浙江农业学报 ›› 2021, Vol. 33 ›› Issue (1): 131-141.DOI: 10.3969/j.issn.1004-1524.2021.01.16
许双燕1(
), 张涛1, 张成1,2, 林辉3, 水贤磊1, 郑华宝1,2,*(
)
收稿日期:2020-07-03
出版日期:2021-01-25
发布日期:2021-01-25
作者简介:*郑华宝,E-mail:zhenghuabao@zafu.edu.cn通讯作者:
郑华宝
基金资助:
XU Shuangyan1(
), ZHANG Tao1, ZHANG Cheng1,2, LIN Hui3, SHUI Xianlei1, ZHENG Huabao1,2,*(
)
Received:2020-07-03
Online:2021-01-25
Published:2021-01-25
Contact:
ZHENG Huabao
摘要:
优良的菌种资源是污染环境微生物修复技术的核心。为获取红霉素高效降解菌,采用梯度驯化法,以长期堆放鸡粪的有机肥生产车间土壤为对象,开展降解菌筛选鉴定,并研究不同红霉素质量浓度、培养温度、转速、初始pH值,以及外加碳氮源、金属离子对菌株降解红霉素的影响。结果表明,筛选获得一株红霉素高效降解菌株Ery-6。通过菌落形态和16S rDNA序列分析方法,将该菌株鉴定为甲基菌属(Methylobacillus sp.)。Ery-6菌株可以在以红霉素为唯一碳源的无机盐培养基中快速生长,60 h后进入生长稳定期。接种Ery-6菌株可提高红霉素在培养基中的降解速率常数,使其半衰期从88.4 h降低至30.7 h。该菌株在含有100 mg·L-1红霉素的无机盐培养基中,在温度35 ℃、转速120 r·min-1、初始pH值7.0、外加50 mg·L-1蔗糖的条件下,对红霉素的降解效果最佳,48 h降解率达88.68%。菌株可耐受1 000 mg·L-1高质量浓度的红霉素,在温度35 ℃、转速120 r·min-1、初始pH值7.0的条件下48 h降解率达31.95%。该菌株对多种金属离子具有良好的耐受性;但Cu2+既会抑制Ery-6菌株的生长,也会对其降解红霉素产生一定的影响。本研究首次发现甲基菌属菌株具有降解红霉素的能力,且降解效果较好,为生物降解养殖废弃物与环境中的抗生素污染提供了一种新的微生物资源。
中图分类号:
许双燕, 张涛, 张成, 林辉, 水贤磊, 郑华宝. 一株红霉素降解菌的筛选、鉴定与降解特性[J]. 浙江农业学报, 2021, 33(1): 131-141.
XU Shuangyan, ZHANG Tao, ZHANG Cheng, LIN Hui, SHUI Xianlei, ZHENG Huabao. Isolation and identification of an erythromycin degradation bacterium strain and its biodegradation characteristics[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 131-141.
| t/min | 流动相比例Mobile phase ratio/% | |
|---|---|---|
| A | B | |
| 0 | 90.0 | 10.0 |
| 1.0 | 90.0 | 10.0 |
| 2.0 | 80.0 | 20.0 |
| 3.5 | 77.0 | 23.0 |
| 5.0 | 76.0 | 24.0 |
| 8.0 | 76.5 | 23.5 |
| 9.0 | 70.0 | 30.0 |
| 16 | 70.0 | 30.0 |
| 20 | 50.0 | 50.0 |
| 24 | 90.0 | 10.0 |
| 25 | 90.0 | 10.0 |
表1 液相色谱测定红霉素时的梯度洗脱程序
Table 1 Gradient elution procedure for erythromycin determination
| t/min | 流动相比例Mobile phase ratio/% | |
|---|---|---|
| A | B | |
| 0 | 90.0 | 10.0 |
| 1.0 | 90.0 | 10.0 |
| 2.0 | 80.0 | 20.0 |
| 3.5 | 77.0 | 23.0 |
| 5.0 | 76.0 | 24.0 |
| 8.0 | 76.5 | 23.5 |
| 9.0 | 70.0 | 30.0 |
| 16 | 70.0 | 30.0 |
| 20 | 50.0 | 50.0 |
| 24 | 90.0 | 10.0 |
| 25 | 90.0 | 10.0 |
图2 Ery-6菌株的生长曲线(A)和对红霉素的生物降解动力学曲线(B) Ct/C0为t时体系中红霉素质量浓度与初始红霉素质量浓度之比。CK为不加菌的对照。
Fig.2 Growth curve (A) and biodegradation kinetic curve (B) of Ery-6 strain Ct/C0 was the ratio of erythromycin concentration at t time to the initial concentrution.CK, Control withow Ery-6 strain inoculation.
