | 99.2 | 93.0 | 4.6 | |
芹菜根 | 0.05 | 106.5 | 98.2 | 93.6 | 94.5 | 93.5 | 98.3 | 97.4 | 5.0 |
Celery root | 0.10 | 101.5 | 100.5 | 96.3 | 100.5 | 100.6 | 101.3 | 100.1 | 1.9 |
1.00 | 99.7 | 96.9 | 98.8 | 90.4 | 94.8 | 101.4 | 97.0 | 4.1 | |
土壤Soil | 0.02 | 85.4 | 89.6 | 92.9 | 103.8 | 89.4 | 90.7 | 92.0 | 6.8 |
0.20 | 81.2 | 80.6 | 94.9 | 97.2 | 96.3 | 94.7 | 90.8 | 8.5 | |
1.00 | 86.0 | 96.3 | 96.8 | 95.4 | 102.5 | 89.2 | 94.4 | 6.2 |
表1 啶虫脒的添加回收率和相对标准偏差
Table 1 Recoveries and relative standard deviations of acetamiprid
样品 Sample | 添加水平 Spike level/(mg·kg-1) | 回收率Recovery/% | 平均回收率 Average recovery/% | 相对标准偏差 RSD/% | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
芹菜叶 | 0.05 | 107.2 | 104.2 | 99.2 | 95.2 | 98.0 | 104.7 | 101.4 | 4.6 |
Celery leaf | 0.10 | 101.4 | 100.4 | 107.5 | 105.2 | 93.8 | 93.1 | 100.2 | 5.8 |
1.00 | 103.5 | 112.0 | 97.1 | 98.8 | 93.3 | 110.4 | 102.5 | 7.3 | |
芹菜茎 | 0.05 | 81.1 | 81.2 | 83.8 | 87.3 | 81.9 | 88.3 | 83.9 | 3.7 |
Celery stem | 0.10 | 82.2 | 89.6 | 95.7 | 87.9 | 105.0 | 100.7 | 93.5 | 9.1 |
1.00 | 87.2 | 96.2 | 92.8 | 92.5 | 90.2 | 99.2 | 93.0 | 4.6 | |
芹菜根 | 0.05 | 106.5 | 98.2 | 93.6 | 94.5 | 93.5 | 98.3 | 97.4 | 5.0 |
Celery root | 0.10 | 101.5 | 100.5 | 96.3 | 100.5 | 100.6 | 101.3 | 100.1 | 1.9 |
1.00 | 99.7 | 96.9 | 98.8 | 90.4 | 94.8 | 101.4 | 97.0 | 4.1 | |
土壤Soil | 0.02 | 85.4 | 89.6 | 92.9 | 103.8 | 89.4 | 90.7 | 92.0 | 6.8 |
0.20 | 81.2 | 80.6 | 94.9 | 97.2 | 96.3 | 94.7 | 90.8 | 8.5 | |
1.00 | 86.0 | 96.3 | 96.8 | 95.4 | 102.5 | 89.2 | 94.4 | 6.2 |
图2 芹菜设施栽培体系各部分的啶虫脒沉积质量分数 A、B,浙江点;C、D,山东点。A、C,推荐高剂量(27 g·hm-2);B、D,推荐低剂量(18 g·hm-2)。
Fig.2 Mass fraction of acetamiprid in different parts of celery and soil under protected cultivation A, B, Zhejiang; C, D, Shandong. A, C, Recommended high dose (27 g·hm-2); B, D, Recommended low dose (18 g·hm-2).
