浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1407-1415.DOI: 10.3969/j.issn.1004-1524.2023.06.18
肖华1(), 徐杏1, 谢传奇1, 周昕1, 周卫东1,*(
), 唐文升2,*(
)
收稿日期:
2022-06-21
出版日期:
2023-06-25
发布日期:
2023-07-04
通讯作者:
*周卫东,E-mail:zhouwd@mail.zaas.ac.cn;唐文升,E-mail:tws1971@126.com
作者简介:
肖华(1980—),男,湖北松滋人,博士,副研究员,主要从事农业废弃物处理方面的研究。E-mail:xh022982@163.com
基金资助:
XIAO Hua1(), XU Xing1, XIE Chuanqi1, ZHOU Xin1, ZHOU Weidong1,*(
), TANG Wensheng2,*(
)
Received:
2022-06-21
Online:
2023-06-25
Published:
2023-07-04
摘要:
针对沼液中的悬浮颗粒物、氨氮、盐分等高浓度复杂组分,采用鸟粪石沉淀法进行预处理,探究鸟粪石沉淀预处理对膜浓缩工艺和污染物去除效率的影响。结果显示:鸟粪石沉淀预处理可降低沼液的浊度、电导率和氨氮浓度,并提高了后续超滤-反渗透浓缩沼液的膜通量和浓缩倍数。超滤对沼液浊度的去除率大于99%,超滤透过液的浊度小于2.0 NTU。鸟粪石沉淀预处理提高了超滤膜对化学需氧量(CODCr)的截留效率,同时也提高了反渗透膜对CODCr和盐分的截留效率。经鸟粪石沉淀预处理后,最终出水的CODCr、氨氮、电导率分别为135 mg·L-1、21 mg·L-1、0.16 mS·cm-1,出水水质优于对照组,且符合GB 5084—2021《农田灌溉水质标准》和GB 18596—2001《畜禽养殖业污染物排放标准》的要求。综上所述,鸟粪石沉淀法可作为膜法浓缩沼液的一种高效预处理方法。
中图分类号:
肖华, 徐杏, 谢传奇, 周昕, 周卫东, 唐文升. 鸟粪石沉淀预处理对猪场沼液双膜浓缩工艺的影响[J]. 浙江农业学报, 2023, 35(6): 1407-1415.
XIAO Hua, XU Xing, XIE Chuanqi, ZHOU Xin, ZHOU Weidong, TANG Wensheng. Effect of struvite precipitation pretreatment on membrane concentration process of piggery biogas slurry[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1407-1415.
图1 试验用装置与工艺流程 a,化学沉淀装置照片;b,化学沉淀预处理工艺流程;c,膜浓缩装置照片;d,膜浓缩工艺流程。
Fig.1 Devices used in experiment and flow-process A, Photo of chemical precipitation device; b, Flow of chemical precipitation; c, Photo of membrane concentration device; d, Flow of membrane concentration.
样品 Sample | pH | 浊度 Turbidity | 电导率 Electrical conductivity/(μS·cm-1) | CODCr/ (mg·L-1) | 氨氮 Ammonia nitrogen/(mg·L-1) |
---|---|---|---|---|---|
预处理前Before pretreatment | 8.42 | 1 560 | 6 530 | 2 994 | 561 |
预处理后After pretreatment | 9.47 | 1 146 | 3 170 | 2 534 | 66.7 |
表1 化学沉淀预处理前后沼液的主要水质参数
Table 1 Physicochemical properties of biogas slurry before and after chemical precipitation pretreatment
样品 Sample | pH | 浊度 Turbidity | 电导率 Electrical conductivity/(μS·cm-1) | CODCr/ (mg·L-1) | 氨氮 Ammonia nitrogen/(mg·L-1) |
---|---|---|---|---|---|
预处理前Before pretreatment | 8.42 | 1 560 | 6 530 | 2 994 | 561 |
预处理后After pretreatment | 9.47 | 1 146 | 3 170 | 2 534 | 66.7 |
图2 化学沉淀预处理对超滤膜通量的影响 反应条件为:操作压力0.15 MPa,温度(32±1)℃。
Fig.2 Effect of chemical precipitation pretreatment on ultrafiltration membrane flux Reaction conditions are as follows: operation pressure of 0.15 MPa, temperature of (32±1) ℃.