| 处理Treatment | 一级反应方程First order reaction equation | k/h-1 | t1/2/h | R2 |
|---|---|---|---|---|
| 不接菌Not inoculated | Ct=92.14e-0.00049t | 0.000 49 | 88.42 | 0.928 4 |
| 接菌Inoculated | Ct=57.69e-0.00753t | 0.007 53 | 30.65 | 0.925 9 |
表2 红霉素降解的动力学方程与动力参数
Table 2 Biodegradation kinetic equation and kinetic parameter of erythromycin
| 处理Treatment | 一级反应方程First order reaction equation | k/h-1 | t1/2/h | R2 |
|---|---|---|---|---|
| 不接菌Not inoculated | Ct=92.14e-0.00049t | 0.000 49 | 88.42 | 0.928 4 |
| 接菌Inoculated | Ct=57.69e-0.00753t | 0.007 53 | 30.65 | 0.925 9 |
图7 外源添加碳氮源对Ery-6菌株降解红霉素的影响 柱上无相同字母的表示处理间差异显著(P<0.05)。下同。对照中不外源添加碳氮源。
Fig.7 Effect of exogenous carbon or nitrogen source on erythromycin degradation by Ery-6 strain Bars marked without the same letters indicated significant difference at P<0.05. The same as below. No exogenous carbon or nitrogen source was added in the control.
图8 外加金属离子对Ery-6菌株降解红霉素的影响 对照中不外源添加金属离子。
Fig.8 Effect of exogenous metal ions on erythromycin degradation by Ery-6 strain No exogenous metal ion was added in the control.
| [1] | 孟应宏, 冯瑶, 黎晓峰, 等. 土霉素降解菌筛选及降解特性研究[J]. 植物营养与肥料学报, 2018,24(3):720-727. |
| MENG Y H, FENG Y, LI X F, et al. Isolation of an oxytetracycline-degrading bacterial strain and its biodegradation characteristics[J]. Journal of Plant Nutrition and Fertilizers, 2018,24(3):720-727.(in Chinese with English abstract) | |
| [2] | 张珈瑜, 彭星星, 贾晓珊. 磺胺二甲基嘧啶(SM2)高效降解菌J2的分离筛选及降解特性研究[J]. 环境科学学报, 2019,39(9):2919-2927. |
| ZHANG J Y, PENG X X, JIA X S. Isolation and characterization of highly efficient sulfamethazine-degrading bacterium strain J2[J]. Acta Scientiae Circumstantiae, 2019,39(9):2919-2927.(in Chinese with English abstract) | |
| [3] | 王强锋, 朱彭玲, 夏中梅, 等. 三种农用抗生素降解真菌的筛选及其降解性能[J]. 农业资源与环境学报, 2018,35(6):533-539. |
| WANG Q F, ZHU P L, XIA Z M, et al. Screening and degradation properties of three kinds of agricultural antibiotics degrading fungi[J]. Journal of Agricultural Resources and Environment, 2018,35(6):533-539.(in Chinese with English abstract) | |
| [4] | 张娟, 马玉龙, 孙瑞珠, 等. 泰乐菌素降解菌的分离及其酶促特性[J]. 环境科学与技术, 2014,37(4):1-6. |
| ZHANG J, MA Y L, SUN R Z, et al. Isolation of a tylosin-degrading bacteria and characteristics of enzymatic degradation[J]. Environmental Science & Technology, 2014,37(4):1-6. (in Chinese with English abstract) | |
| [5] | JANK L, MARTINS M T, ARSAND J B, et al. Liquid chromatography-tandem mass spectrometry multiclass method for 46 antibiotics residues in milk and meat: development and validation[J]. Food Analytical Methods, 2017,10(7):2152-2164. |
| [6] | KEBEDE G, ZENEBE T, DISASSA H, et al. Review on detection of antimicrobial residues in raw bulk milk in dairy farms[J]. African Journal of Basic & Applied Sciences, 2014,6(4):87-97. |
| [7] |
ZHANG M, HE L Y, LIU Y S, et al. Fate of veterinary antibiotics during animal manure composting[J]. Science of the Total Environment, 2019,650:1363-1370.
