浙江农业学报 ›› 2023, Vol. 35 ›› Issue (9): 2109-2120.DOI: 10.3969/j.issn.1004-1524.20221456
王宇1(), 汪泓1,*(
), 肖玖军2,3, 李可相2,3, 邢丹4, 张永亮1, 陈阳2,3, 张蓝月2,3
收稿日期:
2022-10-11
出版日期:
2023-09-25
发布日期:
2023-10-09
作者简介:
王宇(1998—),女,贵州安顺人,硕士研究生,研究方向为摄影测量与遥感。E-mail: 2029807592@qq.com
通讯作者:
汪泓,E-mail: 基金资助:
WANG Yu1(), WANG Hong1,*(
), XIAO Jiujun2,3, LI Kexiang2,3, XING Dan4, ZHANG Yongliang1, CHEN Yang2,3, ZHANG Lanyue2,3
Received:
2022-10-11
Online:
2023-09-25
Published:
2023-10-09
摘要:
叶片叶绿素与植被生长状况息息相关,SPAD值能够反映作物叶片叶绿素含量,不同品种辣椒外形和生理生态参数具有明显差异,因此,准确、快速地估算SPAD值具有重要意义。以4个不同品种辣椒为研究对象,测量其SPAD值,对原始光谱进行倒数、对数、倒数对数、一阶微分和二阶微分变换,通过将变换光谱替换原始光谱来优化植被指数,对比优化植被指数和经典植被指数搭建模型的差异,最终得到不同品种辣椒SPAD值和高光谱之间的关系,寻找SPAD值的最优反演模型。结果表明:不同品种辣椒冠层光谱特性存在差异;辣椒叶片建模集、验证集和全样本SPAD值的变化趋势均为线椒大于朝天椒;基于倒数对数光谱优化的植被指数除了CIred edge外,其余植被指数的相关系数均高于经典植被指数;基于lg1/R-VI搭建的随机森林模型无论是建模集还是验证集精度均较好,适合于不同品种辣椒SPAD值的估算,其中全样本模型测试集决定系数(R2)为0.83,平均绝对误差(MAD)为1.90,验证集R2和MAD分别为0.45和1.26。
中图分类号:
王宇, 汪泓, 肖玖军, 李可相, 邢丹, 张永亮, 陈阳, 张蓝月. 基于优化植被指数组合的多品种辣椒叶片叶绿素数值估测[J]. 浙江农业学报, 2023, 35(9): 2109-2120.
WANG Yu, WANG Hong, XIAO Jiujun, LI Kexiang, XING Dan, ZHANG Yongliang, CHEN Yang, ZHANG Lanyue. Numerical estimation of chlorophyll in pepper leaves based on optimized vegetation index combination[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2109-2120.
统计参数 Statistical parameter | 辣研101号 Layan 101 | 红全球 Red global | 黔椒8号 Qianjiao No.8 | 红辣18号 Red Hot 18 | 全样本 Whole sample | |||||
---|---|---|---|---|---|---|---|---|---|---|
建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | |
最小值Minimum value | 29.4 | 31.2 | 34.5 | 35.9 | 40.9 | 46.1 | 45.1 | 52.1 | 29.4 | 31.2 |
最大值Maximum value | 78.2 | 68.3 | 77.8 | 72 | 79.9 | 71.5 | 73.5 | 70.5 | 79.9 | 74.9 |
平均值Mean value | 53.46 | 58.32 | 55.84 | 51.38 | 58.09 | 60.65 | 57.74 | 59.72 | 57.04 | 55.28 |
标准差Standard deviation | 12.32 | 10.45 | 11.93 | 12.82 | 10.17 | 7.97 | 7.88 | 5.08 | 10.45 | 11.41 |
变异系数 | 0.23 | 0.18 | 0.21 | 0.25 | 0.18 | 0.13 | 0.14 | 0.09 | 0.18 | 0.21 |
Coefficient of variation |
表1 辣椒SPAD值统计性分析
Table 1 Statistical analysis of SPAD value of pepper
统计参数 Statistical parameter | 辣研101号 Layan 101 | 红全球 Red global | 黔椒8号 Qianjiao No.8 | 红辣18号 Red Hot 18 | 全样本 Whole sample | |||||
---|---|---|---|---|---|---|---|---|---|---|
建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | |
最小值Minimum value | 29.4 | 31.2 | 34.5 | 35.9 | 40.9 | 46.1 | 45.1 | 52.1 | 29.4 | 31.2 |
最大值Maximum value | 78.2 | 68.3 | 77.8 | 72 | 79.9 | 71.5 | 73.5 | 70.5 | 79.9 | 74.9 |
平均值Mean value | 53.46 | 58.32 | 55.84 | 51.38 | 58.09 | 60.65 | 57.74 | 59.72 | 57.04 | 55.28 |