试验点 Location | 剂量 Dose/(g·hm-2) | t | 芹菜叶 Celery leaf | 芹菜茎 Celery stem | 芹菜根 Celery root | 土壤 Soil |
---|---|---|---|---|---|---|
Zhejiang | 27 | 2 h | 2.840 0±0.250 0 | 0.120 0±0.016 0 | 0.028 0±0.013 0 | 0.003 5±0.000 2 |
1 d | 4.080 0±0.610 0 | 0.100 0±0.002 9 | 0.200 0±0.032 0 | 0.001 8±0.000 5 | ||
3 d | 4.110 0±0.420 0 | 0.110 0±0.016 0 | 0.160 0±0.031 0 | — | ||
5 d | 2.910 0±0.240 0 | 0.047 0±0.002 2 | 0.084 0±0.010 0 | — | ||
7 d | 2.570 0±0.420 0 | 0.030 0±0.002 1 | 0.031 0±0.006 4 | — | ||
14 d | 2.670 0±0.320 0 | 0.011 0±0.001 1 | 0.014 0±0.001 6 | — | ||
21 d | 1.890 0±0.230 0 | 0.006 8±0.001 7 | 0.009 4±0.001 4 | — | ||
18 | 2 h | 1.160 0±0.100 0 | 0.059 0±0.004 8 | 0.039 0±0.001 3 | 0.006 0±0.000 6 | |
1 d | 1.890 0±0.310 0 | 0.072 0±0.012 0 | 0.067 0±0.005 9 | 0.000 6±0.000 1 | ||
3 d | 2.400 0±0.480 0 | 0.042 0±0.004 0 | 0.048 0±0.006 9 | 0.000 3±0.000 4 | ||
5 d | 1.580 0±0.210 0 | 0.017 0±0.001 4 | 0.017 0±0.000 2 | — | ||
7 d | 1.860 0±0.190 0 | 0.014 0±0.002 4 | 0.012 0±0.002 2 | — | ||
14 d | 1.110 0±0.210 0 | 0.002 0±0.000 1 | 0.004 5±0.000 1 | — | ||
21 d | 0.870 0±0.093 0 | 0.001 8±0.000 5 | 0.003 7±0.000 5 | — | ||
Shandong | 27 | 2 h | 1.790 0±0.200 0 | 0.046 0±0.009 0 | 0.061 0±0.003 1 | 0.000 5±0.000 1 |
1 d | 0.950 0±0.055 0 | 0.022 0±0.004 3 | 0.022 0±0.003 5 | 0.000 4±0.000 2 | ||
3 d | 0.680 0±0.078 0 | 0.016 0±0.005 7 | 0.009 2±0.000 6 | — | ||
5 d | 0.630 0±0.008 0 | 0.007 8±0.002 9 | 0.008 0±0.000 2 | — | ||
7 d | 0.420 0±0.068 0 | 0.004 7±0.000 3 | 0.005 3±0.000 2 | — | ||
14 d | 0.150 0±0.021 0 | 0.001 2±0.000 1 | 0.003 5±0.000 2 | — | ||
21 d | 0.039 0±0.018 0 | 0.000 6±0.000 1 | 0.001 7±0.000 2 | — | ||
18 | 2 h | 1.000 0±0.020 0 | 0.017 0±0.003 9 | 0.002 8±0.000 3 | 0.001 1±0.001 6 | |
1 d | 0.520 0±0.057 0 | 0.013 0±0.003 4 | 0.007 5±0.000 9 | — | ||
3 d | 0.400 0±0.045 0 | 0.004 7±0.001 4 | 0.005 9±0.001 3 | — | ||
5 d | 0.590 0±0.073 0 | 0.005 3±0.000 7 | 0.003 6±0.000 5 | — | ||
7 d | 0.330 0±0.091 0 | 0.004 7±0.000 8 | 0.003 5±0.000 9 | — | ||
14 d | 0.100 0±0.008 0 | 0.001 3±0.000 4 | 0.002 8±0.000 6 | — | ||
21 d | 0.210 0±0.081 0 | 0.000 9±0.000 1 | 0.001 7±0.000 3 | — |
表2 啶虫脒在芹菜设施栽培体系中的残留量
Table 2 Acetamiprid residues in different parts of celery and soil under protected cultivation mg·kg-1
试验点 Location | 剂量 Dose/(g·hm-2) | t | 芹菜叶 Celery leaf | 芹菜茎 Celery stem | 芹菜根 Celery root | 土壤 Soil |
---|---|---|---|---|---|---|
Zhejiang | 27 | 2 h | 2.840 0±0.250 0 | 0.120 0±0.016 0 | 0.028 0±0.013 0 | 0.003 5±0.000 2 |
1 d | 4.080 0±0.610 0 | 0.100 0±0.002 9 | 0.200 0±0.032 0 | 0.001 8±0.000 5 | ||