图3 化学沉淀预处理对反渗透膜通量的影响 反应条件为:操作压力1.0 MPa,温度(28±1)℃。
Fig.3 Effect of chemical precipitation pretreatment on reverse osmosis membrane flux Reaction conditions are as follows: operation pressure of 1.0 MPa, temperature of (28±1) ℃.
组别 Category | 不同浓缩倍数出水的浊度 Turbidity of outlet at different volume reduction factor | 不同浓缩倍数出水的CODCr CODCr of outlet at different volume reduction factor/(mg·L-1) | ||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | |
对照组 Control group | 1.2 (99.92%) | 1.52 (99.90%) | 1.84 (99.88%) | 1.94 (99.87%) | 1 284 (57.11%) | 1 354 (54.78%) | 1 474 (50.77%) | 1 754 (41.42%) |
预处理组 Pretreatment group | 0.73 (99.94%) | 0.72 (99.94%) | 0.87 (99.92%) | 1.18 (99.90%) | 694 (72.61%) | 704 (72.22%) | 764 (69.85%) | 864 (65.90%) |
表2 化学沉淀预处理对超滤去除沼液中浊度和CODCr的影响
Table 2 Effect of pretreatment on removal of turbidity and CODcr of biogas slurry by ultrafiltration
组别 Category | 不同浓缩倍数出水的浊度 Turbidity of outlet at different volume reduction factor | 不同浓缩倍数出水的CODCr CODCr of outlet at different volume reduction factor/(mg·L-1) | ||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | |
对照组 Control group | 1.2 (99.92%) | 1.52 (99.90%) | 1.84 (99.88%) | 1.94 (99.87%) | 1 284 (57.11%) | 1 354 (54.78%) | 1 474 (50.77%) | 1 754 (41.42%) |
预处理组 Pretreatment group | 0.73 (99.94%) | 0.72 (99.94%) | 0.87 (99.92%) | 1.18 (99.90%) | 694 (72.61%) | 704 (72.22%) | 764 (69.85%) | 864 (65.90%) |
图4 化学沉淀预处理对反渗透膜截留CODCr和盐分的影响 反应条件为:操作压力1.0 MPa,温度(28±1)℃。
Fig.4 Effect of chemical precipitation pretreatment on CODCr and salinity removal by reverse osmosis Reaction conditions are as follows: operation pressure of 1.0 MPa, temperature of (28±1) ℃.
图5 化学沉淀预处理对反渗透膜出水氨氮质量浓度的影响 反应条件为:操作压力1.0 MPa,温度(28±1)℃。
Fig.5 Effect of pretreatment on ammonia nitrogen mass concentration of reverse osmosis permeate Reaction conditions: operation pressure of 1.0 MPa, temperature of (28±1) ℃.
样品 Sample | CODCr/ (mg·L-1) | 氨氮 Ammonia nitrogen/ (mg·L-1) | 电导率 Electrical conductivit/ (μS·cm-1) |
---|---|---|---|
原水Raw | 2 994 | 561 | 6 530 |
对照组超滤出水Ultrafiltration effluent without pretreatment | 1 310 | 470 | 5 790 |
对照组反渗透出水Reverse osmosis effluent without pretreatment | 366 | 160 | 620 |
预处理出水Effluent after pretreatment | 2 534 | 67 | 3 170 |
预处理组超滤出水Ultrafiltration effluent after pretreatment | 637 | 63 | 2 910 |
预处理组反渗透出水Reverse osmosis effluent after pretreatment | 135 | 21 | 160 |
表3 各单元的出水水质
Table 3 Effluent quality of different units
样品 Sample | CODCr/ (mg·L-1) | 氨氮 Ammonia nitrogen/ (mg·L-1) | 电导率 Electrical conductivit/ (μS·cm-1) |
---|---|---|---|
原水Raw | 2 994 | 561 | 6 530 |
对照组超滤出水Ultrafiltration effluent without pretreatment | 1 310 | 470 | 5 790 |
对照组反渗透出水Reverse osmosis effluent without pretreatment | 366 | 160 | 620 |
预处理出水Effluent after pretreatment | 2 534 | 67 | 3 170 |