标准差Standard deviation | 12.32 | 10.45 | 11.93 | 12.82 | 10.17 | 7.97 | 7.88 | 5.08 | 10.45 | 11.41 |
变异系数 | 0.23 | 0.18 | 0.21 | 0.25 | 0.18 | 0.13 | 0.14 | 0.09 | 0.18 | 0.21 |
Coefficient of variation |
图1 不同品种辣椒变换光谱反射率 A代表黔椒8号;B代表红辣18号;C代表辣研101号;D代表红全球。FR表示原始光谱反射率,F1/R表示倒数光谱反射率,FlgR表示对数光谱反射率,Flg(1/R)表示倒数对数光谱反射率,FR'表示一阶微分光谱反射率,FR″表示二阶微分光谱反射率。
Fig.1 Spectral reflectance of different pepper varieties A represents Qianjiao No.8, B represents Hongla 18, C represents Layan 101, D represents Red Global. FRrepresents the original spectral reflectance, F1/R represents the reciprocal spectral reflectance, FlgR represents the logarithmic spectral reflectance, Flg(1/R) represents the reciprocal logarithmic spectral reflectance, FR' represents the first-order differential spectral reflectance, FR″ represents the second-order spectral reflectance.
图2 SPAD值与植被指数相关性分析热力图 CARI,叶绿素吸收率指数;MCARI,修正型叶绿素吸收植被指数;MTCI,陆地植被指数;NDVI,归一化植被指数;TCARI,改进型叶绿素吸收植被指数;OSVAI,土壤调节植被指数; C I r e d ? e d g e,红边叶绿素指数。
Fig.2 Heat map of correlation analysis between SPAD and vegetation index CARI, Chlorophyll absorption ratio index; MCARI, Modified chlorophyll absorption ratio index; MTCI, MERIS terrestrial chlorophyll index; NDVI, Normalized difference vegetation index; TCARI, Transformed chlorophyll absorption in reflectance index; OSVAI, Optimized soil-adjusted vegetation index; C I r e d ? e d g e, Red edge chlorophyll index.
经典植被指数 Classical vegetation index | 优化植被指数 Optimize vegetation index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R-VI | r | 1/R-VI | r | lgR-VI | r | lg1/R-VI | r | R'-VI | r | R″-VI | r |
CARI | 0.02 | CARI | 0.18* | CARI | 0.09 | CARI | -0.03 | CARI | -0.01 | CARI | -0.02 |
MCRAI | 0.06 | MCARI | 0.01 | MCARI | -0.12 | MCARI | 0.14* | MCARI | 0.03 | MCARI | 0.03 |
MTCI | -0.08 | MTCI | -0.01 | MTCI | 0.11 | MTCI | -0.20** | MTCI | -0.04 | MTCI | 0.03 |
NDVI | 0.13 | NDVI | 0.004 | NDVI | 0.001 | NDVI | -0.16* | NDVI | 0.09 | NDVI | 0.04 |
TCARI | 0.06 | TCARI | -0.06 | TCARI | -0.08 | TCARI | 0.20** | TCARI | -0.05 | TCARI | -0.04 |
OSVAI | 0.09 | OSVAI | -0.07 | OSVAI | -0.08 | OSVAI | 0.22** | OSVAI | -0.11 | OSVAI | -0.02 |
T/O | 0.04 | T/O | 0.03 | T/O | 0.04 | T/O | 0.18* | T/O | 0.03 | T/O | -0.03 |
0.19** | -0.11 | -0.15* | -0.02 | 0.07 | 0.06 |
表2 全样本优化植被指数与SPAD值相关性分析
Table 2 Correlation analysis between whole sample optimized vegetation index and SPAD value
经典植被指数 Classical vegetation index | 优化植被指数 Optimize vegetation index | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R-VI | r | 1/R-VI | r | lgR-VI | r | lg1/R-VI | r | R'-VI | r | R″-VI | r |
