浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 417-424.DOI: 10.3969/j.issn.1004-1524.2023.02.19
伍少福1(
), 倪元君2, 詹丽钏2, 彭璐3, 吴英杰3,*(
)
收稿日期:2022-01-07
出版日期:2023-02-25
发布日期:2023-03-14
作者简介:*吴英杰,E-mail:yingjiewu@sicau.edu.cn通讯作者:
吴英杰
基金资助:
WU Shaofu1(
), NI Yuanjun2, ZHAN Lichuan2, PENG Lu3, WU Yingjie3,*(
)
Received:2022-01-07
Online:2023-02-25
Published:2023-03-14
Contact:
WU Yingjie
摘要:
以位于浙江省绍兴市某地的酸性镉汞复合污染稻田为对象,以不施用土壤调理剂作为对照(CK),通过随机区组试验比较了3种土壤调理剂对水稻安全生产和稻米铁、锌含量的影响。结果表明:与CK相比,所施用的3种土壤调理剂均能显著(P<0.05)降低土壤有效态Cd和Hg的含量,并将糙米中的Cd、Hg含量降至国家标准限量范围以下,满足水稻安全生产的要求。其中,自主研发的2号土壤调理剂还可显著提高糙米中的Fe、Zn含量,既可保障镉汞复合污染农田的水稻安全生产,又能增强稻米品质,是试验条件下的最佳选择。
中图分类号:
伍少福, 倪元君, 詹丽钏, 彭璐, 吴英杰. 不同土壤调理剂对镉汞复合污染稻田安全生产和稻米铁锌含量的影响[J]. 浙江农业学报, 2023, 35(2): 417-424.
WU Shaofu, NI Yuanjun, ZHAN Lichuan, PENG Lu, WU Yingjie. Effects of different soil amendments on safe production and iron and zinc contents of rice in cadmium and mercury compound polluted soil[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 417-424.
| 处理 Treatment | pH | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | Fe/(mg·kg-1) | Zn/(mg·kg-1) |
|---|---|---|---|---|---|
| CK | 4.92±0.13 c | 41.37±1.58 a | 111.09±4.32 b | 11 272.65±219.34 b | 49.75±2.63 b |
| T1 | 5.86±0.01 a | 31.96±2.11 c | 109.27±5.68 b | 10 946.22±265.11 b | 47.87±4.83 b |
| T2 | 5.25±0.31 b | 35.51±1.07 b | 107.42±3.56 b | 11 323.53±255.66 b | 47.76±1.29 b |
| T3 | 5.68±0.32 a | 42.68±1.22 a | 145.86±2.65 a | 12 143.09±493.85 a | 64.88±6.48 a |
表1 不同处理对土壤部分理化性质的影响
Table 1 Effects of different treatments on soil physiochemical properties
| 处理 Treatment | pH | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | Fe/(mg·kg-1) | Zn/(mg·kg-1) |
|---|---|---|---|---|---|
| CK | 4.92±0.13 c | 41.37±1.58 a | 111.09±4.32 b | 11 272.65±219.34 b | 49.75±2.63 b |
| T1 | 5.86±0.01 a | 31.96±2.11 c | 109.27±5.68 b | 10 946.22±265.11 b | 47.87±4.83 b |
| T2 | 5.25±0.31 b | 35.51±1.07 b | 107.42±3.56 b | 11 323.53±255.66 b | 47.76±1.29 b |
| T3 | 5.68±0.32 a | 42.68±1.22 a | 145.86±2.65 a | 12 143.09±493.85 a | 64.88±6.48 a |
图1 不同处理对土壤Cd、Hg含量的影响 同一 指标下,柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.1 Effects of different treatments on Cd, Hg content in soil Bars marked without the same letters indicate signficant (P<0.05) differences within treatments under the same index.