DOI URL |
| [8] |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015,49(11):6772-6782.
DOI URL PMID |
| [9] |
LUO Y, MAO D Q, RYSZ M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010,44(19):7220-7225.
DOI URL PMID |
| [10] |
成登苗, 李兆君, 张雪莲, 等. 畜禽粪便中兽用抗生素削减方法的研究进展[J]. 中国农业科学, 2018,51(17):3335-3352.
DOI URL |
| CHENG D M, LI Z J, ZHANG X L, et al. Removal of veterinary antibiotics in livestock and poultry manure: a review[J]. Scientia Agricultura Sinica, 2018,51(17):3335-3352.(in Chinese with English abstract) | |
| [11] | JAYALAKSHMI K, PARAMASIVAM M, SASIKALA M, et al. Review on antibiotic residues in animal products and its impact on environments and human health[J]. Journal of Entomology and Zoology Studies, 2017,5(3):1446-1451. |
| [12] |
TIAN X M, LIU J X, WANG Y Q, et al. Adsorption of antibiotics from aqueous solution by different aerogels[J]. Journal of Non-Crystalline Solids, 2019,505:72-78.
DOI URL |
| [13] |
QIAO M, YING G G, SINGER A C, et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018,110:160-172.
DOI URL PMID |
| [14] | 邹威, 罗义, 周启星. 畜禽粪便中抗生素抗性基因(ARGs)污染问题及环境调控[J]. 农业环境科学学报, 2014,33(12):2281-2287. |
| ZOU W, LUO Y, ZHOU Q X. Pollution and environmental regulation of antibiotic resistance genes (ARGs) in livestock manure[J]. Journal of Agro-Environment Science, 2014,33(12):2281-2287.(in Chinese with English abstract) | |
| [15] |
PAN X, QIANG Z M, BEN W W, et al. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China[J]. Chemosphere, 2011,84(5):695-700.
DOI URL PMID |
| [16] | 徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015,10(3):11-27. |
| XU Y G, YU W T, MA Q, et al. The antibiotic in environment and its ecotoxicity: a review[J]. Asian Journal of Ecotoxicology, 2015,10(3):11-27.(in Chinese with English abstract) | |
| [17] | SELVAM A, ZHAO Z Y, LI Y C, et al. Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust[J]. Environmental Technology, 2013,34(16):2433-2441. |
| [18] |
LIU Y W, CHANG H Q, LI Z J, et al. Biodegradation of gentamicin by bacterial consortia AMQD4 in synthetic medium and raw gentamicin sewage[J]. Scientific Reports, 2017,7:11004.