3 d | 4.110 0±0.420 0 | 0.110 0±0.016 0 | 0.160 0±0.031 0 | — | ||
5 d | 2.910 0±0.240 0 | 0.047 0±0.002 2 | 0.084 0±0.010 0 | — | ||
7 d | 2.570 0±0.420 0 | 0.030 0±0.002 1 | 0.031 0±0.006 4 | — | ||
14 d | 2.670 0±0.320 0 | 0.011 0±0.001 1 | 0.014 0±0.001 6 | — | ||
21 d | 1.890 0±0.230 0 | 0.006 8±0.001 7 | 0.009 4±0.001 4 | — | ||
18 | 2 h | 1.160 0±0.100 0 | 0.059 0±0.004 8 | 0.039 0±0.001 3 | 0.006 0±0.000 6 | |
1 d | 1.890 0±0.310 0 | 0.072 0±0.012 0 | 0.067 0±0.005 9 | 0.000 6±0.000 1 | ||
3 d | 2.400 0±0.480 0 | 0.042 0±0.004 0 | 0.048 0±0.006 9 | 0.000 3±0.000 4 | ||
5 d | 1.580 0±0.210 0 | 0.017 0±0.001 4 | 0.017 0±0.000 2 | — | ||
7 d | 1.860 0±0.190 0 | 0.014 0±0.002 4 | 0.012 0±0.002 2 | — | ||
14 d | 1.110 0±0.210 0 | 0.002 0±0.000 1 | 0.004 5±0.000 1 | — | ||
21 d | 0.870 0±0.093 0 | 0.001 8±0.000 5 | 0.003 7±0.000 5 | — | ||
Shandong | 27 | 2 h | 1.790 0±0.200 0 | 0.046 0±0.009 0 | 0.061 0±0.003 1 | 0.000 5±0.000 1 |
1 d | 0.950 0±0.055 0 | 0.022 0±0.004 3 | 0.022 0±0.003 5 | 0.000 4±0.000 2 | ||
3 d | 0.680 0±0.078 0 | 0.016 0±0.005 7 | 0.009 2±0.000 6 | — | ||
5 d | 0.630 0±0.008 0 | 0.007 8±0.002 9 | 0.008 0±0.000 2 | — | ||
7 d | 0.420 0±0.068 0 | 0.004 7±0.000 3 | 0.005 3±0.000 2 | — | ||
14 d | 0.150 0±0.021 0 | 0.001 2±0.000 1 | 0.003 5±0.000 2 | — | ||
21 d | 0.039 0±0.018 0 | 0.000 6±0.000 1 | 0.001 7±0.000 2 | — | ||
18 | 2 h | 1.000 0±0.020 0 | 0.017 0±0.003 9 | 0.002 8±0.000 3 | 0.001 1±0.001 6 | |
1 d | 0.520 0±0.057 0 | 0.013 0±0.003 4 | 0.007 5±0.000 9 | — | ||
3 d | 0.400 0±0.045 0 | 0.004 7±0.001 4 | 0.005 9±0.001 3 | — | ||
5 d | 0.590 0±0.073 0 | 0.005 3±0.000 7 | 0.003 6±0.000 5 | — | ||
7 d | 0.330 0±0.091 0 | 0.004 7±0.000 8 | 0.003 5±0.000 9 | — | ||
14 d | 0.100 0±0.008 0 | 0.001 3±0.000 4 | 0.002 8±0.000 6 | — | ||
21 d | 0.210 0±0.081 0 | 0.000 9±0.000 1 | 0.001 7±0.000 3 | — |
[1] | 滕宏飞. 高效农业发展的现状及思路与对策[J]. 中国农村小康科技, 2008(4):17-21. |
TENG H F. The status quo, thinking and countermeasures of efficient agricultural development[J]. Chinese Countryside Well-Off Technology, 2008(4):17-21.(in Chinese) | |
[2] | 刘晓明. 大棚蔬菜生产实现机械化作业的可行性[J]. 农机科技推广, 2014(3):40. |
LIU X M. Feasibility of mechanized operation in greenhouse vegetable production[J]. Agriculture Machinery Technology Extension, 2014(3):40. (in Chinese) | |
[3] | 陈正法, 张茜茜, 梁称福. 我国日光温室的种植模式及其发展对策[J]. 江西农业科技, 2000(1):34-36. |
CHEN Z F, ZHANG Q Q, LIANG C F. Planting model and development strategies of solar greenhouse in China[J]. Jiangxi Agricultural Science & Technology, 2000(1):34-36. (in Chinese) | |
[4] | 张大为. 水肥一体化技术对冬暖大棚黄瓜生产的影响[J]. 农业工程技术, 2018,38(17):20-21. |