CARI | 0.02 | CARI | 0.18* | CARI | 0.09 | CARI | -0.03 | CARI | -0.01 | CARI | -0.02 |
MCRAI | 0.06 | MCARI | 0.01 | MCARI | -0.12 | MCARI | 0.14* | MCARI | 0.03 | MCARI | 0.03 |
MTCI | -0.08 | MTCI | -0.01 | MTCI | 0.11 | MTCI | -0.20** | MTCI | -0.04 | MTCI | 0.03 |
NDVI | 0.13 | NDVI | 0.004 | NDVI | 0.001 | NDVI | -0.16* | NDVI | 0.09 | NDVI | 0.04 |
TCARI | 0.06 | TCARI | -0.06 | TCARI | -0.08 | TCARI | 0.20** | TCARI | -0.05 | TCARI | -0.04 |
OSVAI | 0.09 | OSVAI | -0.07 | OSVAI | -0.08 | OSVAI | 0.22** | OSVAI | -0.11 | OSVAI | -0.02 |
T/O | 0.04 | T/O | 0.03 | T/O | 0.04 | T/O | 0.18* | T/O | 0.03 | T/O | -0.03 |
0.19** | -0.11 | -0.15* | -0.02 | 0.07 | 0.06 |
品种 Variety | 优化植被指数组合 Optimize vegetation | 建模集 Modeling set | 验证集 Validation set | 品种 Variety | 优化植被指数组合 Optimize vegetation | 建模集 Modeling set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | MAD | R2 | MAD | R2 | MAD | R2 | MAD | ||||
辣研101号 | FR-VI | 0.90 | 2.33 | 0.80 | 1.74 | 黔椒8号 | FR-VI | 0.86 | 1.96 | 0.80 | 1.61 |
Layan 101 | FlgR-VI | 0.87 | 2.29 | 0.64 | 1.67 | Qianjiao | FlgR-VI | 0.87 | 2.10 | 0.65 | 1.38 |
F1/R-VI | 0.90 | 2.42 | 0.90 | 2.45 | No.8 | F1/R-VI | 0.85 | 2.01 | 0.72 | 1.66 | |
Flg1/R-VI | 0.87 | 2.22 | 0.79 | 2.03 | Flg1/R-VI | 0.87 | 2.24 | 0.83 | 2.07 | ||
FR'-VI | 0.88 | 2.43 | 0.61 | 1.44 | FR'-VI | 0.80 | 1.61 | 0.42 | 1.13 | ||
FR″-VI | 0.84 | 2.05 | 0.51 | 1.37 | FR″-VI | 0.85 | 1.64 | 0.46 | 1.25 | ||
红全球 | FR-VI | 0.80 | 1.81 | 0.83 | 1.55 | 红辣18号 | FR-VI | 0.83 | 1.95 | 0.63 | 1.26 |
Red global | FlgR-VI | 0.85 | 1.74 | 0.95 | 1.31 | Red Hot 18 | FlgR-VI | 0.79 | 1.83 | 0.66 | 1.40 |
F1/R-VI | 0.83 | 1.84 | 0.56 | 1.28 | F1/R-VI | 0.80 | 1.84 | 0.63 | 1.35 | ||
Flg1/R-VI | 0.85 | 1.81 | 0.94 | 1.58 | Flg1/R-VI | 0.76 | 1.74 | 0.51 | 1.22 | ||
FR'-VI | 0.84 | 1.71 | 0.49 | 1.12 | FR'-VI | 0.81 | 1.84 | 0.30 | 1.10 | ||
FR″-VI | 0.83 | 1.69 | 0.71 | 0.86 | FR″-VI | 0.84 | 1.83 | 0.30 | 0.71 | ||
全样本 | FR-VI | 0.80 | 1.84 | 0.39 | 1.22 | ||||||
Whole | FlgR-VI | 0.82 | 1.91 | 0.42 | 1.27 | ||||||
sample | F1/R-VI | 0.80 | 1.80 | 0.42 | 1.25 | ||||||
Flg1/R-VI | 0.83 | 1.90 | 0.45 | 1.26 | |||||||
FR'-VI | 0.79 | 1.84 | 0.41 | 1.23 | |||||||
FR″-VI | 0.79 | 1.83 | 0.40 | 1.22 |
表3 优化植被指数组合估算SPAD值的RF模型结果
Table 3 RF model results of SPAD value estimated by optimizing vegetation index combination
品种 Variety | 优化植被指数组合 Optimize vegetation | 建模集 Modeling set | 验证集 Validation set | 品种 Variety | 优化植被指数组合 Optimize vegetation | 建模集 Modeling set | 验证集 Validation set | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | MAD | R2 | MAD | R2 | MAD | R2 | MAD | ||||