图2 不同处理对水稻各部位Cd、Hg含量的影响 同一部位柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.2 Effects of different treatments on Cd and Hg contents in different parts of rice Bars marked without the same letters indicate significact (P<0.05) differences within treatments in the smae part of rice.
| 重金属 Heavy metal | 处理 Treatment | 根 Root | 秸秆 Straw | 谷壳 Husk | 糙米 Brown rice |
|---|---|---|---|---|---|
| Cd | CK | 8.54±2.06 a | 1.58±0.11 a | 0.66±0.04 a | 0.80±0.08 a |
| T1 | 7.10±1.40 b | 1.40±0.17 a | 0.55±0.02 ab | 0.44±0.07 b | |
| T2 | 6.36±0.87 b | 1.30±0.13 a | 0.40±0.01 b | 0.40±0.01 b | |
| T3 | 7.51±3.00 b | 1.53±0.38 a | 0.52±0.20 ab | 0.48±0.20 b | |
| Hg | CK | 1.174±0.249 a | 0.046±0.001 a | 0.051±0.005 a | 0.049±0.003 a |
| T1 | 0.887±0.195 b | 0.038±0.010 a | 0.043±0.018 a | 0.039±0.007 a | |
| T2 | 0.617±0.140 b | 0.039±0.005 a | 0.037±0.005 a | 0.040±0.002 a | |
| T3 | 0.828±0.215 b | 0.044±0.003 a | 0.051±0.012 a | 0.048±0.008 a |
表2 不同处理对水稻不同部位Cd、Hg生物富集因子(BCF)的影响
Table 2 Effects of different treatments on Cd and Hg bioconcentration factor (BCF) in different parts of rice
| 重金属 Heavy metal | 处理 Treatment | 根 Root | 秸秆 Straw | 谷壳 Husk | 糙米 Brown rice |
|---|---|---|---|---|---|
| Cd | CK | 8.54±2.06 a | 1.58±0.11 a | 0.66±0.04 a | 0.80±0.08 a |
| T1 | 7.10±1.40 b | 1.40±0.17 a | 0.55±0.02 ab | 0.44±0.07 b | |
| T2 | 6.36±0.87 b | 1.30±0.13 a | 0.40±0.01 b | 0.40±0.01 b | |
| T3 | 7.51±3.00 b | 1.53±0.38 a | 0.52±0.20 ab | 0.48±0.20 b | |
| Hg | CK | 1.174±0.249 a | 0.046±0.001 a | 0.051±0.005 a | 0.049±0.003 a |
| T1 | 0.887±0.195 b | 0.038±0.010 a | 0.043±0.018 a | 0.039±0.007 a | |
| T2 | 0.617±0.140 b | 0.039±0.005 a | 0.037±0.005 a | 0.040±0.002 a | |
| T3 | 0.828±0.215 b | 0.044±0.003 a | 0.051±0.012 a | 0.048±0.008 a |
| 处理 Treatments | 根 Root | 秸秆 Straw | 稻穗 Rice ears |
|---|---|---|---|
| CK | 18.25±3.32 b | 52.29±0.36 a | 24.09±1.14 a |
| T1 | 24.17±0.59 a | 48.76±5.76 a | 19.92±4.98 a |
| T2 | 26.59±0.86 a | 42.66±5.60 ab | 24.25±2.64 a |
| T3 | 24.83±0.44 a | 34.76±2.53 b | 20.10±0.08 a |
表3 不同处理对水稻各部位干重的影响
Table 3 Effects of different treatments on dry weight of different parts of rice g
| 处理 Treatments | 根 Root | 秸秆 Straw | 稻穗 Rice ears |
|---|---|---|---|
| CK | 18.25±3.32 b | 52.29±0.36 a | 24.09±1.14 a |
| T1 | 24.17±0.59 a | 48.76±5.76 a | 19.92±4.98 a |
| T2 | 26.59±0.86 a | 42.66±5.60 ab | 24.25±2.64 a |
| T3 | 24.83±0.44 a | 34.76±2.53 b | 20.10±0.08 a |
| 处理 Treatment | Fe | Zn |
|---|---|---|
| CK | 5.25±1.82 b | 36.18±1.09 b |
| T1 | 5.95±0.29 b | 38.78±0.44 b |
| T2 | 5.03±0.69 b | 39.46±0.19 b |
| T3 | 21.57±5.74 a | 60.84±1.44 a |
表4 不同处理对糙米Fe和Zn含量的影响
Table 4 Effects of different treatments on Fe and Zn contents of brown rice mg·kg-1
| 处理 Treatment | Fe | Zn |
|---|---|---|
| CK | 5.25±1.82 b | 36.18±1.09 b |
