浙江农业学报 ›› 2021, Vol. 33 ›› Issue (1): 122-130.DOI: 10.3969/j.issn.1004-1524.2021.01.15
陈贵1(), 鲁晨妮1, 石艳平2, 倪雄伟2, 程旺大1, 张红梅1, 王保君1, 张丽萍1, 孙达3,*(
)
收稿日期:
2020-07-01
出版日期:
2021-01-25
发布日期:
2021-01-25
通讯作者:
孙达
作者简介:
*孙达,E-mail:108553108@qq.com基金资助:
CHEN Gui1(), LU Chenni1, SHI Yanping2, NI Xiongwei2, CHENG Wangda1, ZHANG Hongmei1, WANG Baojun1, ZHANG Liping1, SUN Da3,*(
)
Received:
2020-07-01
Online:
2021-01-25
Published:
2021-01-25
Contact:
SUN Da
摘要:
为了明确不同类型缓控释肥搭配脲铵在水稻减氮和节本增效方面的应用效果,特开展田间试验,以嘉兴地区常规施肥(N 225 kg·hm-2)为对照(CK),研究了分别基于木质素类缓控释肥好乐耕(HL)、脲甲醛类缓控释肥永笑(YX)、硝化抑制剂类缓控释肥开擂喽(KL)与脲铵搭配的一基一追模式,在较CK减氮0、20%、35%和50%条件下对常规粳稻产量、氮素利用效率和土壤养分的影响。结果表明:与CK相比,一基一追模式下减氮量超过20%时水稻产量显著(P<0.05)下降,主要原因为单位面积穗数和每穗粒数下降比例大于结实率和千粒重的增加比例。随施氮量减少,一基一追模式下水稻的氮素利用效率增加,其中,KL与脲铵组合的减氮50%处理氮素利用效率最高,达20.1 kg·kg-1,且其谷物氮素生理利用效率较CK显著(P<0.05)增加14.7%。YX与脲铵组合的减氮20%处理的氮素吸收效率比CK显著(P<0.05)增加12.4%,表观氮肥回收效率显著(P<0.05)增加22.3%。一基一追模式下,施氮量减少时,土壤碱解氮含量下降;但是,不减氮条件下,其土壤碱解氮含量较CK显著(P<0.05)增加7.44%~9.57%。当选用KL与脲胺结合时土壤pH值较CK显著(P<0.05)下降0.17~0.31个单位。综合考虑产量、氮素利用效率、表观氮肥回收效率和土壤养分,一基一追模式下较CK减氮20%较为合理,且以脲甲醛类缓控释肥搭配脲铵的效果最佳。
中图分类号:
陈贵, 鲁晨妮, 石艳平, 倪雄伟, 程旺大, 张红梅, 王保君, 张丽萍, 孙达. 不同缓控释肥搭配脲铵对水稻产量、氮素利用效率和土壤养分的影响[J]. 浙江农业学报, 2021, 33(1): 122-130.
CHEN Gui, LU Chenni, SHI Yanping, NI Xiongwei, CHENG Wangda, ZHANG Hongmei, WANG Baojun, ZHANG Liping, SUN Da. Effect of different controlled-release fertilizers with urea ammonium on yield, nitrogen use efficiency and soil nutrients of rice[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 122-130.
