浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 701-711.DOI: 10.3969/j.issn.1004-1524.20240167
郑航1,2(), 冯昊栋3, 薛向磊1,2, 叶云翔1,2, 于健麟1, 俞国红1,2,*(
)
收稿日期:
2024-02-26
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
郑航(1993—),男,浙江龙游人,博士,助理研究员,研究方向为智能农机装备设计与制造。E-mail:Zhrory@126.com
通讯作者:
* 俞国红,E-mail:Yuguohong@163.com
基金资助:
ZHENG Hang1,2(), FENG Haodong3, XUE Xianglei1,2, YE Yunxiang1,2, YU Jianlin1, YU Guohong1,2,*(
)
Received:
2024-02-26
Online:
2025-03-25
Published:
2025-04-02
摘要:
为提高设施垄作模式下叶菜的田间管理装备移动导航精度,文章提出了一种基于深度学习的叶菜垄间导航线提取算法。首先在叶菜垄间导航路径数据集上进行模型训练,采用改进的YOLOv5s-Seg 卷积神经网络提取温室作业道路图像的特征点,并通过最小二乘法拟合生成导航线。在试验中,对模型的内部结构进行了一系列的改进,提高了算法的精度和运算速度;通过采集的800张垄作模式下叶菜类作物生长图片,并通过数据增强将数据集总数扩充为原来的4倍,进而在320张图片组成的独立测试集上进行测试,总体分割精度均值为99.50%,在发芽期、幼苗期和产品器官形成期,图像的准确率分别为94.33%、97.77%和96.23%,拟合导航线与人工观测导航线的平均偏差为5.60 cm。结果表明,该导航算法能满足设施内垄作模式叶菜智能化管理移动装备的导航需求。
中图分类号:
郑航, 冯昊栋, 薛向磊, 叶云翔, 于健麟, 俞国红. 基于实例分割的叶菜垄间导航线提取算法研究[J]. 浙江农业学报, 2025, 37(3): 701-711.
ZHENG Hang, FENG Haodong, XUE Xianglei, YE Yunxiang, YU Jianlin, YU Guohong. Study on navigation line extraction algorithm for leaf vegetable ridges based on instance segmentations[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 701-711.
生长时期 Growth stage | 准确率 Precision | 召回率 Recall | 精度均值 Average precision |
---|---|---|---|
发芽期 | 94.33 | 95.92 | 97.25 |
Germination stage | |||
幼苗期 | 97.77 | 96.52 | 98.49 |
Seedling stage | |||
成形期 | 96.23 | 97.73 | 95.56 |
Formation stage |
表1 改进后YOLOv5s-seg的训练结果
Table 1 Segmentation results of YOLOv5s-seg under different growth stages were improved %
生长时期 Growth stage | 准确率 Precision | 召回率 Recall | 精度均值 Average precision |
---|---|---|---|
发芽期 | 94.33 | 95.92 | 97.25 |
Germination stage | |||
幼苗期 | 97.77 | 96.52 | 98.49 |
Seedling stage | |||
成形期 | 96.23 | 97.73 | 95.56 |
Formation stage |
模型 Model | CA | Ghostconv | Pconv | Mask/% | Parameters | Flops | ||
---|---|---|---|---|---|---|---|---|
准确率 Precision | 召回率 Recall | 精度均值 Average precision | ||||||
Yolov5s-seg | 96.4 | 99.2 | 99.1 | 7 408 214 | 25.9 | |||
Yolov5s-seg+CA | √ | 98.5 | 96.9 | 99.4 | 7 421 550 | 25.9 | ||
Yolov5s-seg+Ghostconv | √ | 97.4 | 98.6 | 99.3 | 6 195 894 | 23.5 | ||
Yolov5s-seg+C3_Faster | √ | 98.1 | 97.4 | 99.4 | 6 177 686 | 22.8 | ||
本文算法Ours | √ | √ | √ | 99.6 | 99.7 | 99.5 | 4 978 702 | 20.4 |
表2 消融试验结果
Table 2 Ablation test results
模型 Model | CA | Ghostconv | Pconv | Mask/% | Parameters | Flops | ||
---|---|---|---|---|---|---|---|---|
准确率 Precision | 召回率 Recall | 精度均值 Average precision | ||||||
Yolov5s-seg | 96.4 | 99.2 | 99.1 | 7 408 214 | 25.9 | |||
Yolov5s-seg+CA | √ | 98.5 | 96.9 | 99.4 | 7 421 550 | 25.9 | ||
Yolov5s-seg+Ghostconv | √ | 97.4 | 98.6 | 99.3 | 6 195 894 | 23.5 | ||
Yolov5s-seg+C3_Faster | √ | 98.1 | 97.4 | 99.4 | 6 177 686 | 22.8 | ||
本文算法Ours | √ | √ | √ | 99.6 | 99.7 | 99.5 | 4 978 702 | 20.4 |
