浙江农业学报 ›› 2023, Vol. 35 ›› Issue (6): 1452-1461.DOI: 10.3969/j.issn.1004-1524.2023.06.22
辛亚鹏1(), 王琳2, 施印炎1,*(
), 汪小旵1, 吴昌伟1, 刘慧1
收稿日期:
2022-06-07
出版日期:
2023-06-25
发布日期:
2023-07-04
通讯作者:
*施印炎,E-mail:shiyinyan@njau.edu.cn
作者简介:
辛亚鹏(2001—),男,山西吕梁人,硕士研究生,主要从事农业机械化及其自动化技术研究。E-mail:1005426734@qq.com
基金资助:
XIN Yapeng1(), WANG Lin2, SHI Yinyan1,*(
), WANG Xiaochan1, WU Changwei1, LIU Hui1
Received:
2022-06-07
Online:
2023-06-25
Published:
2023-07-04
摘要:
为解决离心式变量撒肥机肥料抛撒过程中撒肥不均匀、颗粒分布效果差等实际问题,对现有离心式双圆盘变量撒肥机的关键结构进行优化改进。基于对撒肥机关键结构的理论分析,运用离散元法建立离心式变量撒肥机仿真模型,设计三因素三水平旋转正交试验,对撒肥机圆盘的最速曲线比例、撒肥拨片数量和螺旋落料装置升角进行参数模拟与结构优化。结果表明,各因素对肥料颗粒横向分布变异系数(Cv)的影响从大到小依次为最速曲线比例>撒肥拨片数量>螺旋落料装置升角。经回归分析和优化可知,当撒肥机圆盘的最速曲线比例为0.276,撒肥拨片数量为4,螺旋下料装置升角为47.02°时,Cv最小,为13.29%。试验验证的实测值与数值模拟预测值的平均相对误差为8.99%。上述结果表明,基于离散单元法的撒肥过程仿真分析可以用于离心式撒肥装置工作参数优化设计,模型可靠性高,可为改善变量撒肥机的实际田间作业性能提供理论参考。
中图分类号:
辛亚鹏, 王琳, 施印炎, 汪小旵, 吴昌伟, 刘慧. 离心式变量撒肥机关键结构数值模拟与优化[J]. 浙江农业学报, 2023, 35(6): 1452-1461.
XIN Yapeng, WANG Lin, SHI Yinyan, WANG Xiaochan, WU Changwei, LIU Hui. Numerical simulation and optimization of key structure for centrifugal variable fertilizer spreader[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1452-1461.
图1 离心式变量撒肥机撒肥系统结构示意图 1,机架;2,肥箱;3,撒肥圆盘;4,撒肥拨片;5,挡肥罩;6,螺旋落料装置。
Fig.1 Structural diagram of fertilizer spreading system of centrifugal variable fertilizer spreader 1, Rack; 2, Particle can; 3, Fertilizer disc; 4, Fertilizer blade; 5, Fertilizer shield; 6, Spiral blanking device.
图3 圆盘中颗粒的受力分析模型 上部为主视图,下部为俯视图。
Fig.3 Mechanical force analysis acting upon particle on centrifugal disc The upper part is the main view, and the lower part is the top view.