| T1 | 5.95±0.29 b | 38.78±0.44 b |
| T2 | 5.03±0.69 b | 39.46±0.19 b |
| T3 | 21.57±5.74 a | 60.84±1.44 a |
| [1] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R/OL]. ( 2014-04-17) [2022-01-07]. http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf. |
| [2] | 黄冬芬, 奚岭林, 杨立年, 等. 不同耐镉基因型水稻农艺和生理性状的比较研究[J]. 作物学报, 2008, 34(5): 809-817. |
| HUANG D F, XI L L, YANG L N, et al. Comparisons in agronomic and physiological traits of rice genotypes differing in cadmium-tolerance[J]. Acta Agronomica Sinica, 2008, 34(5): 809-817. (in Chinese with English abstract) | |
| [3] | ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2/3/4): 121-142. |
| [4] | ZHOU Y Y, TANG L, ZENG G M, et al. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: a review[J]. Sensors and Actuators B: Chemical, 2016, 223: 280-294. |
| [5] | TANG X, LI Q, WU M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181: 646-662. |
| [6] | LEE S H, LEE J S, JEONG CHOI Y, et al. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments[J]. Chemosphere, 2009, 77(8): 1069-1075. |
| [7] | MENCH M, RENELLA G, GELSOMINO A, et al. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments[J]. Environmental Pollution, 2006, 144(1): 24-31. |
| [8] | 何凤鹏, 谷雨, 冯光辉, 等. 不同类型土壤调理剂对土壤-水稻系统重金属含量的影响[J]. 湖南农业科学, 2016(5): 31-34. |
| HE F P, GU Y, FENG G H, et al. Effects of different types of soil conditioners on heavy metal content in soil-rice system[J]. Hunan Agricultural Sciences, 2016(5): 31-34. (in Chinese with English abstract) | |
| [9] | 曾鹏, 蒋毅, 辜娇峰, 等. 多元复合调理剂对镉砷污染农田土壤微生物群落结构的影响[J]. 中国环境科学, 2021, 41(8): 3740-3748. |
| ZENG P, JIANG Y, GU J F, et al. Effects of the multi-composite amendment on soil microbial community structure in Cd and As-contaminated paddy soil[J]. China Environmental Science, 2021, 41(8): 3740-3748. (in Chinese with English abstract) | |
| [10] | 周利军, 武琳, 林小兵, 等. 土壤调理剂对镉污染稻田修复效果[J]. 环境科学, 2019, 40(11): 5098-5106. |
| ZHOU L J, WU L, LIN X B, et al. Remediation of cadmium contaminated paddy fields using soil conditioners[J]. Environmental Science, 2019, 40(11): 5098-5106. (in Chinese with English abstract) | |
| [11] | 田中学. 四种土壤调理剂对污染土壤镉行为的影响[D]. 北京: 中国农业科学院, 2017. |
| TIAN Z X. Effect of four soil amendments on behavior of cadmium in polluted soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese with English abstract) | |
| [12] | 辜娇峰, 周航, 贾润语, 等. 三元土壤调理剂对田间水稻镉砷累积转运的影响[J]. 环境科学, 2018, 39(4): 1910-1917. |
| GU J F, ZHOU H, JIA R Y, et al. Effects of a tribasic amendment on cadmium and arsenic accumulation and translocation in rice in a field experiment[J]. Environmental Science, 2018, 39(4): 1910-1917. (in Chinese with English abstract) | |
| [13] | 李心, 林大松, 刘岩, 等. 不同土壤调理剂对镉污染水稻田控镉效应研究[J]. 农业环境科学学报, 2018, 37(7): 1511-1520. |
