| [1] |
RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476): 355-359.
|
| [2] |
沈贝蓓, 宋帅峰, 张丽娟, 等. 1981—2019年全球气温变化特征[J]. 地理学报, 2021, 76(11): 2660-2672.
|
|
SHEN B B, SONG S F, ZHANG L J, et al. Changes in global air temperature from 1981 to 2019[J]. Acta Geographica Sinica, 2021, 76(11): 2660-2672. (in Chinese with English abstract)
|
| [3] |
刘燕华, 李宇航, 王文涛. 中国实现“双碳” 目标的挑战、机遇与行动[J]. 中国人口·资源与环境, 2021, 31(9): 1-5.
|
|
LIU Y H, LI Y H, WANG W T. Challenges, opportunities and actions for China to achieve the targets of carbon peak and carbon neutrality[J]. China Population, Resources and Environment, 2021, 31(9): 1-5. (in Chinese with English abstract)
|
| [4] |
CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198-209.
|
| [5] |
BARTOSIEWICZ M, MARANGER R, PRZYTULSKA A, et al. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake[J]. Water Research, 2021, 196: 116985.
|
| [6] |
PICKARD A, WHITE S, BHATTACHARYYA S, et al. Greenhouse gas budgets of severely polluted urban lakes in India[J]. Science of the Total Environment, 2021, 798: 149019.
|
| [7] |
SUN H Y, LU X X, YU R H, et al. Eutrophication decreased CO2 but increased CH4 emissions from lake: a case study of a shallow Lake Ulansuhai[J]. Water Research, 2021, 201: 117363.
|
| [8] |
YANG P, LAI D Y F, YANG H, et al. Methane dynamics of aquaculture shrimp ponds in two subtropical estuaries, southeast China: dissolved concentration, net sediment release, and water oxidation[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(6): 1430-1445.
|
| [9] |
ZHANG Y, BLEEKER A, LIU J G. Nutrient discharge from China’s aquaculture industry and associated environmental impacts[J]. Environmental Research Letters, 2015, 10(4): 045002.
|
| [10] |
XIAO X, AGUSTI S, LIN F, et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture[J]. Scientific Reports, 2017, 7: 46613.
|
| [11] |
丁维新, 袁俊吉, 刘德燕, 等. 淡水养殖系统温室气体CH4和N2O排放量研究进展[J]. 农业环境科学学报, 2020, 39(4): 749-761.
|
|
DING W X, YUAN J J, LIU D Y, et al. CH4 and N2O emissions from freshwater aquaculture[J]. Journal of Agro-Environment Science, 2020, 39(4): 749-761. (in Chinese with English abstract)
|
| [12] |
胡涛, 黄健, 丁颖, 等. 基于漂浮箱法和扩散模型法测定淡水养殖鱼塘甲烷排放通量的比较[J]. 环境科学, 2020, 41(2): 941-951.
|
|
HU T, HUANG J, DING Y, et al. Comparison of floating chamber and diffusion model methods for measuring methane emissions from inland fish-aquaculture ponds[J]. Environmental Science, 2020, 41(2): 941-951. (in Chinese with English abstract)
|
| [13] |
WU S, HU Z Q, HU T, et al. Annual methane and nitrous oxide emissions from rice paddies and inland fish aquaculture wetlands in southeast China[J]. Atmospheric Environment, 2018, 175: 135-144.
|
| [14] |
祝少华. 沿黄低洼盐碱地池塘养殖罗氏沼虾技术[J]. 中国水产, 2006(5): 34-36.
|
|
ZHU S H. Technique of pond farming Macrobrachium rosenbergii in low-lying saline-alkali lands along the Yellow River[J]. China Fisheries, 2006(5): 34-36. (in Chinese)
|
| [15] |
蒋巧丽, 许永久, 郑基, 等. 浙江披山海域主要虾蟹类时空生态位及种间联结性[J]. 应用生态学报, 2021, 32(7): 2604-2614.
|
|
JIANG Q L, XU Y J, ZHENG J, et al. Niches and interspecific association of major shrimp and crab species in Pishan waters of Zhejiang Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2604-2614. (in Chinese with English abstract)
|
| [16] |
房伟平, 范慧慧, 沈伟棋, 等. 河蟹塘套养大规格罗氏沼虾模式分析[J]. 科学养鱼, 2021(8): 34-35.