模型 Model | 精度均值 Average precision/% | 推理时间 Reasoning time/ms |
---|---|---|
Faster R-CNN | 98.7 | 185.0 |
YOLOv7s-Seg | 98.6 | 30.0 |
YOLOv8s-Seg | 99.4 | 8.1 |
改进YOLOv5s-Seg | 99.5 | 7.2 |
Improved YOLOv5s-Seg |
表3 不同模型分割试验结果对比
Table 3 Comparison of the results of different model segmentation experiments
模型 Model | 精度均值 Average precision/% | 推理时间 Reasoning time/ms |
---|---|---|
Faster R-CNN | 98.7 | 185.0 |
YOLOv7s-Seg | 98.6 | 30.0 |
YOLOv8s-Seg | 99.4 | 8.1 |
改进YOLOv5s-Seg | 99.5 | 7.2 |
Improved YOLOv5s-Seg |
[1] | 丁亚会, 张云鹤, 孙宁, 等. 我国设施农业发展的国际经验与启示[J]. 江苏农业科学, 2023, 51(16): 1-8. |
DING Y H, ZHANG Y H, SUN N, et al. International experience and enlightenment on development of China’s facility agriculture[J]. Jiangsu Agricultural Sciences, 2023, 51(16): 1-8. (in Chinese with English abstract) | |
[2] | 王江, 李浩, 马志伟, 等. 国内外设施蔬菜机械化发展现状分析及对策[J]. 中国农机化学报, 2023, 44(1): 124-130. |
WANG J, LI H, MA Z W, et al. Analysis and countermeasures of mechanization development of domestic and foreign facility vegetables[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 124-130. (in Chinese with English abstract) | |
[3] | 胡静涛, 高雷, 白晓平, 等. 农业机械自动导航技术研究进展[J]. 农业工程学报, 2015, 31(10): 1-10. |
HU J T, GAO L, BAI X P, et al. Review of research on automatic guidance of agricultural vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 1-10. (in Chinese with English abstract) | |
[4] | 刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18. |
LIU C L, LIN H Z, LI Y M, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18. (in Chinese with English abstract) | |
[5] | 张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18. |
ZHANG M, JI Y H, LI S C, et al. Research progress of agricultural machinery navigation technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 1-18. (in Chinese with English abstract) | |
[6] | 饶秀勤, 朱逸航, 张延宁, 等. 基于语义分割的作物垄间导航路径识别[J]. 农业工程学报, 2021, 37(20): 179-186. |
RAO X Q, ZHU Y H, ZHANG Y N, et al. Navigation path recognition between crop ridges based on semantic segmentation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 179-186. (in Chinese with English abstract) | |
[7] | 张雄楚, 陈兵旗, 李景彬, 等. 红枣收获机视觉导航路径检测[J]. 农业工程学报, 2020, 36(13): 133-140. |
ZHANG X C, CHEN B Q, LI J B, et al. Path detection of visual navigation for jujube harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 133-140. (in Chinese with English abstract) | |
[8] | 宋宇, 刘永博, 刘路, 等. 基于机器视觉的玉米根茎导航基准线提取方法[J]. 农业机械学报, 2017, 48(2): 38-44. |
SONG Y, LIU Y B, LIU L, et al. Extraction method of navigation baseline of corn roots based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 38-44. (in Chinese with English abstract) | |
[9] | 王宝聚, 兰玉彬, 陈蒙蒙, 等. 机器学习在无人农场中的应用现状与展望[J]. 中国农机化学报, 2021, 42(10): 186-192. |