预处理组超滤出水Ultrafiltration effluent after pretreatment | 637 | 63 | 2 910 |
预处理组反渗透出水Reverse osmosis effluent after pretreatment | 135 | 21 | 160 |
[1] | 邓良伟, 吴有林, 丁能水, 等. 畜禽粪污能源化利用研究进展[J]. 中国沼气, 2019, 37(5): 3-14. |
DENG L W, WU Y L, DING N S, et al. A review of energy utilization of animal manure[J]. China Biogas, 2019, 37(5): 3-14. (in Chinese with English abstract) | |
[2] | ZHOU Z Z, CHEN L H, WU Q G, et al. The valorization of biogas slurry with a pilot dual stage reverse osmosis membrane process[J]. Chemical Engineering Research and Design, 2019, 142: 133-142. |
[3] | ZHENG T X, QIU Z L, DAI Q Z, et al. Study of biogas slurry concentrated by reverse osmosis system: characteristics, optimization, and mechanism[J]. Water Environment Research, 2019, 91(11): 1447-1454. |
[4] | 肖华, 徐杏, 周昕, 等. 膜技术在沼气工程沼液减量化处理中的应用[J]. 农业工程学报, 2020, 36(14): 226-236. |
XIAO H, XU X, ZHOU X, et al. Application of membrane technology for volume reduction of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 226-236. (in Chinese with English abstract) | |
[5] | 黄霞, 文湘华. 膜法水处理工艺膜污染机理与控制技术[M]. 北京: 科学出版社, 2016. |
[6] | 李鹏, 赵同科, 张成军, 等. 猪粪污厌氧发酵沼液SS、COD的混凝预处理效果研究[J]. 环境工程, 2016, 34(1): 7-10. |
LI P, ZHAO T K, ZHANG C J, et al. Study on removal effect of SS and COD in biogas slurry from swine manure wastewater by coagulating sedimentation[J]. Environmental Engineering, 2016, 34(1): 7-10. (in Chinese with English abstract) | |
[7] | 朱洪光, 王旦一. 混凝预处理厌氧发酵液对超滤膜通量的影响[J]. 农业机械学报, 2012, 43(4): 93-99. |
ZHU H G, WANG D Y. Influence of coagulation pretreatment on UF membrane flux of anaerobic fermentation slurry[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 93-99. (in Chinese with English abstract) | |
[8] | 王峰, 严潇南, 杨海真. 鸡粪厌氧发酵沼液达标处理工艺研究[J]. 农业机械学报, 2012, 43(5): 84-90. |
WANG F, YAN X N, YANG H Z. Treatment process of anaerobically digested effluent of chicken manure for meeting the discharging standard[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 84-90. (in Chinese with English abstract) | |
[9] | 涂特, 冉毅, 贺清尧, 等. CaO/PAC混合絮凝剂的沼液净化性能[J]. 化工进展, 2018, 37(6): 2392-2398. |
TU T, RAN Y, HE Q Y, et al. Purification performance of biogas slurry by blended CaO/PAC flocculant[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2392-2398. (in Chinese with English abstract) | |
[10] | 隋倩雯, 董红敏, 朱志平, 等. 提高猪场沼液净化处理效果的氨吹脱控制参数[J]. 农业工程学报, 2012, 28(11): 205-211. |
SUI Q W, DONG H M, ZHU Z P, et al. Ammonia stripping control parameters for improving effluent treatment effect in anaerobic digesters of piggery wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 205-211. (in Chinese with English abstract) | |
[11] | MEIXNER K, FUCHS W, VALKOVA T, et al. Effect of precipitating agents on centrifugation and ultrafiltration performance of thin stillage digestate[J]. Separation and Purification Technology, 2015, 145: 154-160. |