| LI X, LIN D S, LIU Y, et al. Effects of different soil conditioners on cadmium control in cadmium-contaminated paddy fields[J]. Journal of Agro-Environment Science, 2018, 37(7): 1511-1520. (in Chinese with English abstract) | |
| [14] | SUN Y B, XU Y, XU Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208: 739-746. |
| [15] | RAO Z X, HUANG D Y, ZHU Q H, et al. Effects of amendments on the availability of Cd in contaminated paddy soil: a three-year field experiment[J]. Journal of Food, Agriculture and Environment, 2013, 11(3): 2009-2014. |
| [16] | 于寿娜, 廖敏, 黄昌勇. 镉、 汞复合污染对土壤脲酶和酸性磷酸酶活性的影响[J]. 应用生态学报, 2008, 19(8): 1841-1847. |
| YU S N, LIAO M, HUANG C Y. Effects of cadmium and mercury combined pollution on soil urease and acid phosphatase activities[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1841-1847. (in Chinese with English abstract) | |
| [17] | 陈芬, 余高, 吴涵茜, 等. 中药渣生物有机肥对镉-汞复合污染土壤的钝化效果[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 737-747. |
| CHEN F, YU G, WU H Q, et al. Effects of bio-organic fertilizer made from Chinese traditional herb residues on heavy metal passivation in Cd and Hg compound-contaminated soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 737-747. (in Chinese with English abstract) | |
| [18] | CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review[J]. European Journal of Soil Science, 2018, 69(1):172-180. |
| [19] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [20] | 张肖静, 陈涛, 傅浩强. 土壤中重金属有效态汞的快速检测[J]. 轻工学报, 2018, 33(1): 49-55. |
| ZHANG X J, CHEN T, FU H Q. Quick detection of heavy metal absorbable mercury in soil[J]. Journal of Light Industry, 2018, 33(1): 49-55. (in Chinese with English abstract) | |
| [21] | LI H, LIU Y, ZHOU Y Y, et al. Effects of red mud based passivator on the transformation of Cd fraction in acidic Cd-polluted paddy soil and Cd absorption in rice[J]. Science of the Total Environment, 2018, 640/641: 736-745. |
| [22] | 窦韦强, 安毅, 秦莉, 等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2019, 36(1): 1-8. |
| DOU W Q, AN Y, QIN L, et al. Research progress on effects of soil pH on migration and transformation of mercury[J]. Journal of Agricultural Resources and Environment, 2019, 36(1): 1-8. (in Chinese with English abstract) | |
| [23] | LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. |
| [24] | WU Y J, ZHOU H, ZOU Z J, et al. A three-year in situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals[J]. Ecotoxicology and Environmental Safety, 2016, 130: 163-170. |
| [25] | GU J F, ZHOU H, TANG H L, et al. Cadmium and arsenic accumulation during the rice growth period under in situ remediation[J]. Ecotoxicology and Environmental Safety, 2019, 171: 451-459. |
| [26] | 戴佰林. 重金属污染水稻中镉的减量化控制技术研究[D]. 株洲: 湖南工业大学, 2015. |