DOI URL PMID |
| [19] | 孔维栋, 朱永官. 抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J]. 生态毒理学报, 2007,2(1):1-9. |
| KONG W D, ZHU Y G. A review on ecotoxicology of veterinary pharmaceuticals to plants and soil microbes[J]. Asian Journal of Ecotoxicology, 2007,2(1):1-9.(in Chinese with English abstract) | |
| [20] | 史朝斌. 水产养殖区抗生素的残留特性研究[J]. 河南水产, 2019(4):28-29. |
| SHI C B. Study on residual characteristics of antibiotics in aquaculture areas[J]. Henan Fisheries, 2019(4):28-29. (in Chinese with English abstract) | |
| [21] | 叶繁, 冯时欢, 吴佳佳, 等. 养殖虾塘常见耐药菌的分离鉴定与耐药基因检测[J]. 生态环境学报, 2019,28(9):1843-1849. |
| YE F, FENG S H, WU J J, et al. Antibiotic resistant bacterial isolation and identification from shrimp ponds and their antibiotic resistance genes detection[J]. Ecology and Environmental Sciences, 2019,28(9):1843-1849.(in Chinese with English abstract) | |
| [22] | LUNDBORG C S, TAMHANKAR A J. Antibiotic residues in the environment of South East Asia[J]. BMJ, 2017: j2440. |
| [23] | MELLON M, BENBREOK C, BENBMOK K L, et al. Estimates of antimierebial abuse in livestock[M]. Washington D.C.: Union of Concerned Scientists Publications, 2001: 7-9. |
| [24] | 柯为. 微生物治理有机污染物[J]. 生物工程学报, 2005,21(1):106. |
| KE W. Microbial treatment of organic pollutants[J]. Chinese Journal of Biotechnology, 2005,21(1):106. (in Chinese) | |
| [25] | 何梦琦, 高品, 薛罡, 等. 功能菌生物强化处理地表水中红霉素药物的研究[J]. 环境科学与技术, 2014,37(7):72-77. |
| HE M Q, GAO P, XUE G, et al. Bioaugmented treatment of erythromycin by engineered microorganism in surface water[J]. Environmental Science & Technology, 2014,37(7):72-77.(in Chinese with English abstract) | |
| [26] | QIAN M R, WU H Z, WANG J M, et al. Occurrence of trace elements and antibiotics in manure-based fertilizers from the Zhejiang Province of China[J]. Science of the Total Environment, 2016,559:174-181. |
| [27] |
MADHAIYAN M, POONGUZHALI S, SENTHILKUMAR M, et al. Methylobacillus rhizosphaerae sp. nov., a novel plant-associated methylotrophic bacterium isolated from rhizosphere of red pepper[J]. Antonie Van Leeuwenhoek, 2013,103(3):475-484.
URL PMID |
| [28] | 王敏奇, 许晓玲, 李卫芬, 等. 一株红霉素降解菌红圆酵母的选育及其降解特性[J]. 农业生物技术学报, 2009,17(2):341-346. |
| WANG M Q, XU X L, LI W F, et al. Screening of an erythromycin-degrading strain Rhodotorula and its degradation characteristics[J]. Journal of Agricultural Biotechnology, 2009,17(2):341-346.(in Chinese with English abstract) | |
| [29] | 毛菲菲, 刘畅, 何梦琦, 等. 红霉素降解菌的筛分及其降解特性的研究[J]. 环境科学与技术, 2013,36(7):9-12. |
| MAO F F, LIU C, HE M Q, et al. Isolation and identification of an erythromycin degradation bacterium and study on its biodegradation characteristics[J]. Environmental Science & Technology, 2013,36(7):9-12.(in Chinese with English abstract) | |
| [30] | 范寅娣. 红霉素高效降解菌的筛选及降解性能研究[D]. 沈阳: 东北大学, 2010. |
| FAN Y D. Isolation and characterization of highly efficient erythromycin-degrading bacteria[D]. Shenyang: Northeastern University, 2010.(in Chinese with English abstract) | |
| [31] | 成洁, 杜慧玲, 张天宝, 等. 四环素类抗生素降解菌的分离与鉴定[J]. 核农学报, 2017,31(5):884-888. |
| CHENG J, DU H L, ZHANG T B, et al. Isolation and identification of tetracyclines degrading bacteria[J]. Journal of Nuclear Agricultural Sciences, 2017,31(5):884-888.(in Chinese with English abstract) | |
| [32] | 熊志强, 霍朝晨, 张炜然, 等. 牛粪堆肥过程中土霉素降解及其与微生物群落结构的关系[J]. 土壤与作物, 2018,7(2):111-119. |
| XIONG Z Q, HUO Z C, ZHANG W R, et al. Terramycin degradation during cattle manures composting and its relationship to microbial community structure[J]. Soils and Crops, 2018,7(2):111-119.(in Chinese with English abstract) | |
| [33] | 姚全威, 张军, 严沁颖, 等. 中温期和高温期污泥堆肥物料中典型氟喹诺酮类抗生素去除的影响因素[J]. 环境工程, 2020,38(9):200-207. |
| YAO Q W, ZHANG J, YAN Q Y, et al. Main factors on dissipation of typical fluoroquinolones in sewage sludge compost during mesophilic and thermophilic phases[J]. Environmental Engineering, 2020,38(9):200-207.(in Chinese with English abstract) | |
| [34] |
ZHU H, QU F, ZHU L H. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride[J]. Nucleic Acids Research, 1993,21(22):5279-5280.