[12] | 张正红, 何文辉, 向天勇, 等. 鸟粪石沉淀-光合细菌复合序批式生物膜反应器协同处理猪场沼液[J]. 环境污染与防治, 2018, 40(4): 404-408. |
ZHANG Z H, HE W H, XIANG T Y, et al. Synergistic treatment of pig biogas slurry by struvite precipitation-photosynthetic bacteria composite SBBR[J]. Environmental Pollution & Control, 2018, 40(4): 404-408. (in Chinese with English abstract) | |
[13] | 李洪刚, 陈玉成, 肖广全, 等. 鸟粪石结晶法处理牛场沼液过程中磷形态转化[J]. 农业工程学报, 2016, 32(3): 228-233. |
LI H G, CHEN Y C, XIAO G Q, et al. Phosphorous transformation during cattle farm biogas slurry treatment using struvite crystallization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 228-233. (in Chinese with English abstract) | |
[14] | 李爱秀, 翟中葳, 丁飞飞, 等. 鸟粪石沉淀法回收猪场沼液氮磷工艺参数优化模拟研究[J]. 农业环境科学学报, 2018, 37(6): 1270-1276. |
LI A X, ZHAI Z W, DING F F, et al. Simulation of optimization of process parameters of nitrogen and phosphorus recovery in biogas slurry derived from swine manure by struvite precipitation method[J]. Journal of Agro-Environment Science, 2018, 37(6): 1270-1276. (in Chinese with English abstract) | |
[15] | 李博文, 朱鸿斌, 郭建斌, 等. 鸟粪石沉淀法脱除氨氮对鸡粪厌氧发酵过程的影响[J]. 农业工程学报, 2021, 37(22): 220-225. |
LI B W, ZHU H B, GUO J B, et al. Effect of ammonia nitrogen removal by struvite precipitation method on the anaerobic digestion of chicken manure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 220-225. (in Chinese with English abstract) | |
[16] | 董滨, 段妮娜, 何群彪, 等. 鸟粪石结晶法处理猪场污水的研究现状及发展趋势[J]. 水处理技术, 2009, 35(8): 5-8. |
DONG B, DUAN N N, HE Q B, et al. Status and development of struvite crystallization for swine wastewater treatment[J]. Technology of Water Treatment, 2009, 35(8): 5-8. (in Chinese with English abstract) | |
[17] | 张正红, 向天勇, 单胜道. 鸟粪石结晶-絮凝同步处理沼液实验研究[J]. 中国沼气, 2014, 32(4): 29-33. |
ZHANG Z H, XIANG T Y, SHAN S D. Study on synchronized struvite crystallization and flocculation treating biogas slurry[J]. China Biogas, 2014, 32(4): 29-33. (in Chinese with English abstract) | |
[18] | 曾坚贤, 郑立锋, 刘俊峰. 柑橘汁陶瓷膜微滤澄清和污染阻力试验[J]. 农业工程学报, 2010, 26(1): 353-358. |
ZENG J X, ZHENG L F, LIU J F. Experiments on clarification of orange juice and fouling resistances by using ceramic microfiltration membrane[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1): 353-358. (in Chinese with English abstract) | |
[19] | 周栋, 傅寅翼, 薛立新, 等. 采用高效纳滤-低压反渗透集成膜工艺的海水淡化研究[J]. 膜科学与技术, 2016, 36(3): 62-69. |
ZHOU D, FU Y Y, XUE L X, et al. An integrated low energy comsumption HRNF-LPRO membrane process for seawater desalination[J]. Membrane Science and Technology, 2016, 36(3): 62-69. (in Chinese with English abstract) | |
[20] | HAN Z Y, WANG L, DUAN L, et al. The electrocoagulation pretreatment of biogas digestion slurry from swine farm prior to nanofiltration concentration[J]. Separation and Purification Technology, 2015, 156: 817-826. |