物料 Material | 泊松比 Poisson ratio | 剪切模量 Shear modulus/MPa | 密度 Density/ (t·m-3) |
---|---|---|---|
颗粒Particle | 0.24 | 10.76 | 1.38/0.87(堆积 |
Stacked) | |||
槽轮 | 0.47 | 0.95 | 1.06 |
Grooved wheel | |||
地面Ground | 0.51 | 110 | 1.25 |
钢材Steel | 0.30 | 70 000 | 7.80 |
表1 物料的特性参数
Table 1 Parameters of material properties
物料 Material | 泊松比 Poisson ratio | 剪切模量 Shear modulus/MPa | 密度 Density/ (t·m-3) |
---|---|---|---|
颗粒Particle | 0.24 | 10.76 | 1.38/0.87(堆积 |
Stacked) | |||
槽轮 | 0.47 | 0.95 | 1.06 |
Grooved wheel | |||
地面Ground | 0.51 | 110 | 1.25 |
钢材Steel | 0.30 | 70 000 | 7.80 |
物料 Material | 恢复系数 Coefficient of restitution | 动摩擦系数 Coefficient of kinetic friction | 静摩擦系数 Coefficient of static friction | 颗粒直径 Diameter/mm |
---|---|---|---|---|
颗粒-颗粒Particle to particle | 0.27 | 0.26 | 0.34 | 3.98 |
颗粒-槽轮Particle to grooved wheel | 0.35 | 0.32 | 0.47 | 3.98 |
颗粒-地面Particle to ground | 0.06 | 1.20 | 1.13 | 3.98 |
颗粒-钢材Particle to steel | 0.29 | 0.59 | 0.48 | 3.98 |
表2 物料的接触力学参数
Table 2 Contact mechanical parameters of materials
物料 Material | 恢复系数 Coefficient of restitution | 动摩擦系数 Coefficient of kinetic friction | 静摩擦系数 Coefficient of static friction | 颗粒直径 Diameter/mm |
---|---|---|---|---|
颗粒-颗粒Particle to particle | 0.27 | 0.26 | 0.34 | 3.98 |
颗粒-槽轮Particle to grooved wheel | 0.35 | 0.32 | 0.47 | 3.98 |
颗粒-地面Particle to ground | 0.06 | 1.20 | 1.13 | 3.98 |
颗粒-钢材Particle to steel | 0.29 | 0.59 | 0.48 | 3.98 |
试验因素 Test factor | 不同编码所对应的设计值 Setting values for differnet codes | ||
---|---|---|---|
-1 | 0 | 1 | |
A | 1/6 | 1/3 | 1/2 |
B | 2 | 3 | 4 |
C/(°) | 30 | 45 | 60 |
表3 试验因素编码水平表
Table 3 Factors and levels of test
试验因素 Test factor | 不同编码所对应的设计值 Setting values for differnet codes | ||
---|---|---|---|
-1 | 0 | 1 | |
A | 1/6 | 1/3 | 1/2 |
B | 2 | 3 | 4 |
C/(°) | 30 | 45 | 60 |
试验号 Serial No. | 各因素的编码水平 Codes for different factors | Cv/% | ||
---|---|---|---|---|
A | B | C | ||
1 | -1 | -1 | 0 | 21.44 |
2 | 1 | -1 | 0 | 34.53 |
3 | -1 | 1 | 0 | 13.79 |
4 | 1 | 1 | 0 | 24.72 |
5 | -1 | 0 | -1 | 15.28 |
6 | 1 | 0 | -1 | 32.72 |
7 | -1 | 0 | 1 | 26.57 |
8 | 1 | 0 | 1 | 26.59 |
9 | 0 | -1 | -1 | 13.61 |
10 | 0 | 1 | -1 | 19.80 |
11 | 0 | -1 | 1 | 28.83 |
12 | 0 | 1 | 0 | 16.35 |
13 | 0 | 1 | 1 | 17.59 |
14 | 0 | 0 | 0 | 13.16 |
15 | 0 | 0 | 0 | 13.69 |
16 | 0 | 0 | 0 | 12.43 |
17 | 0 | 0 | 0 | 15.36 |
表4 试验方案与结果
Table 4 Test schemes and results
试验号 Serial No. | 各因素的编码水平 Codes for different factors | Cv/% | ||