辣研101号 | FR-VI | 0.90 | 2.33 | 0.80 | 1.74 | 黔椒8号 | FR-VI | 0.86 | 1.96 | 0.80 | 1.61 |
Layan 101 | FlgR-VI | 0.87 | 2.29 | 0.64 | 1.67 | Qianjiao | FlgR-VI | 0.87 | 2.10 | 0.65 | 1.38 |
F1/R-VI | 0.90 | 2.42 | 0.90 | 2.45 | No.8 | F1/R-VI | 0.85 | 2.01 | 0.72 | 1.66 | |
Flg1/R-VI | 0.87 | 2.22 | 0.79 | 2.03 | Flg1/R-VI | 0.87 | 2.24 | 0.83 | 2.07 | ||
FR'-VI | 0.88 | 2.43 | 0.61 | 1.44 | FR'-VI | 0.80 | 1.61 | 0.42 | 1.13 | ||
FR″-VI | 0.84 | 2.05 | 0.51 | 1.37 | FR″-VI | 0.85 | 1.64 | 0.46 | 1.25 | ||
红全球 | FR-VI | 0.80 | 1.81 | 0.83 | 1.55 | 红辣18号 | FR-VI | 0.83 | 1.95 | 0.63 | 1.26 |
Red global | FlgR-VI | 0.85 | 1.74 | 0.95 | 1.31 | Red Hot 18 | FlgR-VI | 0.79 | 1.83 | 0.66 | 1.40 |
F1/R-VI | 0.83 | 1.84 | 0.56 | 1.28 | F1/R-VI | 0.80 | 1.84 | 0.63 | 1.35 | ||
Flg1/R-VI | 0.85 | 1.81 | 0.94 | 1.58 | Flg1/R-VI | 0.76 | 1.74 | 0.51 | 1.22 | ||
FR'-VI | 0.84 | 1.71 | 0.49 | 1.12 | FR'-VI | 0.81 | 1.84 | 0.30 | 1.10 | ||
FR″-VI | 0.83 | 1.69 | 0.71 | 0.86 | FR″-VI | 0.84 | 1.83 | 0.30 | 0.71 | ||
全样本 | FR-VI | 0.80 | 1.84 | 0.39 | 1.22 | ||||||
Whole | FlgR-VI | 0.82 | 1.91 | 0.42 | 1.27 | ||||||
sample | F1/R-VI | 0.80 | 1.80 | 0.42 | 1.25 | ||||||
Flg1/R-VI | 0.83 | 1.90 | 0.45 | 1.26 | |||||||
FR'-VI | 0.79 | 1.84 | 0.41 | 1.23 | |||||||
FR″-VI | 0.79 | 1.83 | 0.40 | 1.22 |
图3 不同品种辣椒的SPAD值最优估算模型实测值与预测值关系
Fig.3 Relationship between the measured value and the predicted value of SPAD optimal estimation model of different varieties of pepper
[1] | 张沛健, 尚秀华, 吴志华. 基于图像处理技术的5种红树林叶片形态特征及叶绿素相对含量的估测[J]. 热带作物学报, 2020, 41(3): 496-503. |
ZHANG P J, SHANG X H, WU Z H. Morphological characteristics of leaves and estimation of relative chlorophyll content in five species of mangrove based on image processing technology[J]. Chinese Journal of Tropical Crops, 2020, 41(3): 496-503. (in Chinese with English abstract) | |
[2] | JANG S, HWANG Y, LEE H J, et al. Selecting significant wavelengths to predict chlorophyll content of grafted cucumber seedlings using hyperspectral images[J]. Korean Journal of Remote Sensing, 2018, 34:681-692. |
[3] | 牛庆林, 冯海宽, 周新国, 等. 冬小麦SPAD值无人机可见光和多光谱植被指数结合估算[J]. 农业机械学报, 2021, 52(8): 183-194. |
NIU Q L, FENG H K, ZHOU X G, et al. Combining UAV visible light and multispectral vegetation indices for estimating SPAD value of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 183-194. (in Chinese with English abstract) | |
[4] | 徐若涵, 杨再强, 申梦吟, 等. 苗期低温胁迫对“红颜”草莓叶绿素含量及冠层高光谱的影响[J]. 中国农业气象, 2022, 43(2): 148-158. |
XU R H, YANG Z Q, SHEN M Y, et al. Effects of low temperature stress at seedling stage on chlorophyll content and canopy hyperspectral of “Hongyan” strawberry[J]. Chinese Journal of Agrometeorology, 2022, 43(2): 148-158. (in Chinese with English abstract) | |