处理 Treatment | 产量 Grain yield/ (t·hm-2) | 单位面积穗数 Panicles per unit area/ (104 hm-2) | 每穗粒数 Grains per panicle | 结实率 Seed-setting rate/% | 千粒重 1 000-grain weight/g |
---|---|---|---|---|---|
N0 | 5.90±0.53 e | 173±3 e | 130±1 a | 88.2±2.8 b | 32.2±0.7 a |
CK | 9.33±0.16 a | 311±15 ab | 122±2 b | 88.7±2.6 b | 29.6±0.9 c |
HL | 9.12±0.55 ab | 312±36 a | 119±1 bcd | 92.0±0.4 ab | 30.7±0.3 bc |
HL20 | 9.04±0.28 abc | 298±18 abcd | 115±3 cd | 91.0±0.8 ab | 32.0±1.5 ab |
HL35 | 8.70±0.19 bcd | 286±25 abcd | 117±4 bcd | 91.0±2.8 ab | 31.3±0.8 ab |
HL50 | 8.43±0.41 d | 266±18 d | 120±8 bc | 89.4±2.1 ab | 31.7±0.9 ab |
YX | 9.08±0.08 ab | 308±9 abc | 117±1 bcd | 88.8±1.5 b | 31.5±0.5 ab |
YX20 | 9.04±0.29 abc | 316±24 a | 116±3 bcd | 91.1±1.8 ab | 31.2±0.7 ab |
YX35 | 8.39±0.16 d | 288±22 abcd | 116±4 bcd | 91.4±1.9 ab | 31.2±0.5 ab |
YX50 | 8.37±0.44 d | 264±32 d | 113±3 d | 89.0±4.1 b | 31.7±0.4 ab |
KL | 9.38±0.23 a | 318±32 a | 120±2 bc | 89.3±2.0 ab | 31.4±0.8 ab |
KL20 | 9.11±0.24 ab | 298±28 abcd | 118±4 bcd | 91.4±0.9 ab | 30.8±0.7 bc |
KL35 | 8.75±0.39 bcd | 268±24 cd | 118±5 bcd | 92.8±4.0 a | 31.7±1.3 ab |
KL50 | 8.51±0.39 cd | 270±32 bcd | 118±4 bcd | 90.4±0.6 ab | 31.8±0.3 ab |
表1 不同处理的水稻产量及其构成因子
Table 1 Rice yield and its composition under different treatments
处理 Treatment | 产量 Grain yield/ (t·hm-2) | 单位面积穗数 Panicles per unit area/ (104 hm-2) | 每穗粒数 Grains per panicle | 结实率 Seed-setting rate/% | 千粒重 1 000-grain weight/g |
---|---|---|---|---|---|
N0 | 5.90±0.53 e | 173±3 e | 130±1 a | 88.2±2.8 b | 32.2±0.7 a |
CK | 9.33±0.16 a | 311±15 ab | 122±2 b | 88.7±2.6 b | 29.6±0.9 c |
HL | 9.12±0.55 ab | 312±36 a | 119±1 bcd | 92.0±0.4 ab | 30.7±0.3 bc |
HL20 | 9.04±0.28 abc | 298±18 abcd | 115±3 cd | 91.0±0.8 ab | 32.0±1.5 ab |
HL35 | 8.70±0.19 bcd | 286±25 abcd | 117±4 bcd | 91.0±2.8 ab | 31.3±0.8 ab |
HL50 | 8.43±0.41 d | 266±18 d | 120±8 bc | 89.4±2.1 ab | 31.7±0.9 ab |
YX | 9.08±0.08 ab | 308±9 abc | 117±1 bcd | 88.8±1.5 b | 31.5±0.5 ab |
YX20 | 9.04±0.29 abc | 316±24 a | 116±3 bcd | 91.1±1.8 ab | 31.2±0.7 ab |
YX35 | 8.39±0.16 d | 288±22 abcd | 116±4 bcd | 91.4±1.9 ab | 31.2±0.5 ab |
YX50 | 8.37±0.44 d | 264±32 d | 113±3 d | 89.0±4.1 b | 31.7±0.4 ab |
KL | 9.38±0.23 a | 318±32 a | 120±2 bc | 89.3±2.0 ab | 31.4±0.8 ab |
KL20 | 9.11±0.24 ab | 298±28 abcd | 118±4 bcd | 91.4±0.9 ab | 30.8±0.7 bc |
KL35 | 8.75±0.39 bcd | 268±24 cd | 118±5 bcd | 92.8±4.0 a | 31.7±1.3 ab |
KL50 | 8.51±0.39 cd | 270±32 bcd | 118±4 bcd | 90.4±0.6 ab | 31.8±0.3 ab |
图1 不同处理水稻的地上部干物质累积和氮素累积 柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.1 Biomass and N accumulation of aboveground part of rice under different treatments Bars marked without the same letters indicated significant difference at P<0.05.
