[1] LI S, LIAO Y L, CHAN W, et al.Interrogation of rabbit miRNAs and their isomiRs[J]. Genomics, 2011, 98(6): 453-459. [2] ZHAO B H, CHEN Y, MU L, et al.Identification and profiling of microRNA between back and belly skin in rex rabbits (Oryctolagus cuniculus)[J]. World Rabbit Science, 2018, 26(2): 179-190. [3] ZHAO B H, CHEN Y, HU S S, et al.Systematic analysis of non-coding RNAs involved in the angora rabbit (Oryctolagus cuniculus) hair follicle cycle by RNA sequencing[J]. Frontiers in Genetics, 2019, 10: 407. [4] YANG Q Q, XU X P, ZHAO H S, et al.Differential expression of microRNA related to irritable bowel syndrome in a rabbit model[J]. Journal of Digestive Diseases, 2017, 18(6): 330-342. [5] YAN N H, MA K, MA J, et al.Profiling MicroRNAs differentially expressed in rabbit retina[M]//Retinal Degenerative Diseases. New York, NY: Springer New York, 2009: 203-209. [6] LEE R C, FEINBAUM R L, AMBROS V.The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854. [7] REINHART B J, SLACK F J, BASSON M, et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906. [8] FIRE A, XU S Q, MONTGOMERY M K, et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. [9] LAU N C.An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J]. Science, 2001, 294(5543): 858-862. [10] LAGOS-QUINTANA M.Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543): 853-858. [11] LEE R C.An extensive class of small RNAs in Caenorhabditis elegans[J]. Science, 2001, 294(5543): 862-864. [12] KAUFMAN E J, MISKA E A.The microRNAs of Caenorhabditis elegans[J]. Seminars in Cell & Developmental Biology, 2010, 21(7): 728-737. [13] CHIANG H R, SCHOENFELD L W, RUBY J G, et al.Mammalian microRNAs: experimental evaluation of novel and previously annotated genes[J]. Genes & Development, 2010, 24(10): 992-1009. [14] RUBY J G, JAN C, PLAYER C, et al.Large-scale sequencing reveals 21U-RNAs and additional MicroRNAs and endogenous siRNAs in C. elegans[J]. Cell, 2006, 127(6): 1193-1207. [15] GRIFFITHS-JONES S.MiRBase: the MicroRNA sequence database[M]//MicroRNA Protocols. New Jersey: Humana Press, 2006: 129-138. [16] MOSS E G, LEE R C, AMBROS V.The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA[J]. Cell, 1997, 88(5): 637-646. [17] OLSEN P H, AMBROS V.The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking lin-14 protein synthesis after the initiation of translation[J]. Developmental Biology, 1999, 216(2): 671-680. [18] LEE Y, AHN C, HAN J J, et al.The nuclear RNase III Drosha initiates microRNA processing[J]. Nature, 2003, 425(6956): 415-419. [19] LIU X H, FORTIN K, MOURELATOS Z.MicroRNAs: biogenesis and molecular functions[J]. Brain Pathology, 2008, 18(1): 113-121. [20] HUTVAGNER G.A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science, 2002, 297(5589): 2056-2060. [21] LLAVE C.Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA[J]. Science, 2002, 297(5589): 2053-2056. [22] BAGGA S, BRACHT J, HUNTER S, et al.Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation[J]. Cell, 2005, 122(4): 553-563. [23] YEKTA S.MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science, 2004, 304(5670): 594-596. [24] RUBY J G, STARK A, JOHNSTON W K, et al.Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs[J]. Genome Research, 2007, 17(12): 1850-1864. [25] STARK A, BRENNECKE J, BUSHATI N, et al.Animal microRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution[J]. Cell, 2005, 123(6): 1133-1146. [26] LEWIS B P, BURGE C B, BARTEL D P.Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120(1): 15-20. [27] BRENNECKE J, HIPFNER D R, STARK A, et al.Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J]. Cell, 2003, 113(1): 25-36. [28] GAO Y, SCHUG J, MCKENNA L B, et al.Tissue-specific regulation of mouse MicroRNA genes in endoderm-derived tissues[J]. Nucleic Acids Research, 2011, 39(2): 454-463. [29] ZHAO Y, SAMAL E, SRIVASTAVA D.Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436(7048): 214-220. [30] RAO P K, KUMAR R M, FARKHONDEH M, et al.Myogenic factors that regulate expression of muscle-specific microRNAs[J]. Proceedings of the National Academy of Sciences, 2006, 103(23):8721-8726. [31] CHEN J F, MANDEL E M, THOMSON J M, et al.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nature Genetics, 2006, 38(2): 228-233. [32] SWEETMAN D, GOLJANEK K, RATHJEN T, et al.Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133[J]. Developmental Biology, 2008, 321(2): 491-499. [33] KIM H K, LEE Y S, SIVAPRASAD U, et al.Muscle-specific microRNA miR-206 promotes muscle differentiation[J]. The Journal of Cell Biology, 2006, 174(5): 677-687. [34] ROSENBERG M I, GEORGES S A, ASAWACHAICHARN A, et al.MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206[J]. The Journal of Cell Biology, 2006, 175(1): 77-85. [35] XU C, LU Y, PAN Z, et al.The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes[J]. Journal of Cell Science, 2007, 120(17): 3045-3052. [36] 张翔宇, 杨超, 邝良德, 等. 肉兔胚胎期肌肉中miRNA的生物信息学分析[J]. 畜禽业, 2019(2): 1-3. ZHANG X Y, YANG C, KUANG L D, et al.Bioinformatics analysis of miRNA in embryonic muscles of meat rabbits[J]. Livestock and Poultry Industry, 2019(2): 1-3.(in Chinese) [37] 张翔宇, 邝良德, 李丛艳, 等. 肉兔肌肉组织microRNA高通量测序及其表达分析[C]//中国畜牧兽医学会养兔学分会第二届学术交流大会论文集.济南: 中国畜牧兽医学会养兔学分会, 2018. [38] LIU B W, SHI Y, HE H B, et al.MiR-221 modulates skeletal muscle satellite cells proliferation and differentiation[J]. In Vitro Cellular & Developmental Biology -Animal, 2018, 54(2): 147-155. [39] KEREN A, TAMIR Y, BENGAL E.The p38 MAPK signaling pathway: A major regulator of skeletal muscle development[J]. Molecular and Cellular Endocrinology, 2006, 252(1/2): 224-230. [40] 刘卜玮, 杨雪, 毛旭东, 等. miR-222促进家兔骨骼肌卫星细胞增殖[J]. 西南农业学报, 2018, 31(9): 1973-1978. LIU B W, YANG X, MAO X D, et al.Promotion of proliferation of rabbit skeletal muscle satellite cells by miR-222[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1973-1978.(in Chinese with English abstract) [41] MEYNIER A, NOVELLI E, CHIZZOLINI R, et al.Volatile compounds of commercial Milano salami[J]. Meat Science, 1999, 51(2): 175-183. [42] SUN T W, FU M G, BOOKOUT A L, et al.MicroRNA let-7 regulates 3T3-L1 adipogenesis[J]. Molecular Endocrinology, 2009, 23(6): 925-931. [43] CHEN L, DAI Y M, JI C B, et al.MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity[J]. Molecular and Cellular Endocrinology, 2014, 393(1/2): 65-74. [44] SUN F Y, WANG J Y, PAN Q H, et al.Characterization of function and regulation of miR-24-1 and miR-31[J]. Biochemical and Biophysical Research Communications, 2009, 380(3): 660-665. [45] LIN Q, GAO Z G, ALARCON R M, et al.A role ofmiR-27in the regulation of adipogenesis[J]. FEBS Journal, 2009, 276(8): 2348-2358. [46] 何洪炳, 蔡明成, 梁小虎, 等. miR-130b靶向PPARγ抑制家兔前体脂肪细胞分化[J]. 畜牧兽医学报, 2017, 48(11): 2076-2083. HE H B, CAI M C, LIANG X H, et al.MiR-130bInhibits the differentiation of rabbit preadipocytes by targeting PPARγ[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(11): 2076-2083.(in Chinese with English abstract) [47] HE H B, CAI M C, ZHU J Y, et al.MiR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN[J]. In Vitro Cellular & Developmental Biology-Animal, 2018, 54(3): 241-249. [48] LI X, WANG Z X, WANG Z S, et al.Effect of microRNA-101 on apoptosis of rabbit condylar cartilage cells by inhibiting target gene SOX9[J]. Asian Pacific Journal of Tropical Medicine, 2015, 8(6): 502-505. [49] HAASCH D, CHEN Y, REILLY R M, et al.T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC[J]. Cellular Immunology, 2002, 217(1/2): 78-86. [50] O'CONNELL R M, TAGANOV K D, BOLDIN M P, et al. MicroRNA-155 is induced during the macrophage inflammatory response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1604-1609. [51] KIM J, KIM S.Overexpression of MicroRNA-25 by withaferin A induces cyclooxygenase-2 expression in rabbit articular chondrocytes[J]. Journal of Pharmacological Sciences, 2014, 125(1): 83-90. [52] ZHANG F Q, WANG Z, ZHANG H, et al.MiR-27a alleviates osteoarthritis in rabbits via inhibiting inflammation[J]. European review for medical and pharmacological sciences, 2019, 23(3):89-95. [53] YU H T, GU C Z, CHEN J Q .MiR-9 facilitates cartilage regeneration of osteoarthritis in rabbits through regulating Notch signaling pathway[J]. European Review for Medicaland and Pharmacological Sciences, 2019, 23(12):5051-5058. [54] NISHIO H, MASUMOTO H, SAKAMOTO K, et al.MicroRNA-145-loaded poly(lactic-co-glycolic acid) nanoparticles attenuate venous intimal hyperplasia in a rabbit model[J]. The Journal of Thoracic and Cardiovascular Surgery, 2019, 157(6): 2242-2251. [55] HE X Y, ZHANG K Y, GAO X R, et al.Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit[J]. Heart and Vessels, 2016, 31(10): 1696-1708. [56] LIU Q Y, CHANG M N, LEI J X, et al.Identification of microRNAs involved in Alzheimer's progression using a rabbit model of the disease[J]. American Journal of Neurodegenerative Disease, 2014, 3(1): 33-44. [57] WU X, ZHANG J, HUANG Q, et al.MicroRNA-92a regulates expression of kruppel-like factor 2 in rabbit model of intracranial aneurysm[J]. Cellular and Molecular Biology (Noisy-Le-Grand, France), 2015, 61(8): 44-48. |