WANG B J, LAN Y B, CHEN M M, et al. Application status and prospect of machine learning in unmanned farm[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 186-192. (in Chinese with English abstract) | |
[10] | 兰玉彬, 闫瑜, 王宝聚, 等. 智能施药机器人关键技术研究现状及发展趋势[J]. 农业工程学报, 2022, 38(20): 30-40. |
LAN Y B, YAN Y, WANG B J, et al. Current status and future development of the key technologies for intelligent pesticide spraying robots[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20): 30-40. (in Chinese with English abstract) | |
[11] | 高震宇, 王安, 刘勇, 等. 基于卷积神经网络的鲜茶叶智能分选系统研究[J]. 农业机械学报, 2017, 48(7): 53-58. |
GAO Z Y, WANG A, LIU Y, et al. Intelligent fresh-tea-leaves sorting system research based on convolution neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. (in Chinese with English abstract) | |
[12] | 王毅, 刘波, 熊龙烨, 等. 基于深度学习的果园道路导航线生成算法研究[J]. 湖南农业大学学报(自然科学版), 2019, 45(6): 674-678. |
WANG Y, LIU B, XIONG L Y, et al. Research on generating algorithm of orchard road navigation line based on deep learning[J]. Journal of Hunan Agricultural University(Natural Sciences), 2019, 45(6): 674-678. (in Chinese with English abstract) | |
[13] | 韩振浩, 李佳, 苑严伟, 等. 基于U-Net网络的果园视觉导航路径识别方法[J]. 农业机械学报, 2021, 52(1): 30-39. |
HAN Z H, LI J, YUAN Y W, et al. Path recognition of orchard visual navigation based on U-Net[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 30-39. (in Chinese with English abstract) | |
[14] | 孟庆宽, 张漫, 仇瑞承, 等. 基于改进遗传算法的农机具视觉导航线检测[J]. 农业机械学报, 2014, 45(10): 39-46. |
MENG Q K, ZHANG M, QIU R C, et al. Navigation line detection for farm machinery based on improved genetic algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 39-46. (in Chinese with English abstract) | |
[15] | 吕艳鹏, 潘玉田. 基于BP神经网络的非结构化道路识别[J]. 机械工程与自动化, 2014(3): 178-180. |
LYU Y P, PAN Y T. Unstructured road detection based on BP neural network[J]. Mechanical Engineering & Automation, 2014(3): 178-180. (in Chinese with English abstract) | |
[16] | LIU F C, YANG Y, ZENG Y M, et al. Bending diagnosis of rice seedling lines and guidance line extraction of automatic weeding equipment in paddy field[J]. Mechanical Systems and Signal Processing, 2020, 142: 106791. |
[17] | WANG S S, YU S S, ZHANG W Y, et al. The seedling line extraction of automatic weeding machinery in paddy field[J]. Computers and Electronics in Agriculture, 2023, 205: 107648. |
[18] | YANG Y, ZHOU Y, YUE X, et al. Real-time detection of crop rows in maize fields based on autonomous extraction of ROI[J]. Expert Systems with Applications, 2023, 213: 118826. |
[19] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. IEEE, 2016: 779-788. |
[20] | MALTA A, MENDES M, FARINHA T. Augmented reality maintenance assistant using YOLOv5[J]. Applied Sciences, 2021, 11(11): 4758. |
[21] | 白卫卫, 赵雪妮, 罗斌, 等. 基于YOLOv5的小麦种子发芽检测方法研究[J]. 浙江农业学报, 2023, 35(2): 445-454. |