[5] | 陈澜, 常庆瑞, 高一帆, 等. 猕猴桃叶片叶绿素含量高光谱估算模型研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(6): 79-89. |
CHEN L, CHANG Q R, GAO Y F, et al. Hyperspectral estimation model of chlorophyll content in kiwifruit leaves[J]. Journal of Northwest A & F University(Natural Science Edition), 2020, 48(6): 79-89. (in Chinese with English abstract) | |
[6] | 洪帅, 张泽, 张立福, 等. 滴灌棉花不同生育时期冠层叶片叶绿素含量的高光谱估测模型[J]. 棉花学报, 2019, 31(2): 138-146. |
HONG S, ZHANG Z, ZHANG L F, et al. Hyperspectral estimation model of chlorophyll content in cotton canopy leaves under drip irrigation at different growth stages[J]. Cotton Science, 2019, 31(2): 138-146. (in Chinese with English abstract) | |
[7] | 王鑫梅, 张劲松, 孟平, 等. 不同生育期核桃树冠层叶绿素含量高光谱估算研究[J]. 河北农业大学学报, 2021, 44(2): 63-71. |
WANG X M, ZHANG J S, MENG P, et al. Study on hyperspectral estimation of chlorophyll content in walnut tree canopy at different growth periods[J]. Journal of Hebei Agricultural University, 2021, 44(2): 63-71. (in Chinese with English abstract) | |
[8] | 田军仓, 杨振峰, 冯克鹏, 等. 基于无人机多光谱影像的番茄冠层SPAD预测研究[J]. 农业机械学报, 2020, 51(8): 178-188. |
TIAN J C, YANG Z F, FENG K P, et al. Prediction of tomato canopy SPAD based on UAV multispectral image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8): 178-188. (in Chinese with English abstract) | |
[9] | 张东彦, CRAIG C, 赵晋陵, 等. 基于多角度成像数据的大豆冠层叶绿素密度反演[J]. 农业机械学报, 2013, 44(2): 205-213. |
ZHANG D Y, CRAIG C, ZHAO J L, et al. Chlorophyll density inversion of soybean canopy based on multi-angle imaging hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 205-213. (in Chinese with English abstract) | |
[10] | 李莉婕, 岳延滨, 王延仓, 等. 高光谱定量反演火龙果茎枝叶绿素含量的研究[J]. 光谱学与光谱分析, 2021, 41(11): 3538-3544. |
LI L J, YUE Y B, WANG Y C, et al. The quantitative study on chlorophyll content of Hylocereus polyrhizus based on hyperspectral analysis[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3538-3544. (in Chinese with English abstract) | |
[11] | 吾木提·艾山江, 尼加提·卡斯木, 陈晨, 等. 基于多维高光谱植被指数的冬小麦叶面积指数估算[J]. 农业机械学报, 2022, 53(5): 181-190. |
UMUT H, NIJAT K, CHEN C, et al. Estimation of winter wheat LAI based on multi-dimensional hyperspectral vegetation indices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 181-190. (in Chinese with English abstract) | |
[12] | 于跃, 于海业, 李晓凯, 等. 优化光谱指数建立水稻叶片SPAD的高光谱反演模型[J]. 光谱学与光谱分析, 2022, 42(4): 1092-1097. |
YU Y, YU H Y, LI X K, et al. Hyperspectral inversion model for SPAD of rice leaves based on optimized spectral index[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1092-1097. (in Chinese with English abstract) | |