|
|
FANG W P, FAN H H, SHEN W Q, et al. Analysis of the polyculture mode of large-sized Macrobrachium rosenbergii in river crab ponds[J]. Scientific Fish Farming, 2021(8): 34-35. (in Chinese)
|
| [17] |
周聃, 刘梅, 房伟平, 等. 中华绒螯蟹-日本沼虾池塘套养大规格罗氏沼虾模式氮磷收支及养殖效果研究[J]. 淡水渔业, 2022, 52(5): 76-82.
|
|
ZHOU D, LIU M, FANG W P, et al. Study on nitrogen and phosphorus budget and aquaculture effect of large-scale Macrobrachium rosenbergii in Eriocheir sinensis-Japan M. nipponens pond[J]. Freshwater Fisheries, 2022, 52(5): 76-82. (in Chinese with English abstract)
|
| [18] |
KESSAVALOU A, MOSIER A R, DORAN J W, et al. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management[J]. Journal of Environmental Quality, 1998, 27(5): 1094-1104.
|
| [19] |
LAMBERT M, FRÉCHETTE J L. Analytical techniques for measuring fluxes of CO2and CH4from hydroelectric reservoirs and natural water bodies[M]// Greenhouse gas emissions:fluxes and processes. Berlin: Springer-Verlag, 2005: 37-60.
|
| [20] |
Intergovernmental Panel on Climate Change (IPCC). Climate change 2013: the physical science basis:contribution of working group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
|
| [21] |
张东旭. 三疣梭子蟹、日本囊对虾和菲律宾蛤仔不同混养系统水-气界面CO2和CH4通量及系统碳收支的研究[D]. 青岛: 中国海洋大学, 2015.
|
|
ZHANG D X. Studies on CH4 and CO2 fluxes at water-air interface and carbon budgets of different culture systems with Portunus trituberculatus, Marsupenaeus japonicas and Ruditapes philippinarum[D]. Qingdao: Ocean University of China, 2015. (in Chinese with English abstract)
|
| [22] |
林海, 周刚, 李旭光, 等. 夏季池塘养殖中华绒螯蟹生态系统温室气体排放及综合增温潜势[J]. 水产学报, 2013, 37(3): 417-424.
|
|
LIN H, ZHOU G, LI X G, et al. Greenhouse gases emissions from pond culture ecosystem of Chinese mitten crab and their comprehensive global warming potentials in summer[J]. Journal of Fisheries of China, 2013, 37(3): 417-424. (in Chinese with English abstract)
|
| [23] |
FRENZEL P, THEBRATH B, CONRAD R. Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance)[J]. FEMS Microbiology Ecology, 1990, 6(2): 149-158.
|
| [24] |
程炳红, 郝庆菊, 江长胜. 水库温室气体排放及其影响因素研究进展[J]. 湿地科学, 2012, 10(1): 121-128.
|
|
CHENG B H, HAO Q J, JIANG C S. Research progress on the emission of greenhouse gases from reservoir and its influence factors[J]. Wetland Science, 2012, 10(1): 121-128. (in Chinese with English abstract)
|
| [25] |
ZOU J W, HUANG Y, JIANG J Y, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochemical Cycles, 2005, 19(2): 2004GB002401.
|
| [26] |
FREEMAN C, NEVISON G B, KANG H, et al. Contrasted effects of simulated drought on the production and oxidation of methane in a mid-Wales wetland[J]. Soil Biology and Biochemistry, 2002, 34(1): 61-67.
|
| [27] |
邓晓, 廖晓兰, 黄璜. 稻-鸭复合生态系统产甲烷细菌数量[J]. 生态学报, 2004, 24(8): 1696-1700.
|
|
DENG X, LIAO X L, HUANG H. Studies on amount of methanogens in the rice-duck agroecosystem[J]. Acta Ecologica Sinica, 2004, 24(8): 1696-1700. (in Chinese with English abstract)
|
| [28] |
刘永茂, 付卫国, 沈明星, 等. 水生植物对蟹塘NH3挥发和N2O排放的影响[J]. 浙江农业科学, 2023, 64(3): 710-714.
|
|
LIU Y M, FU W G, SHEN M X, et al. Effects of aquatic plants on NH3 volatilization and N2O emission in crab pond[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(3): 710-714. (in Chinese with English abstract)
|
| [29] |
罗国芝, 邵李娜. 水产养殖活动中N2O的排放研究进展[J]. 中国水产科学, 2019, 26(3): 604-619.
|
|
LUO G Z, SHAO L N. Analysis of current research status and prospects of N2O emission from aquaculture production[J]. Journal of Fishery Sciences of China, 2019, 26(3): 604-619. (in Chinese with English abstract)
|
| [30] |
EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems[J]. Aquaculture, 2006, 257(1/2/3/4): 346-358.
|