处理Treatment | NUE/(kg·kg-1) | NupE/(kg·kg-1) | PE-bio/(kg·kg-1) | PE-grain/(kg·kg-1) | ANR/% |
---|---|---|---|---|---|
N0 | 19.0±1.7 abcd | 0.28±0.03 c | 133±8 a | 67.8±12.8 a | — |
CK | 17.4±0.3 efg | 0.35±0.02 b | 107±10 f | 50.4±3.8 cd | 36.2±5.1 b |
HL | 17.0±1.0 fg | 0.36±0.03 ab | 107±8 f | 47.4±2.6 d | 39.4±7.3 ab |
HL20 | 18.4±0.6 cde | 0.38±0.02 ab | 105±1 f | 48.8±0.8 d | 45.0±4.6 ab |
HL35 | 19.0±0.4 abcd | 0.36±0.01 ab | 109±2 def | 52.8±2.1 bcd | 41.5±4.4 ab |
HL50 | 19.9±1.0 ab | 0.35±0.01 b | 116±1 bcde | 57.0±2.7 bc | 38.8±2.9 ab |
YX | 16.9±0.2 g | 0.35±0.00 ab | 107±2 ef | 47.9±0.8 d | 38.0±0.7 ab |
YX20 | 18.4±0.6 cde | 0.39±0.02 a | 109±6 def | 47.4±1.5 d | 48.2±6.2 a |
YX35 | 18.4±0.4 def | 0.36±0.04 ab | 118±3 bc | 51.9±7.7 bcd | 40.5±13.9 ab |
YX50 | 19.7±1.0 abc | 0.35±0.02 ab | 122±2 b | 56.3±0.4 bc | 39.6±6.2 ab |
KL | 17.5±0.4 efg | 0.34±0.01 b | 108±4 def | 51.2±2.3 bcd | 35.2±3.3 b |
KL20 | 18.6±0.5 bcde | 0.37±0.02 ab | 112±2 cdef | 50.6±2.2 bcd | 42.3±6.2 ab |
KL35 | 19.1±0. 9 abcd | 0.36±0. 03 ab | 114±7 bcdef | 52.8±1.6 bcd | 42.2±8.4 ab |
KL50 | 20.1±0.9 a | 0.35±0.02 b | 117±5 bcd | 57.9±1.2 b | 38.3±8.4 ab |
表2 不同处理的水稻氮素利用效率
Table 2 Characteristics of N use efficiencies under different treatments
处理Treatment | NUE/(kg·kg-1) | NupE/(kg·kg-1) | PE-bio/(kg·kg-1) | PE-grain/(kg·kg-1) | ANR/% |
---|---|---|---|---|---|
N0 | 19.0±1.7 abcd | 0.28±0.03 c | 133±8 a | 67.8±12.8 a | — |
CK | 17.4±0.3 efg | 0.35±0.02 b | 107±10 f | 50.4±3.8 cd | 36.2±5.1 b |
HL | 17.0±1.0 fg | 0.36±0.03 ab | 107±8 f | 47.4±2.6 d | 39.4±7.3 ab |
HL20 | 18.4±0.6 cde | 0.38±0.02 ab | 105±1 f | 48.8±0.8 d | 45.0±4.6 ab |
HL35 | 19.0±0.4 abcd | 0.36±0.01 ab | 109±2 def | 52.8±2.1 bcd | 41.5±4.4 ab |
HL50 | 19.9±1.0 ab | 0.35±0.01 b | 116±1 bcde | 57.0±2.7 bc | 38.8±2.9 ab |
YX | 16.9±0.2 g | 0.35±0.00 ab | 107±2 ef | 47.9±0.8 d | 38.0±0.7 ab |
YX20 | 18.4±0.6 cde | 0.39±0.02 a | 109±6 def | 47.4±1.5 d | 48.2±6.2 a |
YX35 | 18.4±0.4 def | 0.36±0.04 ab | 118±3 bc | 51.9±7.7 bcd | 40.5±13.9 ab |
YX50 | 19.7±1.0 abc | 0.35±0.02 ab | 122±2 b | 56.3±0.4 bc | 39.6±6.2 ab |
KL | 17.5±0.4 efg | 0.34±0.01 b | 108±4 def | 51.2±2.3 bcd | 35.2±3.3 b |
KL20 | 18.6±0.5 bcde | 0.37±0.02 ab | 112±2 cdef | 50.6±2.2 bcd | 42.3±6.2 ab |
KL35 | 19.1±0. 9 abcd | 0.36±0. 03 ab | 114±7 bcdef | 52.8±1.6 bcd | 42.2±8.4 ab |
KL50 | 20.1±0.9 a | 0.35±0.02 b | 117±5 bcd | 57.9±1.2 b | 38.3±8.4 ab |