DOI URL PMID |
| [35] |
MA Z, MI Y, HAN X, et al. Transformation of ginsenoside via deep eutectic solvents based on choline chloride as an enzymatic reaction medium[J]. Bioprocess and Biosystems Engineering, 2020,43(7):1195-1208.
DOI URL PMID |
| [36] |
WONDRACK L, MASSA M, YANG B V, et al. Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides[J]. Antimicrobial Agents and Chemotherapy, 1996,40(4):992-998.
DOI URL PMID |
| [37] |
KIM Y H, CHA C J, CERNIGLIA C E. Purification and characterization of an erythromycin esterase from an erythromycin-resistant Pseudomonas sp.[J]. FEMS Microbiology Letters, 2002,210(2):239-244.
DOI URL PMID |
| [38] | 周显勇, 刘鸿雁, 刘艳萍, 等. 植物修复重金属和抗生素复合污染土壤微生物数量和酶活性的变化[J]. 农业环境科学学报, 2019,38(6):1248-1255. |
| ZHOU X Y, LIU H Y, LIU Y P, et al. Changes in microbial populations and enzyme activity under phytoremediation in soil co-contaminated with heavy metals and antibiotics[J]. Journal of Agro-Environment Science, 2019,38(6):1248-1255.(in Chinese with English abstract) | |
| [39] | 陈欣瑶. 重金属-抗生素单一及复合污染胁迫下土壤生态功能稳定性及其微生物调控机制研究 [D]. 苏州: 苏州科技大学, 2019. |
| CHEN X Y. Study on stability of soil ecological function and microbial regulation mechanisms under the single and combined pollution of heavy metal and antibiotic[D]. Suzhou: Suzhou University of Science and Technology, 2019.(in Chinese with English abstract) | |
| [40] | 吕运涛, 陈万明, 郝慧娟. 轻度污染农田土壤对稻米重金属污染的风险评价[J]. 农产品质量与安全, 2020(3):55-62. |
| LYU Y T, CHEN W M, HAO H J, et al. Risk assessment of heavy metal pollution in rice by slightly polluted farmland soil[J]. Quality and Safety of Agro-Products, 2020(3):55-62.(in Chinese) | |
| [41] | 高文静, 肖丽娇, 王顺民, 等. 降解柴油嗜盐菌的筛选、鉴定及其降解特性[J]. 浙江农业学报, 2020,32(7):1241-1252. |
| GAO W J, XIAO L J, WANG S M, et al. Screening, identification and characterization of two halophilic, diesel-degrading bacteria[J]. Acta Agriculturae Zhejiangensis, 2020,32(7):1241-1252.(in Chinese with English abstract) | |
| [42] | 梁浩花, 陶红, 王亚娟, 等. 一株邻苯二甲酸二丁酯和邻苯二甲酸二(2-乙基己基)酯降解菌的筛选鉴定与降解特性[J]. 浙江农业学报, 2019,31(7):1145-1153. |
| LIANG H H, TAO H, WANG Y J, et al. Isolation, identification and degradation characteristics of a dibutyl phthalate and di-(2-ethylhexyl) phthalate degrading bacterium[J]. Acta Agriculturae Zhejiangensis, 2019,31(7):1145-1153.(in Chinese with English abstract) | |
| [43] |
FAN C, HE J Z. Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O[J]. Water Research, 2011,45:3098-3106.
DOI URL PMID |
| [44] |
刘娜, 谢学辉, 王钰, 等. 细菌利用不同碳、氮源共代谢降解脱色偶氮染料研究进展[J]. 微生物学通报, 2019,46(5):1185-1195.