[13] | 张贤龙, 张飞, 张海威, 等. 基于光谱变换的高光谱指数土壤盐分反演模型优选[J]. 农业工程学报, 2018, 34(1): 110-117. |
ZHANG X L, ZHANG F, ZHANG H W, et al. Optimization of soil salt inversion model based on spectral transformation from hyperspectral index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 110-117. (in Chinese with English abstract) | |
[14] | 段丹丹, 刘仲华, 赵春江, 等. 基于优化植被指数的多生育期茶叶游离氨基酸含量估算[J]. 农业机械学报, 2022, 53(2): 393-400. |
DUAN D D, LIU Z H, ZHAO C J, et al. Estimation of free amino acid content in fresh tea leaves at multiple growth periods based on optimized vegetation index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 393-400. (in Chinese with English abstract) | |
[15] | 蒋焕煜, 应义斌. 尖椒叶片叶绿素含量的近红外检测分析实验研究[J]. 光谱学与光谱分析, 2007, 27(3): 499-502. |
JIANG H Y, YING Y B. Measurement of chlorophyll content in pepper leaves by near infrared analysis[J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 499-502. (in Chinese with English abstract) | |
[16] | 郭宏亮, 黄帅, 聂楚楚, 等. 基于分光吸收特性的辣椒叶片叶绿素含量测量方法研究[J]. 东北农业科学, 2021, 46(5): 82-86. |
GUO H L, HUANG S, NIE C C, et al. Study on the method of measuring chlorophyll content in pepper leaves based on spectral absorption characteristics[J]. Journal of Northeast Agricultural Sciences, 2021, 46(5): 82-86. (in Chinese) | |
[17] | 袁自然, 叶寅, 武际, 等. 基于高光谱成像技术的辣椒叶片叶绿素含量估算[J]. 江苏农业科学, 2021, 49(16): 189-193. |
YUAN Z R, YE Y, WU J, et al. Estimation of chlorophyll content in pepper leaves based on hyperspectral imaging technology[J]. Jiangsu Agricultural Sciences, 2021, 49(16): 189-193. (in Chinese) | |
[18] | 张正健, 刘志红, 郭艳芬, 等. 基于NDVI的西藏不同草地类型生物量回归建模分析[J]. 高原山地气象研究, 2010, 30(3): 43-47. |
ZHANG Z J, LIU Z H, GUO Y F, et al. Biomass modeling of different grassland types based on NDVI in Tibet[J]. Plateau and Mountain Meteorology Research, 2010, 30(3): 43-47. (in Chinese with English abstract) | |
[19] | 辛晓平, 徐大伟, 何小雷, 等. 草地碳循环遥感研究进展[J]. 中国农业信息, 2018, 30(4): 1-16. |
XIN X P, XU D W, HE X L, et al. Research progress of grassland carbon cycle using remote sensing technology[J]. China Agricultural Informatics, 2018, 30(4): 1-16. (in Chinese with English abstract) | |
[20] | 武旭梅, 常庆瑞, 落莉莉, 等. 水稻冠层叶绿素含量高光谱估算模型[J]. 干旱地区农业研究, 2019, 37(3): 238-243. |
WU X M, CHANG Q R, LUO L L, et al. Hyperspectral estimation model for chlorophyll content of rice canopy[J]. Agricultural Research in the Arid Areas, 2019, 37(3): 238-243. (in Chinese with English abstract) | |
[21] | 王庆, 车荧璞, 柴宏红, 等. 基于无人机影像的冠层光谱和结构特征监测甜菜长势[J]. 农业工程学报, 2021, 37(20): 90-98. |