| DAI B L. Studies on the reduction control technology of cadmium in heavy metal polluted rice[D]. Zhuzhou: Hunan University of Technology, 2015. (in Chinese with English abstract) | |
| [27] | 王艳, 兰向东, 陈钊, 等. 糙米、胚芽米和精白米营养成分分析[J]. 食品科技, 2016, 41(11): 156-159. |
| WANG Y, LAN X D, CHEN Z, et al. Analysis of nutrition components in brown rice, germinated rice, and polished rice[J]. Food Science and Technology, 2016, 41(11): 156-159. (in Chinese with English abstract) | |
| [28] | 赵莎莎, 肖广全, 陈玉成, 等. 不同施用量石灰和生物炭对稻田镉污染钝化的延续效应[J]. 水土保持学报, 2021, 35(1): 334-340. |
| ZHAO S S, XIAO G Q, CHEN Y C, et al. Continuous effect of different application rates of lime and biochar on the passivation of cadmium pollution in paddy fields[J]. Journal of Soil and Water Conservation, 2021, 35(1): 334-340. (in Chinese with English abstract) | |
| [29] | 鄢德梅, 郭朝晖, 黄凤莲, 等. 钙镁磷肥对石灰、海泡石组配修复镉污染稻田土壤的影响[J]. 环境科学, 2020, 41(3): 1491-1497. |
| YAN D M, GUO Z H, HUANG F L, et al. Effect of calcium magnesium phosphate on remediation paddy soil contaminated with cadmium using lime and sepiolite[J]. Environmental Science, 2020, 41(3): 1491-1497. (in Chinese with English abstract) | |
| [30] | 谢晓梅, 方至萍, 廖敏, 等. 低积累水稻品种联合腐殖酸、海泡石保障重镉污染稻田安全生产的潜力[J]. 环境科学, 2018, 39(9): 4348-4358. |
| XIE X M, FANG Z P, LIAO M, et al. Potential to ensure safe production from rice fields polluted with heavy cadmium by combining a rice variety with low cadmium accumulation, humic acid, and sepiolite[J]. Environmental Science, 2018, 39(9): 4348-4358. (in Chinese with English abstract) |
| [1] | 陈星星, 虞雯煊, 徐健炜, 张鹏. 裙带菜不同部位重金属含量特征分析及健康风险评估[J]. 浙江农业学报, 2025, 37(8): 1794-1804. |
| [2] | 刘奇华, 孙召文, 郑崇珂. 氮肥运筹对旱直播稻地上部微量元素吸收分配的影响[J]. 浙江农业学报, 2025, 37(5): 987-997. |
| [3] | 黄鹏武, 吴倩倩, 赵丽芳, 邵德忠, 吴鲁洁, 赵觅漾, 田雨, 卢升高. 无机调理剂配施有机肥治理酸化土壤的长效性研究[J]. 浙江农业学报, 2025, 37(4): 858-868. |
| [4] | 万绍媛, 刘现波, 才硕, 时红, 程婕. 灌溉方式和种植方式对双季稻产量和稻米品质的影响[J]. 浙江农业学报, 2025, 37(2): 257-268. |
| [5] | 王芸, 俞朝, 沈泓, 曹米娜, 周其耀, 胡智鹏, 金崇伟, 冯英. 硅锌叶面肥对芹菜镉积累和营养品质的影响[J]. 浙江农业学报, 2025, 37(1): 61-66. |
| [6] | 朱仁超, 原樱其, 杨宇, 杨琦玥, 余爱华. 公路沿线农田重金属污染研究[J]. 浙江农业学报, 2024, 36(8): 1887-1897. |
| [7] | 肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656. |
| [8] | 鲁子正钢, 朱立新, 季宏兵, 汪康. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 2024, 36(5): 1208-1216. |
| [9] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
| [10] | 孙玖明, 张大乐, 宋纪斌, 赵守强, 李晓彤, 李中阳, 宋伟平, 刘源. 低积累作物品种筛选技术在保障重金属污染农田安全生产中的研究进展与应用[J]. 浙江农业学报, 2024, 36(12): 2895-2908. |
| [11] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
| [12] | 梁秀美, 张维一, 陈官菊, 夏海涛, 郭秀珠, 何如意, 蒋佳铭, 林定鹏. 温州市杨梅农药残留与重金属污染特征及膳食摄入风险评估[J]. 浙江农业学报, 2024, 36(10): 2347-2357. |
| [13] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
| [14] | 徐锴, 赵德英, 张少瑜, 闫帅, 侯桂学. 五九香梨树不同发育期营养元素需求规律[J]. 浙江农业学报, 2023, 35(6): 1328-1337. |
| [15] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||