[1] |
孙宏伟, 王泽岩, 任少敏, 等. 猪主要腹泻病的发病机制综述[J]. 中国动物检疫, 2016, 33(3): 63-66.
|
|
SUN H W, WANG Z Y, REN S M, et al. Summary on the pathogenesis of porcine primary diarrhea diseases[J]. China Animal Health Inspection, 2016, 33(3): 63-66. (in Chinese with English abstract)
|
[2] |
任军, 晏学明, 艾华水, 等. 仔猪断奶前腹泻抗病基因育种技术的创建及应用[J]. 猪业科学, 2012, 29(1): 44-48.
|
|
REN J, YAN X M, AI H S, et al. Establishment and application of disease-resistant gene breeding technology for diarrhea in piglets before weaning[J]. Swine Industry Science, 2012, 29(1): 44-48. (in Chinese)
|
[3] |
方宇瑜, 吴艳, 高硕, 等. 苏淮猪群体抗腹泻基因MUC13和FUT1多态性分析及其抗腹泻选育方案研究[J]. 畜牧与兽医, 2015, 47(12): 12-17.
|
|
FANG Y Y, WU Y, GAO S, et al. Polymorphism analysis of anti-diarrhea genes MUC13 and FUT1 in Suhuai pigs and its selective breeding on anti-diarrhea traits[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(12): 12-17. (in Chinese with English abstract)
|
[4] |
ZHANG X Q, LI C, ZHANG B Z, et al. Differential expression and correlation analysis of miRNA-mRNA profiles in swine testicular cells infected with porcine epidemic diarrhea virus[J]. Scientific Reports, 2021, 11: 1868.
|
[5] |
WU Z C, QIN W Y, WU S, et al. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets[J]. Biology Direct, 2016, 11(1): 1-19.
|
[6] |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504.
|
[7] |
TUIKKALA J, VÄHÄMAA H, SALMELA P, et al. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization[J]. BioData Mining, 2012, 5: 2.
|
[8] |
HUANG D W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protocols, 2009, 4(1): 44-57.
|
[9] |
DAWIDOWSKA M, JAKSIK R, DROBNA M, et al. Comprehensive investigation of miRNome identifies novel candidate miRNA-mRNA interactions implicated in T-cell acute lymphoblastic leukemia[J]. Neoplasia, 2019, 21(3): 294-310.
|
[10] |
WEBER M J. New human and mouse microRNA genes found by homology search[J]. Genome, 2006, 49(10): 1283-1286.
|
[11] |
KIM J, CHO I S, HONG J S, et al. Identification and characterization of new microRNAs from pig[J]. Mammalian Genome, 2008, 19(7/8): 570-580.
|
[12] |
王伟, 滚双宝, 王鹏飞, 等. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573.
|
|
WANG W, GUN S B, WANG P F, et al. Tissue expression and significant target genes analysis of swine miR-204[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1564-1573. (in Chinese with English abstract)
|
[13] |
朱静静, 周晓龙, 汪涵, 等. 靶向猪内质网应激通路的microRNAs预测与验证[J]. 中国农业科学, 2020, 53(15): 3169-3179.
|
|
ZHU J J, ZHOU X L, WANG H, et al. Prediction and verification of microRNAs targeting porcine endoplasmic reticulum stress pathway[J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179. (in Chinese with English abstract)
|
[14] |
楚丹, 冉茂良, 卞桥, 等. miR-139进化分析、靶基因功能预测以及在猪睾丸组织中的表达分析[J]. 中国畜牧杂志, 2022, 58(4): 77-83.
|
|
CHU D, RAN M L, BIAN Q, et al. Evolution analysis, target gene function prediction and expression analysis of miR-139 in pig testis[J]. Chinese Journal of Animal Science, 2022, 58(4): 77-83. (in Chinese)
|
[15] |
张名媛, 郭晓萍, 孙晴超, 等. 广西巴马小型猪miR-148b慢病毒制备及靶基因通路预测分析[J]. 南方农业学报, 2019, 50(7): 1596-1604.
|
|
ZHANG M Y, GUO X P, SUN Q C, et al. Construction of miR-148b lentivirus vector and prediction of target gene pathways in Guangxi Bama mini-pig[J]. Journal of Southern Agriculture, 2019, 50(7): 1596-1604. (in Chinese with English abstract)
|
[16] |
HUANG Y A, LIN L Y, YU X T, et al. Functional involvements of heterogeneous nuclear ribonucleoprotein A1 in smooth muscle differentiation from stem cells in vitro and in vivo[J]. Stem Cells, 2013, 31(5): 906-917.
|
[17] |
BORENSZTEIN M, MONNIER P, COURT F, et al. Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse[J]. Development, 2013, 140(6): 1231-1239.
|
[18] |
TRITSCH E, MALLAT Y, LEFEBVRE F, et al. An SRF/miR-1 axis regulates NCX1 and Annexin A5 protein levels in the normal and failing heart[J]. Cardiovascular Research, 2013, 98(3): 372-380.
|
[19] |
VULTAGGIO A, NENCINI F, PRATESI S, et al. The TLR7 ligand 9-benzyl-2-butoxy-8-hydroxy adenine inhibits IL-17 response by eliciting IL-10 and IL-10-inducing cytokines[J]. The Journal of Immunology, 2011, 186(8): 4707-4715.
|
[20] |
VULTAGGIO A, NENCINI F, FITCH P M, et al. Modified adenine (9-benzyl-2-butoxy-8-hydroxyadenine) redirects Th2-mediated murine lung inflammation by triggering TLR7[J]. The Journal of Immunology, 2009, 182(2): 880-889.
|
[21] |
ZHU H, LU W, LAURENT C, et al. Genes encoding catalytic subunits of protein kinase A and risk of spina bifida[J]. Birth Defects Research. Part A, Clinical and Molecular Teratology, 2005, 73(9): 591-6.
|
[22] |
LEE N, BATT M K, CRONIER B A, et al. Ciliary neurotrophic factor receptor regulation of adult forebrain neurogenesis[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2013, 33(3): 1241-1258.
|
[23] |
YANG C X, ZHANG K, ZHANG A X, et al. Co-expression network modeling identifies specific inflammation and neurological disease-related genes mRNA modules in mood disorder[J]. Frontiers in Genetics, 2022, 13: 865015.
|
[24] |
SHENG Y, TRIYANA S, WANG R, et al. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli[J]. Mucosal immunology, 2013, 6(3): 557-568.
|
[25] |
BEUTLER B, POLTORAK A. Sepsis and evolution of the innate immune response[J]. Critical Care Medicine, 2001, 29: S2-S6.
|
[26] |
BEUTLER B. Inferences, questions and possibilities in Toll-like receptor signalling[J]. Nature, 2004, 430(6996): 257-263.
|
[27] |
ABREU M T, VORA P, FAURE E, et al. Decreased expression of toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide[J]. The Journal of Immunology, 2001, 167(3): 1609-1616.
|
[28] |
MOYNAGH P N. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway[J]. Trends in Immunology, 2005, 26(9): 469-476.
|
[29] |
HIMMEL M E, HARDENBERG G, PICCIRILLO C A, et al. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease[J]. Immunology, 2008, 125(2): 145-153.
|
[30] |
SZEBENI B, VERES G, DEZSÕFI A, et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease[J]. Clinical and Experimental Immunology, 2008, 151(1): 34-41.
|