[21] | 肖华, 徐杏, 周昕, 等. 陶瓷膜预处理猪场沼液的工艺参数及效果研究[J]. 农业工程学报, 2020, 36(20): 42-48. |
XIAO H, XU X, ZHOU X, et al. Technological parameters and effect of pretreatment of pig biogas slurry with ceramic membrane[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 42-48. (in Chinese with English abstract) | |
[22] | 孟子怡, 叶亚晗, 余浩卫, 等. 膜孔径对陶瓷膜净化生物发酵液性能的影响研究[J]. 膜科学与技术, 2021, 41(6): 95-102. |
MENG Z Y, YE Y H, YU H W, et al. Study on the effect of pore size of ceramic membrane on the separation performance of biological fermentation broth[J]. Membrane Science and Technology, 2021, 41(6): 95-102. (in Chinese with English abstract) | |
[23] | 梁康强, 阎中, 魏泉源, 等. 基于反渗透技术的沼液浓缩研究[J]. 中国沼气, 2012, 30(2): 12-14. |
LIANG K Q, YAN Z, WEI Q Y, et al. Research on concentration of biogas slurry based on reverse osmosis[J]. China Biogas, 2012, 30(2): 12-14. (in Chinese with English abstract) | |
[24] | 梁康强, 阎中, 朱民, 等. 沼气工程沼液反渗透膜浓缩应用研究[J]. 中国矿业大学学报, 2011, 40(3): 470-475. |
LIANG K Q, YAN Z, ZHU M, et al. Application research of reverse osmosis in concentrating biogas slurry from biogas projects[J]. Journal of China University of Mining & Technology, 2011, 40(3): 470-475. (in Chinese with English abstract) | |
[25] | 黄海明, 傅忠, 肖贤明, 等. 反渗透处理稀土氨氮废水试验研究[J]. 环境工程学报, 2009, 3(8): 1443-1446. |
HUANG H M, FU Z, XIAO X M, et al. Study on treatment of rare-earth ammonium nitrogen wastewater by reverse osmosis[J]. Chinese Journal of Environmental Engineering, 2009, 3(8): 1443-1446. (in Chinese with English abstract) | |
[26] | 易秀, 田浩, 刘意竹, 等. 反渗透技术在氨氮废水处理中的应用研究[J]. 环境工程, 2014, 32(9): 1-5. |
YI X, TIAN H, LIU Y Z, et al. Application of reverse osmosis technology in the treatment of nitrogen wastewater[J]. Environmental Engineering, 2014, 32(9): 1-5. (in Chinese with English abstract) |
[1] | 江涛, 王立国, 孙芳芳, 成剑波, 何腾兵, 秦松, 范成五, 阴文芳. 沼渣生物质炭对西南喀斯特山区沼液灌溉土壤氮淋溶和白菜产量的影响[J]. 浙江农业学报, 2021, 33(11): 2104-2115. |
[2] | 程鹏飞, 王艳, 杨期勇, 刘德富, 刘天中. 微藻贴壁培养对沼液废水的处理效果[J]. 浙江农业学报, 2017, 29(9): 1564-1569. |
[3] | 邵文奇, 纪力, 孙春梅, 姜晓剑, 文廷刚, 唐金陵, 章安康. 不同沼液施用量对水稻生长、产量及重金属含量的影响[J]. 浙江农业学报, 2017, 29(12): 1963-1969. |
[4] | 陈贵1,赵国华2,张红梅1,沈亚强1,杨继锋3,冯四海4,陈小忠3,程旺大1,*. 沼液浇灌对茭白氮磷钾养分吸收利用特性的影响[J]. 浙江农业学报, 2016, 28(3): 474-. |
[5] | 奚辉;薛智勇;*;陈喜靖;姜丽娜;王卫平. 沼液不同灌溉量对茭白产量、品质及土壤肥力的影响[J]. , 2013, 25(6): 0-1341. |
[6] | 朱凤香;王卫平;陈晓旸;洪春来;吴传珍;薛智勇*. 利用人工湿地栽种水生作物对沼液进行无害化消解[J]. , 2011, 23(2): 0-368. |
[7] | 李艾芬;李瑾;张晓伟;龚晓春. 机插秧单季晚稻中沼液的施用技术研究[J]. , 2011, 23(2): 0-387. |
[8] | 王月霞;符建荣;王强;汪建妹;马军伟;姜丽娜;*. 沼液农田消解利用对辣椒产量、品质及土壤肥力的影响[J]. , 2010, 22(6): 859-863. |
[9] | 王卫平;朱凤香;陈晓旸;薛智勇;洪春来;刘健;*. 沼液农灌对土壤质量和青菜产量品质的影响[J]. , 2010, 22(1): 0-76. |
[10] | 周利亘;王君虹;陈新峰;王春辉;陈坚;袁亚;谢磊 . 三酶复合法提取大豆多肽工艺的研究[J]. , 2006, 18(4): 0-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||