---|---|---|---|---|
A | B | C | ||
1 | -1 | -1 | 0 | 21.44 |
2 | 1 | -1 | 0 | 34.53 |
3 | -1 | 1 | 0 | 13.79 |
4 | 1 | 1 | 0 | 24.72 |
5 | -1 | 0 | -1 | 15.28 |
6 | 1 | 0 | -1 | 32.72 |
7 | -1 | 0 | 1 | 26.57 |
8 | 1 | 0 | 1 | 26.59 |
9 | 0 | -1 | -1 | 13.61 |
10 | 0 | 1 | -1 | 19.80 |
11 | 0 | -1 | 1 | 28.83 |
12 | 0 | 1 | 0 | 16.35 |
13 | 0 | 1 | 1 | 17.59 |
14 | 0 | 0 | 0 | 13.16 |
15 | 0 | 0 | 0 | 13.69 |
16 | 0 | 0 | 0 | 12.43 |
17 | 0 | 0 | 0 | 15.36 |
变异来源 Source of variance | 平方和 Sum of squares | 自由度 Freedom | 均方和 Mean square | F | P |
---|---|---|---|---|---|
模型 Model | 801.29 | 9 | 89.03 | 14.05 | 0.001 1 |
A | 215.00 | 1 | 215.00 | 33.92 | 0.000 6 |
B | 56.08 | 1 | 56.08 | 8.85 | 0.020 7 |
C | 41.32 | 1 | 41.32 | 6.52 | 0.037 9 |
AB | 1.17 | 1 | 1.17 | 0.18 | 0.680 6 |
AC | 75.87 | 1 | 75.87 | 11.97 | 0.010 6 |
BC | 75.97 | 1 | 75.97 | 11.99 | 0.010 5 |
A2 | 226.74 | 1 | 226.74 | 35.77 | 0.000 6 |
B2 | 28.37 | 1 | 28.37 | 4.48 | 0.072 2 |
C2 | 57.19 | 1 | 57.19 | 9.02 | 0.019 8 |
剩余 Residual | 44.37 | 7 | 6.34 | — | — |
失拟 Lack of fit | 39.72 | 4 | 9.93 | 6.40 | 0.079 6 |
误差 Pure error | 4.65 | 3 | 1.55 | — | — |
总和 Total | 845.66 | 16 | — | — | — |
表5 方差分析表
Table 5 ANOVA analysis of regression model
变异来源 Source of variance | 平方和 Sum of squares | 自由度 Freedom | 均方和 Mean square | F | P |
---|---|---|---|---|---|
模型 Model | 801.29 | 9 | 89.03 | 14.05 | 0.001 1 |
A | 215.00 | 1 | 215.00 | 33.92 | 0.000 6 |
B | 56.08 | 1 | 56.08 | 8.85 | 0.020 7 |
C | 41.32 | 1 | 41.32 | 6.52 | 0.037 9 |
AB | 1.17 | 1 | 1.17 | 0.18 | 0.680 6 |
AC | 75.87 | 1 | 75.87 | 11.97 | 0.010 6 |
BC | 75.97 | 1 | 75.97 | 11.99 | 0.010 5 |
A2 | 226.74 | 1 | 226.74 | 35.77 | 0.000 6 |
B2 | 28.37 | 1 | 28.37 | 4.48 | 0.072 2 |
C2 | 57.19 | 1 | 57.19 | 9.02 | 0.019 8 |
剩余 Residual | 44.37 | 7 | 6.34 | — | — |
失拟 Lack of fit | 39.72 | 4 | 9.93 | 6.40 | 0.079 6 |
误差 Pure error | 4.65 | 3 | 1.55 | — | — |
总和 Total | 845.66 | 16 | — | — | — |
图8 各因素对肥料颗粒横向分布变异系数的影响 图中上、下两条虚线为单因素响应拟合曲线的上下限,实线为拟合曲线。上下限差异越小,则拟合效果越好,反之拟合效果越差。
Fig.8 Effect of factors on coefficient of variation in lateral distribution of fertilizer particles The upper and lower dashed lines in the figure are the upper and lower limits of the one-factor response fitting curve, and the solid line is the fitting curve. The smaller the difference between the upper and lower limits, the better the fitting effect, and vice versa.