ZHANG D W. Effect of integrated water and fertilizer technology on cucumber production in greenhouse[J]. Agricultural Engineering Technology, 2018,38(17):20-21. (in Chinese) | |
[5] | 云祥瑞, 董玉秋, 张军. 温室内的生态环境条件与露地环境条件相比有哪些不同[J]. 吉林蔬菜, 2014(4):34. |
YUN X R, DONG Y Q, ZHANG J. What are the differences between the eco-environmental conditions in the greenhouse and the open-field environmental conditions[J]. Jilin Vegetable, 2014(4):34.(in Chinese) | |
[6] |
ALONSO-AYUSO M, QUEMADA M, VANCLOOSTER M, et al. Assessing cover crop management under actual and climate change conditions[J]. The Science of the Total Environment, 2018,621:1330-1341.
DOI URL PMID |
[7] | 涂美艳, 江国良, 杜晋城, 等. 大棚内外温湿度对枇杷春梢和果实生长发育的影响[J]. 西南农业学报, 2011,24(6):2336-2341. |
TU M Y, JIANG G L, DU J C, et al. Effects of air temperature and relative humidity on growth and development of spring shoot and fruit of loquat[J]. Southwest China Journal of Agricultural Sciences, 2011,24(6):2336-2341.(in Chinese with English abstract) | |
[8] | 白云明. 设施农业土壤中百菌清和毒死蜱的时空变化特征及其影响机制[D]. 杭州: 浙江工业大学, 2012. |
BAI Y M. Spatial and temporal distribution of chlorothalonil and chlorpyrifos in the facility soil and their effect mechanism[D]. Hangzhou: Zhejiang University of Technology, 2012.(in Chinese with English abstract) | |
[9] | 尚子帅. 保护地和露地蔬菜上四种农药残留消解的比较研究[D]. 杭州: 浙江大学, 2012. |
SHANG Z S. Residue dissipation of four pesticides on vegetables in comparison with the greenhouse and the field[D]. Hangzhou: Zhejiang University, 2012.(in Chinese with English abstract) | |
[10] | 刘淑芹, 王连刚, 张永志. 保护地番茄主要病害及其防治技术[J]. 中国果菜, 2010,30(4):51-53. |
LIU S Q, WANG L G, ZHANG Y Z. The main tomato diseases in protected fields and their control techniques[J]. China Fruit & Vegetable, 2010,30(4):51-53. (in Chinese) | |
[11] | 杨江龙. 不同种植方式蔬菜中农药残留的差异及污染控制研究[J]. 环境污染与防治, 2014,36(9):70-73. |
YANG J L. Difference research of pesticides residues in vegetables planting under different patterns and its environmental pollution control[J]. Environmental Pollution & Control, 2014,36(9):70-73.(in Chinese with English abstract) | |
[12] | ARIAS-ESTÉVEZ M, LÓPEZ-PERIAGO E, MARTÍNEZ-CARBALLO E, et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources[J]. Agriculture, Ecosystems & Environment, 2008,123(4):247-260. |
[13] | 黄旗. 啶虫脒对烟蚜防效与农药残留检测方法及残留降解规律[D]. 北京: 中国农业科学院, 2013. |
HUANG Q. The pesticide residue degradation, detection and control efficiency to aphid of acetamiprid[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.(in Chinese with English abstract) | |
[14] |
CLOYD R A, BETHKE J A. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments[J]. Pest Management Science, 2011,67(1):3-9.