WANG Q, CHE Y P, CHAI H H, et al. Monitoring of sugar beet growth using canopy spectrum and structural characteristics with UAV images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 90-98. (in Chinese with English abstract) | |
[22] | 黎瑞君, 聂克艳, 彭志良, 等. 辣椒盛果期的冠层反射光谱特征[J]. 贵州农业科学, 2014, 42(12): 230-233. |
LI R J, NIE K Y, PENG Z L, et al. Canopy spectral reflectance characteristics of pepper during full bearing period[J]. Guizhou Agricultural Sciences, 2014, 42(12): 230-233. (in Chinese with English abstract) | |
[23] | 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算[J]. 农业工程学报, 2016, 32(16): 135-142. |
LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135-142. (in Chinese with English abstract) | |
[24] | SCHELL J A. Monitoring vegetation systems in the great plains with ERTS[J]. Nasa Special Publication, 1973, 351:309. |
[25] | DAUGHTRY C S T, WALTHALL C L, KIM M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239. |
[26] | HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2/3): 416-426. |
[27] | RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107. |
[28] | DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing, 2004, 25(23): 5403-5413. |
[29] | GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282. |
[30] | BREIMAN L. Random forests[J]. Machine Language, 2001, 45(1): 5-32. |
[31] | 徐庆. 基于高光谱的水稻含水量估计研究[D]. 武汉: 武汉大学, 2018. |
XU Q. Study on estimation of rice moisture content based on hyperspectral data[D]. Wuhan: Wuhan University, 2018. (in Chinese with English abstract) | |
[32] | 程晓娟, 李振海, 王延仓, 等. 不同氮肥条件下冬小麦冠层高光谱特征及红边参数变化[J]. 湖北农业科学, 2014, 53(5): 1004-1009. |
CHENG X J, LI Z H, WANG Y C, et al. Characteristics of canopy hyperspectral reflectance and changes of red edge parameters under different nitrogen levels[J]. Hubei Agricultural Sciences, 2014, 53(5): 1004-1009. (in Chinese with English abstract) | |
[33] | 唐恒朋, 钱晓刚, 李莉婕, 等. 不同施氮水平辣椒单叶光谱特征及SPAD值与叶绿素含量的相关性[J]. 西南农业学报, 2016, 29(10): 2324-2329. |
TANG H P, QIAN X G, LI L J, et al. Correlations between single leaf spectral characteristics, SPAD value and chlorophyll content in pepper under different nitrogen levels[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(10): 2324-2329. (in Chinese with English abstract) | |
[34] | 刘炜, 孙海霞, 杨晓波, 等. 对数变换、导数变换的高寒草地反射光谱特征分析与识别: 以那曲地区HJ-1A/HSI图像为例[J]. 光谱学与光谱分析, 2020, 40(7): 2200-2207. |
LIU W, SUN H X, YANG X B, et al. Spectral reflectance characteristics of alpine grassland based on derivative and logarithmic transform spectra: take HJ-1A/HSI images of Naqu prefecture as an example[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2200-2207. (in Chinese with English abstract) | |