试验序号 Serial number | 实测值 Measured value | 相对误差 Relative error |
---|---|---|
1 | 14.67 | 9.41 |
2 | 15.34 | 13.36 |
3 | 13.97 | 4.87 |
4 | 14.29 | 7.00 |
5 | 14.83 | 10.38 |
6 | 14.59 | 8.91 |
平均值Mean | 14.62 | 8.99 |
表6 试验验证结果
Table 6 Validation test results %
试验序号 Serial number | 实测值 Measured value | 相对误差 Relative error |
---|---|---|
1 | 14.67 | 9.41 |
2 | 15.34 | 13.36 |
3 | 13.97 | 4.87 |
4 | 14.29 | 7.00 |
5 | 14.83 | 10.38 |
6 | 14.59 | 8.91 |
平均值Mean | 14.62 | 8.99 |
[1] | 施印炎. 基于水稻光谱信息的离心式变量撒肥机的研制[D]. 南京: 南京农业大学, 2018. |
SHI Y Y. Design on variable fertilizer spreader with centrifugal discs in spectral reflectance for rice field[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract) | |
[2] | 施印炎, 陈满, 汪小旵, 等. 离心匀肥罩式水稻地表变量撒肥机设计与试验[J]. 农业机械学报, 2018, 49(3): 86-93. |
SHI Y Y, CHEN M, WANG X C, et al. Design and experiment of variable-rate fertilizer spreader with centrifugal distribution cover for rice paddy surface fertilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 86-93. (in Chinese with English abstract) | |
[3] | 陈满, 施印炎, 汪小旵, 等. 基于光谱探测的小麦精准追肥机设计与试验[J]. 农业机械学报, 2015, 46(5): 26-32. |
CHEN M, SHI Y Y, WANG X C, et al. Design and experiment of variable rate fertilizer applicator based on crop canopy spectral reflectance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 26-32. (in Chinese with English abstract) | |
[4] | 杨叶成. 茶园离心撒肥装置工作参数优化与试验研究[D]. 镇江: 江苏大学, 2016. |
YANG Y C. Operating parameter optimization and experiment on centrifugal fertilizer distributor for tea fields[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract) | |
[5] | 芦新春, 陈书法, 杨进, 等. 宽幅高效离心式双圆盘撒肥机设计与试验[J]. 农机化研究, 2015, 37(8): 100-103. |
LU X C, CHEN S F, YANG J, et al. Design and experiment on double-disc spreader with wide breadth and highly efficiency[J]. Journal of Agricultural Mechanization Research, 2015, 37(8): 100-103. (in Chinese with English abstract) | |
[6] | VAN LIEDEKERKE P, TIJSKENS E, DINTWA E, et al. DEM simulations of the particle flow on a centrifugal fertilizer spreader[J]. Powder Technology, 2009, 190(3): 348-360. |
[7] | VAN LIEDEKERKE P, TIJSKENS E, RAMON H. Discrete element simulations of the influence of fertiliser physical properties on the spread pattern from spinning disc spreaders[J]. Biosystems Engineering, 2009, 102(4): 392-405. |
[8] | FULTON J P, SHEARER S A, HIGGINS S F, et al. Distribution pattern variability of granular VRT applicator[J]. Transactions of the ASAE, 2005, 48(6): 2053-2064. |
[9] | FULTON J P, SHEARER S A, CHABRA G, et al. Performance assessment and model development of a variable rate, spinner-disc fertilizer applicator[J]. Transactions of the ASAE, 2001, 44(5): 1071-1081. |
[10] | CAMPBELL C M, FULTON J P, MCDONALD T P, et al. Spinner-disc technology to enhance the application of poultry litter[J]. Applied Engineering in Agriculture, 2010, 26(5): 759-767. |
[11] | 王洋. 藕田侧抛式离心撒肥机设计与试验研究[D]. 武汉: 华中农业大学, 2021. |
WANG Y. Design and experiment study of side throwing centrifugal fertilizer spreader for lotus root field[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract) | |
[12] | 徐雷. 最速下降曲线实验[J]. 教育教学论坛, 2018(4): 190-191. |
XU L. The brachistochrone curve experiment[J]. Education Teaching Forum, 2018(4): 190-191. (in Chinese with English abstract) | |