BAI W W, ZHAO X N, LUO B, et al. Study of YOLOv5-based germination detection method for wheat seeds[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 445-454. (in Chinese with English abstract) | |
[22] | 张河山, 范梦伟, 谭鑫, 等. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J/OL]. 吉林大学学报(工学版),(2023-12-28)[2024-02-25]. http://kns-cnki-net-s.webvpn.zjda.net:8118/kcms2/article/abstract?v=tOz5m-jLbAVDO6YEQjcoGfIYPw7aUrQSxfdX_VGHBX6w0-bRG_MoC3MfRVHvmvRHZrLBLnybr3Z_a7HrCnBHlFDZsK-doI3Cs-2otyLNWOX9UF1xJ4o3pjniF NrOqAbEthiyODdX86-vfYNEq9K-p4D_QjNVed47O83KuTr7umGDfdaHd46BiiXAD-iwYbTks&uniplatform=NZKPT&language=CHS. |
ZHANG H S, FAN M W, TAN X, et al. Dense small object vehicle detection in UAV aerial images using improved YOLOX[J/OL]. Journal of Jilin University(Engineering and Technology Edition), (2023-12-28)[2024-02-25]. http://kns-cnki-net-s.webvpn.zjda.net:8118/kcms2/article/abstract?v=tOz5m-jLbAVDO6YEQjcoGfIYPw7aUrQSxfdX_VGHBX6w0-bRG_MoC3MfRVHvmvRHZrLBLnybr3Z_a7HrCnBHlFDZsKdoI3Cs-2otyLNWOX9UF1xJ4o3pjniFNrOqAbEthiyODdX86vfYNEq9K-p4D_QjNVed47O83KuTr7um-GDfdaHd46BiiXADiwYbTks&uniplatform=NZKPT&language=CHS. (in Chinese with English abstract) | |
[23] | ZHANG F, CAO W H, WANG S Q, et al. Improved YOLOv4 recognition algorithm for pitaya based on coordinate attention and combinational convolution[J]. Frontiers in Plant Science, 2022, 13: 1030021. |
[24] | 张继龙, 赵军, 李金龙. 改进YOLOv7的X光图像危险品检测算法[J]. 计算机工程与应用, 2024, 60(10):266-275. |
ZHANG J L, ZHAO J, LI J L. Improved dangerous goods detection in X-ray images of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(10):266-275. (in Chinese with English abstract) | |
[25] | 晏朋, 李遇鑫, 李治林, 等. 基于改进YOLOv7的高铁异物入侵检测算法[J]. 无线电工程, 2024, 54(5):1099-1109. |
YAN P, LL Y X, LL Z L, et al. High-speed rail foreign object intrusion detection algorithm based on improveo YOLOv7[J]. Radio Engineering, 2024, 54(5):1099-1109. (in Chinese with English abstract) |
[1] | 程嘉瑜, 陈妙金, 李彤, 孙奇男, 张小斌, 赵懿滢, 朱怡航, 顾清. 基于改进Faster-RCNN网络的无人机遥感影像桃树检测[J]. 浙江农业学报, 2024, 36(8): 1909-1919. |
[2] | 潘攀, 张建华, 郑晓明, 周国民, 胡林, 冯全, 柴秀娟. 深度学习在作物及其近缘种抗病性智能鉴定上的研究进展[J]. 浙江农业学报, 2023, 35(8): 1993-2012. |
[3] | 白卫卫, 赵雪妮, 罗斌, 赵薇, 黄硕, 张晗. 基于YOLOv5的小麦种子发芽检测方法研究[J]. 浙江农业学报, 2023, 35(2): 445-454. |
[4] | 朱世松, 马婉丽, 赵理山, 郑艳梅, 郑先波, 芦碧波. 基于改进的LinkNet的苹果叶片图像分割算法[J]. 浙江农业学报, 2023, 35(1): 202-214. |
[5] | 陈道怀, 汪杭军. 基于改进YOLOv4的林业害虫检测[J]. 浙江农业学报, 2022, 34(6): 1306-1315. |
[6] | 李超, 李锋, 黄炜嘉. 基于并联卷积神经网络的水果品种识别[J]. 浙江农业学报, 2022, 34(11): 2533-2541. |
[7] | 张晴晴, 刘连忠, 宁井铭, 吴国栋, 江朝晖, 李孟杰, 李栋梁. 基于YOLOV3优化模型的复杂场景下茶树嫩芽识别[J]. 浙江农业学报, 2021, 33(9): 1740-1747. |
[8] | 鲍烈, 王曼韬, 刘江川, 文波, 明月. 基于卷积神经网络的小麦产量预估方法[J]. 浙江农业学报, 2020, 32(12): 2244-2252. |
[9] | 王彦翔, 张艳, 杨成娅, 孟庆龙, 尚静. 基于深度学习的农作物病害图像识别技术进展[J]. 浙江农业学报, 2019, 31(4): 669-676. |
[10] | 杨国亮, 许楠, 康乐乐, 龚曼, 洪志阳. 基于参数指数非线性残差神经网络的脐橙病变叶片识别[J]. 浙江农业学报, 2018, 30(6): 1073-1081. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||