URL PMID |
[15] |
GUPTA M, SHANKER A. Persistence of acetamiprid in tea and its transfer from made tea to infusion[J]. Food Chemistry, 2008,111(4):805-810.
DOI URL |
[16] | 李喆. 新烟碱类杀虫剂的环境残留及风险评价研究[D]. 杭州: 浙江工业大学, 2017. |
LI Z. The environmental residue and risk assessment of neonicotinoid insecticides[D]. Hangzhou: Zhejiang University of Technology, 2017.(in Chinese with English abstract) | |
[17] | 王贤鞠. 蔬菜农药残留现状及潜在风险分析[J]. 北京农业, 2015(9):34. |
WANG X J. Analysis of current situation and potential risk of vegetable pesticide residues[J]. Beijing Agriculture, 2015(9):34.(in Chinese) | |
[18] | 丁悦, 孙星, 汪佳蕾, 等. 露地和大棚条件下啶虫脒在黄瓜和土壤中的残留及消解动态[J]. 农药学学报, 2014,16(1):110-114. |
DING Y, SUN X, WANG J L, et al. Residue and dissipation of acetamiprid in cucumber and soil under open field and greenhouse conditions[J]. Chinese Journal of Pesticide Science, 2014,16(1):110-114.(in Chinese with English abstract) | |
[19] | 黄兰淇, 马琳, 占绣萍, 等. 露地和大棚条件下噻虫嗪和啶虫脒在青菜中的残留及消解动态[J]. 农药, 2018,57(1):42-45. |
HUANG L Q, MA L, ZHAN X P, et al. Residue and decline study of thiamethoxam and acetamiprid in pakchoi under open field and greenhouse conditions[J]. Agrochemicals, 2018,57(1):42-45.(in Chinese with English abstract) | |
[20] | 乔琳. 新烟碱类杀虫剂在金银花种植与加工过程中的降解及安全性评价[D]. 合肥: 安徽农业大学, 2014. |
QIAO L. Dissipation behaviors and safety evaluations of selected neonicotinoid insecticides during Lonicera japonica planting and brewing process[D]. Hefei: Anhui Agricultural University, 2014.(in Chinese with English abstract) | |
[21] | 成婧, 王美玲, 朱绍华, 等. 固相萃取-高效液相色谱-串联质谱法测定茶叶中啶虫脒、吡虫啉和氟虫腈残留量[J]. 食品安全质量检测学报, 2016,7(1):131-137. |
CHENG J, WANG M L, ZHU S H, et al. Determination of imidacloprid, acetamiprid and fipronil residues in tea by high performance liquid chromatography-tandem mass spectrometry coupled with solid-phase extraction[J]. Journal of Food Safety & Quality, 2016,7(1):131-137.(in Chinese with English abstract) | |
[22] |
CHAKROUN S, EZZI L, GRISSA I, et al. Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats[J]. Environmental Science and Pollution Research, 2016,23(24):25191-25199.
DOI URL PMID |
[23] | 王静, 朱九生, 高海燕, 等. 7种农药对家蚕的毒性评价及中毒症状学观察[J]. 生态毒理学报, 2010,5(1):57-62. |