[13] | 孟宪章, 施继红, 王雪莲, 等. 圆盘式有机肥撒肥器抛撒性能影响因素的试验研究[J]. 安徽农业科学, 2015, 43(27): 335-337. |
MENG X Z, SHI J H, WANG X L, et al. Experimental research on influential factor for scattering performance of disc manure spreader[J]. Journal of Anhui Agricultural Sciences, 2015, 43(27): 335-337. (in Chinese with English abstract) | |
[14] | 宋欢. 定量螺旋输送机的优化设计及模拟[D]. 青岛: 青岛科技大学, 2016. |
SONG H. Optimization design and simulation of quantitative screw conveyor[D]. Qingdao: Qingdao University of Science & Technology, 2016. (in Chinese with English abstract) | |
[15] | OLIESLAGERS R, RAMON H, DE BAERDEMAEKER J. Calculation of fertilizer distribution patterns from a spinning disc spreader by means of a simulation model[J]. Journal of Agricultural Engineering Research, 1996, 63(2): 137-152. |
[16] | 郭丽峰. 立式圆盘大豆排种器型孔优化设计与试验研究[D]. 哈尔滨: 东北农业大学, 2014. |
GUO L F. Optimization design and experiment study on hole of vertical disc soybean seed-metering device[D]. Harbin: Northeast Agricultural University, 2014. (in Chinese with English abstract) | |
[17] | TIJSKENS E, RAMON H, DE BAERDEMAEKER J. Discrete element modelling for process simulation in agriculture[J]. Journal of Sound and Vibration, 2003, 266(3): 493-514. |
[18] | Equipment for distributing fertilizers: test methods: part 2: fertilizer distributors in lines: ISO 5690-2:1984[S/OL]. [2022-06-07]. https://www.iso.org/obp/ui/#iso:std:iso:5690:-2:ed-1:v1:en. |
[19] | 金丽丽, 姬长英, 方会敏, 等. 变量施肥机连续混合装置中肥料颗粒运动的数值分析[J]. 浙江农业学报, 2015, 27(2): 261-265. |
JIN L L, JI C Y, FANG H M, et al. Numerical simulation of mixing process of fertilizer particles in continuous mixer of variable rate fertilizer applicator[J]. Acta Agriculturae Zhejiangensis, 2015, 27(2): 261-265. (in Chinese with English abstract) | |
[20] | MALONE K F, XU B H. Determination of contact parameters for discrete element method simulations of granular systems[J]. Particuology, 2008, 6(6): 521-528. |
[21] | 柳贡慧, 刘伟, 刘忠, 等. 利用四因素三水平正交回归分析法进行钻具造斜率预测研究[J]. 石油天然气学报, 2010, 32(3): 108-112. |
LIU G H, LIU W, LIU Z, et al. Predicting build-up rate of drilling tool by orthogonal regression method with four factors and three levels[J]. Journal of Oil and Gas Technology, 2010, 32(3): 108-112. (in Chinese with English abstract) | |
[22] | American Soceity of Agricultural and Biological Engineers. Procedure for measuring distribution uniformity and calibrating granular broadcast spreaders[EB/OL]. [2022-06-07]. https://elibrary.asabe.org/abstract.asp?aid=48938. |
[1] | 张一帆, 何瑞银, 段庆飞, 徐勇. 基于CFD-DEM的排肥用波纹管结构优化设计与试验[J]. 浙江农业学报, 2023, 35(1): 191-201. |
[2] | 王英珍, 潘芝梅. 二十二份毛花猕猴桃种质资源果实品质的主成分分析与综合评价[J]. 浙江农业学报, 2021, 33(5): 825-830. |
[3] | 王治会, 彭华, 杨普香, 江新凤, 李文金, 岳翠男, 李琛, 李延升. 17份黄金菊茶树自然杂交单株的表型变异与资源价值评价[J]. 浙江农业学报, 2021, 33(2): 298-307. |
[4] | 胡巧莲, 杨君, 邵劲松, 周鹏全, 郭佳瑞, 侯满平. 田园综合体建设初期土地利用效益综合评价——以鲁家村为例[J]. 浙江农业学报, 2020, 32(8): 1485-1492. |
[5] | 朱颖, 林静雅, 赵越, 冯育青, 张铭连. 太湖国家湿地公园生态恢复成效评估研究[J]. 浙江农业学报, 2017, 29(12): 2109-2119. |
[6] | 金丽丽1,2,姬长英1,2,*,方会敏1,2,谈英1,2. 变量施肥机连续混合装置中肥料颗粒运动的数值分析[J]. 浙江农业学报, 2015, 27(2): 261-. |
[7] | 周历萍,王淑珍*,阮松林,马华升,童建新. 草莓流式细胞检测提取方法的优化[J]. 浙江农业学报, 2015, 27(11): 2024-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||