[35] | 陈君颖, 田庆久. 水稻叶片不同光谱形式反演叶绿素含量的对比分析研究[J]. 国土资源遥感, 2007, 19(1): 44-48. |
CHEN J Y, TIAN Q J. A comparative study of rice leaf chlorophyll content retrieval by means of different spectral performances[J]. Remote Sensing for Land & Resources, 2007, 19(1): 44-48. (in Chinese with English abstract) | |
[36] | GITELSON A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. Journal of Plant Physiology, 2004, 161(2): 165-173. |
[37] | 张超, 余哲修, 黄田, 等. 基于不同光谱变换的剑湖茭草鲜生物量估测研究[J]. 西南林业大学学报(自然科学), 2019, 39(6): 105-115. |
ZHANG C, YU Z X, HUANG T, et al. The study on fresh biomass estimation of Zizania latifolia based on different spectral transformations of spectral reflectance[J]. Journal of Southwest Forestry University(Natural Sciences), 2019, 39(6): 105-115. (in Chinese with English abstract) | |
[38] | 田力, 安明态, 余江洪, 等. 亚热带喀斯特地区不同地形植物群落物种多度分布格局[J]. 广西植物, 2022, 42(6): 983-995. |
TIAN L, AN M T, YU J H, et al. Species abundance distribution pattern of plant communities in different terrains in subtropical Karst area[J]. Guihaia, 2022, 42(6): 983-995. (in Chinese with English abstract) |
[1] | 罗海林, 袁雷, 闫佳会, 郭青云. 侵染青海辣椒的辣椒隐症病毒2基因组克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1368-1374. |
[2] | 柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079. |
[3] | 朱丽, 薛新如, 梁宗旭, 许琳玉, 余国峰, 唐懿, 李焕秀. 辣椒种质资源辣椒素含量与农艺性状的相关性[J]. 浙江农业学报, 2023, 35(4): 862-872. |
[4] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[5] | 郭阳, 郭俊先, 史勇, 李雪莲, 黄华. 基于BiPLS-CARS-PLS的哈密瓜冠层叶片SPAD值反演建模[J]. 浙江农业学报, 2022, 34(10): 2286-2295. |
[6] | 张婷, 刘慧琴, 郭勤卫, 李朝森, 章心惠, 项小敏, 赵东风, 万红建. 十六份辣椒材料游离氨基酸组成的主成分分析与聚类分析[J]. 浙江农业学报, 2021, 33(4): 640-650. |
[7] | 苟秉调, 段盼盼, 杨楠, 赵淑芳, 王永富, 张高原, 魏兵强. 低温弱光胁迫下辣椒苗期光合相关指标的杂种优势[J]. 浙江农业学报, 2021, 33(3): 429-436. |
[8] | 毛奇, 杨有新, 范飞军, 万红建, 周国治, 姚祝平, 阮美颖, 王荣青, 叶青静, 李志邈, 陈双臣, 程远. 不同发光二极管(LED)光质对辣椒(Capsicum annum L.)采后品质的影响[J]. 浙江农业学报, 2021, 33(11): 2059-2067. |
[9] | 孟艳, 柳丽, 李屹, 陈来生, 杜中平, 韩睿. 酸碱预处理辣椒秸秆与羊粪混合厌氧发酵特性[J]. 浙江农业学报, 2021, 33(10): 1913-1920. |
[10] | 陈德, 赵首萍, 叶雪珠, 张棋, 肖文丹, 阮弋飞, 伍少福. 不同钝化剂对小米椒吸收和积累镉的影响[J]. 浙江农业学报, 2021, 33(10): 1921-1930. |
[11] | 牛博, 李丽娜, 庞广昌, 鲁丁强. 植物根尖分生组织传感器的构建及其对尿素传感动力学研究[J]. 浙江农业学报, 2020, 32(8): 1466-1474. |
[12] | 董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. |
[13] | 李莉, 田士林, 姜俊, 宋丽. 一氧化氮对弱光胁迫下苗期及坐果初期辣椒生长和抗性相关指标的影响[J]. 浙江农业学报, 2019, 31(12): 2036-2042. |
[14] | 胡能兵, 庞丹丹, 隋益虎, 舒英杰, 何克勤, 朱小妹. 14种辣椒对高温胁迫的生理响应及抗热性评价[J]. 浙江农业学报, 2018, 30(7): 1168-1174. |
[15] | 袁欣捷, 方荣, 周坤华, 张鸿燕, 陈学军. 辣椒始花节位研究进展[J]. 浙江农业学报, 2018, 30(7): 1259-1266. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||