[1] 周琴, 张思思, 包满珠, 等. 高等植物成花诱导的分子机理研究进展[J]. 分子植物育种, 2018, 16(11): 3681-3692. ZHOU Q, ZHANG S S, BAO M Z, et al.Advances on molecular mechanism of floral initiation in higher plants[J]. Molecular Plant Breeding, 2018, 16(11): 3681-3692.(in Chinese with English abstract) [2] 彭凌涛. 控制拟南芥和水稻开花时间光周期途径的分子机制[J]. 植物生理学通讯, 2006, 42(6): 1021-1031. PENG L T.Molecular mechanism of flowering time controlling photoperiod pathway in Arabidopsis and rice[J]. Plant Physiology Communications, 2006, 42(6): 1021-1031.(in Chinese) [3] PAJORO A, BIEWERS S, DOUGALI E, et al.The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history[J]. Journal of Experimental Botany, 2014, 65(17): 4731-4745. [4] D'ALOIA M, BONHOMME D, BOUCHÉ F, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF[J]. The Plant Journal, 2011, 65(6): 972-979. [5] DOMAGALSKA M A, SCHOMBURG F M, AMASINO R M, et al.Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering[J]. Development, 2007, 134(15): 2841-2850. [6] LEE J H, YOO S J, PARK S H, et al.Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes & Development, 2007, 21(4): 397-402. [7] LEE Y S, JEONG D H, LEE D Y, et al.OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB[J]. Plant Journal, 2010, 63(1): 18-30. [8] CASTRO MARÍN I, LOEF I, BARTETZKO L, et al. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways[J]. Planta, 2011, 233(3): 539-552. [9] WAHL V, PONNU J, SCHLERETH A, et al.Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science, 2013, 339(6120): 704-707. [10] WU G, PARK M Y, CONWAY S R, et al.The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759. [11] 李计红. 拟南芥内源油菜素内酯对开花时间的影响及机理研究[D]. 兰州: 兰州大学, 2011. LI J H.Studies on influence of endogenous brassinosteroid on the flowering-time and the mechanism in Arabidopsis[D]. Lanzhou: Lanzhou University, 2011.(in Chinese with English abstract) [12] ALABADÍ D, YANOVSKY M J, MÁS P, et al. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis[J]. Current Biology, 2002, 12(9): 757-761. [13] ABE M.FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J]. Science, 2005, 309(5737): 1052-1056. [14] KARDAILSKY I.Activation tagging of the floral inducer FT[J]. Science, 1999, 286(5446): 1962-1965. [15] NAGY F, KIRCHER S, SCHÄFER E. Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes[J]. Seminars in Cell & Developmental Biology, 2000, 11(6): 505-510. [16] 付建新, 王翊, 戴思兰. 高等植物CO基因研究进展[J]. 分子植物育种, 2010, 8(5): 1008-1016. FU J X, WANG Y, DAI S L.Advanced research on CO genes in higher plants[J]. Molecular Plant Breeding, 2010, 8(5): 1008-1016.(in Chinese with English abstract) [17] 樊丽娜, 邓海华, 齐永文. 植物CO基因研究进展[J]. 西北植物学报, 2008, 28(6): 1281-1287. FAN L N, DENG H H, QI Y W.Research advances in CO genes of plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(6): 1281-1287.(in Chinese with English abstract) [18] YANOVSKY M J, KAY S A.Molecular basis of seasonal time measurement in Arabidopsis[J]. Nature, 2002, 419(6904): 308-312. [19] KHANNA R, KRONMILLER B, MASZLE D R, et al.The Arabidopsis B-box zinc finger family[J]. The Plant Cell, 2009, 21(11): 3416-3420. [20] FORNARA F, PANIGRAHI K C S, GISSOT L, et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Developmental Cell, 2009, 17(1): 75-86. [21] KIM S K, PARK H Y, JANG Y H, et al. The sequence variation responsible for the functional difference between the CONSTANS protein,the CONSTANS-like (COL) 1 and COL2 proteins, resides mostly in the region encoded by their first exons[J]. Plant Science, 2013, 199/200: 71-78. [22] TSUJI H, TAMAKI S, KOMIYA R, et al.Florigen and the photoperiodic control of flowering in rice[J]. Rice, 2008, 1(1): 25-35. [23] YANO M, KATAYOSE Y, ASHIKARI M, et al.Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. The Plant Cell, 2000, 12(12): 2473-2483. [24] LEE Y S, AN G.OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice[J]. Journal of Plant Biology, 2015, 58(2): 137-145. [25] XUE W Y, XING Y Z, WENG X Y, et al.Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. [26] 徐铨, 奥本裕, 王晓雪. 水稻开花期调控分子机理研究进展[J]. 植物遗传资源学报, 2014, 15(1): 129-136. XU Q, AO B Y, WANG X X.Research progress on regulatory molecular mechanisms of flowering time in rice[J]. Journal of Plant Genetic Resources, 2014, 15(1): 129-136.(in Chinese with English abstract) [27] DOI K.Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes & Development, 2004, 18(8): 926-936. [28] SONG, WANG G F, HU Y, et al. OsMFT1 increases spikelets per panicle and delays heading date in rice by suppressing Ehd1, FZP and SEPALLATA-like genes[J]. Journal of Experimental Botany, 2018, 69(18): 4283-4293. [29] 宋远丽, 高志超, 栾维江. 温度和光周期对水稻抽穗期调控的交互作用[J]. 中国科学:生命科学, 2012, 42(4): 316-325. SONG Y L, GAO Z C, LUAN W J.Interaction between temperature and photoperiod in regulation of flowering time in rice[J]. Scientia Sinica(Vitae), 2012, 42(4): 316-325.(in Chinese) [30] OLSON S N, RITTER K, ROONEY W, et al.High biomass yield energy Sorghum: developing a genetic model for C4 grass bioenergy crops[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(6): 640-655. [31] MURPHY R L, KLEIN R R, MORISHIGE D T, et al.Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in Sorghum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39): 16469-16474. [32] KLEIN R R, MILLER F R, DUGAS D V, et al.Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum[J]. Theoretical and Applied Genetics, 2015, 128(9): 1669-1683. [33] YANG S S, MURPHY R L, MORISHIGE D T, et al.Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12[J]. PLoS One, 2014, 9(8): e105352. [34] BENNETZEN J L, SCHMUTZ J, WANG H, et al.Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology, 2012, 30(6): 555-561. [35] ZHANG G Y, LIU X, QUAN Z W, et al.Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential[J]. Nature Biotechnology, 2012, 30(6): 549-554. [36] 贾小平, 袁玺垒, 李剑峰, 等. 不同光温条件谷子资源主要农艺性状的综合评价[J]. 中国农业科学, 2018, 51(13): 2429-2441. JIA X P, YUAN X L, LI J F, et al.Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions[J]. Scientia Agricultura Sinica, 2018, 51(13): 2429-2441.(in Chinese with English abstract) [37] 谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析[D]. 郑州: 河南农业大学, 2012. XIE L L.OTL mapping and analysis for the related traits of photoperiod sensitivity in Setaria italica[D]. Zhengzhou: Henan Agricultural University, 2012.(in Chinese with English abstract) [38] MAURO-HERRERA M, WANG X W, BARBIER H, et al.Genetic control and comparative genomic analysis of flowering time in Setaria(Poaceae)[J]. Genes|Genomes|Genetics, 2013, 3(2): 283-295. [39] LIU H H, LIU H Q, ZHOU L N, et al.Parallel domestication of the heading date 1 gene in cereals[J]. Molecular Biology and Evolution, 2015, 32(10): 2726-2737. [40] ROBSON F, COSTA M M R, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants[J]. The Plant Journal, 2002, 28(6): 619-631. [41] STRAYER C.Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog[J]. Science, 2000, 289(5480): 768-771. [42] COCKRAM J, JONES H, LEIGH F J, et al.Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity[J]. Journal of Experimental Botany, 2007, 58(6): 1231-1244. [43] COCKRAM J, THIEL T, STEUERNAGEL B, et al.Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae[J]. PLoS One, 2012, 7(9): e45307. [44] SALOMÉ P A, MCCLUNG C R.PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock[J]. The Plant Cell, 2005, 17(3): 791-803. [45] 陈华夏, 申国境, 王磊, 等. 4个物种CCT结构域基因家族的序列进化分析[J]. 华中农业大学学报, 2010, 29(6): 669-676. CHEN H X, SHEN G J, WANG L, et al.Sequence evolution analysis of CCT domain gene family in rice, Arabidopsis, maize and sorghum[J]. Journal of Huazhong Agricultural University, 2010, 29(6): 669-676.(in Chinese with English abstract) [46] YOO S K, CHUNG K S, KIM J, et al.CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiology, 2005, 139(2): 770-778. [47] CHENG X F, WANG Z Y.Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana[J]. The Plant Journal, 2005, 43(5): 758-768. [48] LEDGER S, STRAYER C, ASHTON F, et al.Analysis of the function of two circadian-regulated CONSTANS-LIKE genes[J]. The Plant Journal, 2001, 26(1): 15-22. [49] HAYAMA R, YOKOI S, TAMAKI S, et al.Adaptation of photoperiodic control pathways produces short-day flowering in rice[J]. Nature, 2003, 422(6933): 719-722. [50] WU W, ZHENG X M, LU G, et al.Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 2775-2780. [51] 薛为亚. 水稻产量相关基因Ghd7的分离与鉴定[D]. 武汉: 华中农业大学, 2008. XUE W Y.Isolation and characterization of a pleiotropic gene, Ghd7, in rice[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese with English abstract) [52] LIU J H, SHEN J Q, XU Y, et al.Ghd2, aCONSTANS-like gene, confers drought sensitivity through regulation of senescence in rice[J]. Journal of Experimental Botany, 2016, 67(19): 5785-5798. [53] 刘海洋. 水稻多效性基因Ghd7.1的克隆与功能分析[D]. 武汉: 华中农业大学, 2016. LIU H Y.Cloning and functional analysis of rice pleiotropic gene Ghd7.1[D]. Wuhan: Huazhong Agricultural University, 2016.(in Chinese with English abstract) [54] 谭俊杰. 水稻CONSTANS-like基因OsCOL10作用于光周期开花途径的分子遗传与生化分析[D]. 长沙: 湖南大学, 2015. TAN J J.The molecular genetic and biochemical study of CONSTANS-like gene OsCOL10 in photoperiodic control of flowering time in rice[D]. Changsha: Hunan University, 2015.(in Chinese with English abstract) [55] CAMPOLI C, DROSSE B, SEARLE I, et al.Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS[J]. The Plant Journal, 2012, 69(5): 868-880. [56] HUANG C, SUN H Y, XU D Y, et al.ZmCCT9 enhances maize adaptation to higher latitudes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(2): E334-E341. [57] LI Y P, TONG L X, DENG L L, et al.Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids[J]. Theoretical and Applied Genetics, 2017, 130(12): 2587-2600. [58] YANG S S, WEERS B D, MORISHIGE D T, et al.CONSTANS is a photoperiod regulated activator of flowering in Sorghum[J]. BMC Plant Biology, 2014, 14(1): 148. [59] MURPHY R L, MORISHIGE D T, BRADY J A, et al. Ghd7 (Ma 6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production[J]. The Plant Genome, 2014, 7(2): plantgenome2013.11.0040. [60] BRUTNELL T P, WANG L, SWARTWOOD K, et al.Setaria viridis: a model for C4 photosynthesis[J]. The Plant Cell, 2010, 22(8): 2537-2544. |