[1] ZHAI F H, HAN J R.Decomposition of Asparagus old stalks by Pleurotus spp. under mushroom-growing conditions[J]. Scientia Horticulturae, 2018, 231: 11-14. [2] HARUTA S, CUI Z, HUANG Z, et al.Construction of a stable microbial community with high cellulose-degradation ability[J]. Applied Microbiology and Biotechnology, 2002, 59(4/5): 529-534. [3] O'SULLIVAN A C. Cellulose: the structure slowly unravels[J]. Cellulose, 1997, 4(3): 173-207. [4] YU H Y, ZENG G M, HUANG H L, et al.Microbial community succession and lignocellulose degradation during agricultural waste composting[J]. Biodegradation, 2007, 18(6): 793-802. [5] BOTHEJU D.Oxygen effects in anaerobic digestion: a review[J]. The Open Waste Management Journal, 2011, 4(1): 1-19. [6] DENG Y, FONG S S.Influence of culture aeration on the cellulase activity of Thermobifida fusca[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 965-974. [7] XU S Y, SELVAM A, WONG J W C. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste[J]. Waste Management, 2014, 34(2): 363-369. [8] SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56. [9] DANG Y, LEI Y Q, LIU Z, et al.Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate[J]. Water Research, 2016, 106: 71-78. [10] 范慧青, 王喜明, 王雅梅. 利用傅里叶变换红外光谱法快速测定木材纤维素含量[J]. 木材加工机械, 2014, 25(4): 33-37. FAN H Q, WANG X M, WANG Y M.Rapid determination on cellulose content of wood by using FTIR spectrometry[J]. Wood Processing Machinery, 2014, 25(4): 33-37.(in Chinese with English abstract) [11] ZHANG Y C, XU S Y, CUI M H, et al.Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge[J]. Waste Management, 2019, 94: 68-76. [12] SPACCINI R, PICCOLO A.Spectroscopic characterization of compost at different maturity stages[J]. Clean: Soil, Air, Water, 2008, 36(2): 152-157. [13] HE X S, XI B D, CUI D Y, et al.Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting[J]. Journal of Hazardous Materials, 2014, 268: 256-263. [14] BASTIDA F, TORRES I F, HERNÁNDEZ T, et al. The impacts of organic amendments: do they confer stability against drought on the soil microbial community?[J]. Soil Biology and Biochemistry, 2017, 113: 173-183. [15] BAKER A.Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers[J]. Environmental Science & Technology, 2001, 35(5): 948-953. [16] CORY R M, MCKNIGHT D M.Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter[J]. Environmental Science & Technology, 2005, 39(21): 8142-8149. [17] ZHAO Y, ZHAO Y, ZHANG Z C, et al.Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management, 2017, 68: 64-73. [18] HARRISON R B.Composting and formation of humic substances[M]//Encyclopedia of Ecology. Cambridge: Academic Press, 2008: 713-719. [19] OHNO T, FERNANDEZ I J, HIRADATE S, et al.Effects of soil acidification and forest type on water soluble soil organic matter properties[J]. Geoderma, 2007, 140(1/2): 176-187. [20] 陈俊伊, 王书航, 姜霞, 等. 蠡湖表层沉积物荧光溶解性有机质(FDOM)荧光光谱特征[J]. 环境科学, 2017, 38(1): 70-77. CHEN J Y, WANG S H, JIANG X, et al.Fluorescence spectral characteristics of fluorescent dissolved organic matter (FDOM) in the surface sediments from Lihu Lake[J]. Environmental Science, 2017, 38(1): 70-77.(in Chinese with English abstract) [21] ZSOLNAY A, BAIGAR E, JIMENEZ M, et al.Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J]. Chemosphere, 1999, 38(1): 45-50. [22] PRIAC A, BADOT P M, CRINI G.Treated wastewater phytotoxicity assessment using Lactuca sativa: focus on germination and root elongation test parameter[J]. Comptes Rendus Biologies, 2017, 340(3): 188-194. |