WANG J, ZHU J S, GAO H Y, et al. Toxicological evaluation of seven pesticides to Bombyx mori and observation of toxicosis symptoms[J]. Asian Journal of Ecotoxicology, 2010,5(1):57-62.(in Chinese with English abstract) | |
[24] | 庾琴, 秦曙, 王霞, 等. 温度、光照及生物因子对啶虫脒和吡虫啉在油菜叶面消解的影响[J]. 农药学学报, 2006,8(2):147-151. |
YU Q, QIN S, WANG X, et al. Dissipation of acetamiprid and imidacloprid under different temperature, light and biological factors on phyllosphere of Brassica chinensis[J]. Chinese Journal of Pesticide Science, 2006,8(2):147-151.(in Chinese with English abstract) | |
[25] | 唐红霞, 温广月, 孙强, 等. 杀虫环和啶虫脒在普通白菜中的残留及消解动态[J]. 上海农业学报, 2020,36(3):96-101. |
TANG H X, WEN G Y, SUN Q, et al. Residues and dissipation dynamics of thiocyclam and acetamiprid in pakchoi[J]. Acta Agriculturae Shanghai, 2020,36(3):96-101.(in Chinese with English abstract) |
[1] | 田培, 赵慧宇, 刘之炜, 王娇, 狄珊珊, 徐浩, 汪志威, 王新全, 齐沛沛. 杨梅中灭蝇胺及其代谢物检测方法与风险评估[J]. 浙江农业学报, 2021, 33(3): 534-540. |
[2] | 沈迪, 陈龙正, 路晓华, 陶建平, 冯顾城, 刘洁霞, 冯凯, 尹莲, 丁旭, 贾丽丽, 徐志胜, 刘惠吉, 熊爱生. 苏南地区29个秋冬茬芹菜品种资源评价[J]. 浙江农业学报, 2020, 32(4): 653-660. |
[3] | 王娣, 狄珊珊, 王新全, 张昌朋, 王祥云, 王萌. 丁硫克百威在豇豆不同时期施用的降解代谢研究[J]. 浙江农业学报, 2020, 32(11): 2050-2058. |
[4] | 杨梅, 罗逢健, 周利, 楼正云, 张新忠, 孙荷芝, 王新茹, 陈宗懋. 国内外茶叶农药最大残留限量标准比较分析与建议[J]. 浙江农业学报, 2020, 32(1): 168-175. |
[5] | 张春荣, 单凌燕, 郭钤, 许振岚, 何红梅, 吴珉, 赵学平. 异恶唑草酮在环境介质中的挥发、土壤吸附和水-沉积物系统降解特性[J]. 浙江农业学报, 2019, 31(6): 930-937. |
[6] | 何开雨, 汤涛, 宣彩迪, 吴园园, 何红梅, 吴珉, 赵学平, 徐霞红, 王强. 氨唑草酮的水解、挥发及其在水-沉积物系统中的降解特性[J]. 浙江农业学报, 2019, 31(12): 2057-2063. |
[7] | 章丽君, 章虎, 徐明飞, 林春绵, 吴慧珍, 徐杰, 钱鸣蓉. 葡萄酿制过程中5种杀菌剂的残留变化[J]. 浙江农业学报, 2019, 31(1): 149-154. |
[8] | 方琦, 张俊, 周锦云. 加工过程对柑橘罐头多菌灵残留的影响[J]. 浙江农业学报, 2018, 30(9): 1599-1603. |
[9] | 虞游毅, 杨璐, 廖享, 程平, 武胜利, 李宏. 高效氯氟氰菊酯和氯氰菊酯在苹果中的残留降解动态及其去除方法[J]. 浙江农业学报, 2018, 30(8): 1376-1381. |
[10] | 王京文, 谢国雄, 李丹, 章明奎. 盐渍化与酸化对设施栽培土壤镉活化的叠加作用[J]. 浙江农业学报, 2018, 30(5): 810-816. |
[11] | 李真, 孙彩霞, 戴芬, 郑蔚然, 于国光, 姚佳蓉, 王强. 食品安全国家标准GB 2763—2016对葡萄的新要求[J]. 浙江农业学报, 2018, 30(5): 840-847. |
[12] | 刘英, 李韵之, 陈列忠, 王彦华, 许振岚, 蒋金花, 汤涛, 陈文学, 王强, 张昌朋. QuEChERS-LC-MS/MS测定芹菜中吡虫啉和唑螨酯[J]. 浙江农业学报, 2018, 30(2): 261-267. |
[13] | 陈重军, 刘玉学, 冯宇, 王建芳. 添加竹炭对设施菜地土壤氮磷流失和微生物群落结构的影响[J]. 浙江农业学报, 2018, 30(1): 123-128. |
[14] | 向天勇, 钱广, 朱杰, 单胜道, 蓝建明. 稻秸水热炭化的多轮沉积反应[J]. 浙江农业学报, 2018, 30(1): 137-143. |
[15] | 吴声敢, 关文碧, 柳新菊, 安雪花, 吕露, 赵学平. 草莓中农药最大残留限量标准比较[J]. 浙江农业学报, 2017, 29(3): 460-468. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||