DOI URL |
| LIU N, XIE X H, WANG Y, et al. Carbon and nitrogen co-metabolism during bacterial degradation and decolorization of azo dyes[J]. Microbiology China, 2019,46(5):1185-1195.(in Chinese with English abstract) |
| [1] | 何国欣, 李素娟, 王剑, 陶晓园, 叶子弘, 陈光, 徐盛春. 大豆种质苗期低氮耐性筛选和鉴定[J]. 浙江农业学报, 2025, 37(5): 965-976. |
| [2] | 高强, 王丽丽, 张渐隆, 杨波, 李峰, 朱先志, 刘爱新, 韩超, 田雷. 高地芽孢杆菌CY1的分离鉴定及其对烟草黑胫病的防治作用[J]. 浙江农业学报, 2025, 37(2): 405-416. |
| [3] | 冯娟, 朱廷恒, 罗春萍, 杨佳玥, 祝思瑜, 李彤. 黄粉虫(Tenebrio molitor)肠道中聚乳酸塑料降解菌的筛选及其降解特性[J]. 浙江农业学报, 2022, 34(6): 1277-1287. |
| [4] | 许建军, 马燕, 吴其超, 王宝盛, 臧德奎. 野生玫瑰多态性cpDNA和ITS引物的筛选与验证[J]. 浙江农业学报, 2022, 34(5): 1032-1038. |
| [5] | 张鑫鹏, 王信, 孙健, 伊国云, 李松龄. 一株假单胞菌的分离鉴定及其在青海地区堆肥中的应用潜力[J]. 浙江农业学报, 2022, 34(2): 343-351. |
| [6] | 吴嘉维, 姚张良, 胡琪琪, 张杰, 陈轶, 蒋建荣, 周国鑫, 王霞. 浙北桐乡梨锈病防治适期和防治药剂研究[J]. 浙江农业学报, 2021, 33(9): 1668-1675. |
| [7] | 冯欣欣, 李凤兰, 徐永清, 李磊, 贺付蒙, 冯艳忠, 袁强, 刘娣. 新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J]. 浙江农业学报, 2021, 33(8): 1468-1476. |
| [8] | 刘丹丹, 孙宛玉, 王鹤. 三株降解阿特拉津菌株的特性与固定载体分析[J]. 浙江农业学报, 2021, 33(6): 1078-1087. |
| [9] | 忻晓庭, 刘大群, 张程程, 吴敏, 陈登高, 章检明. 我国特色发酵蔬菜降解亚硝酸盐菌株的筛选鉴定及应用[J]. 浙江农业学报, 2021, 33(2): 335-345. |
| [10] | 孙筱君, 沈琦, 吴逸飞, 姚晓红, 李园成, 孙宏, 王新, 汤江武, 葛向阳. 氨氮降解微生物的筛选和初步应用[J]. 浙江农业学报, 2020, 32(9): 1683-1691. |
| [11] | 高文静, 肖丽娇, 王顺民, 韩秋霞. 降解柴油嗜盐菌的筛选、鉴定及其降解特性[J]. 浙江农业学报, 2020, 32(7): 1241-1252. |
| [12] | 张小彦, 何静, 侯彩霞, 张树衡. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 858-865. |
| [13] | 俞洁雅, 倪梦萍, 丁良长, 胡洲铭, 肖建中, 郑强. 一株猪粪降解菌的筛选、评价及鉴定[J]. 浙江农业学报, 2020, 32(4): 586-592. |
| [14] | 郭雪松, 田丽波, 商桑, 邹凯茜, 陈虹容, 李婉豫, 岳晓琦. 芒果蒂腐病拮抗放线菌A10和A17的分离、鉴定和特征化研究[J]. 浙江农业学报, 2020, 32(3): 460-468. |
| [15] | 梁浩花, 陶红, 王亚娟, 李娇玲. 一株邻苯二甲酸二丁酯和邻苯二甲酸二(2-乙基己基)酯降解菌的筛选鉴定与降解特性[J]. 浙江农业学报, 2019, 31(7): 1145-1153. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||