处理 Treatment | 全氮 Total N/ (g·kg-1) | 碱解氮 Alkali hydrolyzable N/ (mg·kg-1) | 有效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 有机质 Organic matter/ (g·kg-1) | pH |
---|---|---|---|---|---|---|
N0 | 1.68±0.08 a | 140±1 a | 12.8±1.5 a | 152±7 a | 23.9±3.0 a | 6.89±0.10 a |
CK | 1.67±0.17 a | 130±8 bcd | 13.1±2.1 a | 143±6 ab | 22.8±1.7 a | 6.83±0.03 ab |
HL | 1.76±0.13 a | 143±6 a | 13.1±2.0 a | 140±10 ab | 25.1±1.1 a | 6.72±0.04 bcd |
HL20 | 1.75±0.11 a | 136±7 abcd | 13.3±1.4 a | 151±11 a | 24.8±0.5 a | 6.77±0.07 abc |
HL35 | 1.81±0.07 a | 130±4 bcd | 13.4±0.8 a | 154±12 a | 24.1±3.2 a | 6.77±0.05 abc |
HL50 | 1.79±.011 a | 128±4 d | 13.7±1.1 a | 143±7 ab | 23.7±1.7 a | 6.82±0.02 ab |
YX | 1.82±0.10 a | 143±3 a | 13.1±0.7 a | 143±12 ab | 24.0±2.1 a | 6.75±0.01 bc |
YX20 | 1.76±0.12 a | 141±5 a | 14.0±1.9 a | 142±12 ab | 22.3±1.9 a | 6.71±0.06 bcde |
YX35 | 1.75±0.10 a | 137±4 abcd | 13.0±0.7 a | 147±11 ab | 23.3±3.1 a | 6.68±0.08 cde |
YX50 | 1.79±0.08 a | 130±4 bcd | 13.1±0.4 a | 148±9 ab | 24.1±2.8 a | 6.74±0.10 bcd |
KL | 1.82±0.12 a | 140±5 a | 12.7±0.7 a | 135±5 b | 22.2±2.0 a | 6.52±0.16 f |
KL20 | 1.76±0.14 a | 138±9 ab | 12.4±0.7 a | 135±10 b | 23.6±2.7 a | 6.66±0.07 cde |
KL35 | 1.83±0.08 a | 137±4 abc | 12.6±0.5 a | 141±4 ab | 23.0±3.9 a | 6.61±0.08 def |
KL50 | 1.71±0.12 a | 130±6 cd | 12.6±1.0 a | 143±8 ab | 22.9±1.3 a | 6.58±0.11 ef |
表3 不同处理的土壤基本理化性状
Table 3 Basic physiochemical trait of soil under different treatments
处理 Treatment | 全氮 Total N/ (g·kg-1) | 碱解氮 Alkali hydrolyzable N/ (mg·kg-1) | 有效磷 Available P/ (mg·kg-1) | 速效钾 Available K/ (mg·kg-1) | 有机质 Organic matter/ (g·kg-1) | pH |
---|---|---|---|---|---|---|
N0 | 1.68±0.08 a | 140±1 a | 12.8±1.5 a | 152±7 a | 23.9±3.0 a | 6.89±0.10 a |
CK | 1.67±0.17 a | 130±8 bcd | 13.1±2.1 a | 143±6 ab | 22.8±1.7 a | 6.83±0.03 ab |
HL | 1.76±0.13 a | 143±6 a | 13.1±2.0 a | 140±10 ab | 25.1±1.1 a | 6.72±0.04 bcd |
HL20 | 1.75±0.11 a | 136±7 abcd | 13.3±1.4 a | 151±11 a | 24.8±0.5 a | 6.77±0.07 abc |
HL35 | 1.81±0.07 a | 130±4 bcd | 13.4±0.8 a | 154±12 a | 24.1±3.2 a | 6.77±0.05 abc |
HL50 | 1.79±.011 a | 128±4 d | 13.7±1.1 a | 143±7 ab | 23.7±1.7 a | 6.82±0.02 ab |
YX | 1.82±0.10 a | 143±3 a | 13.1±0.7 a | 143±12 ab | 24.0±2.1 a | 6.75±0.01 bc |
YX20 | 1.76±0.12 a | 141±5 a | 14.0±1.9 a | 142±12 ab | 22.3±1.9 a | 6.71±0.06 bcde |
YX35 | 1.75±0.10 a | 137±4 abcd | 13.0±0.7 a | 147±11 ab | 23.3±3.1 a | 6.68±0.08 cde |
YX50 | 1.79±0.08 a | 130±4 bcd | 13.1±0.4 a | 148±9 ab | 24.1±2.8 a | 6.74±0.10 bcd |
KL | 1.82±0.12 a | 140±5 a | 12.7±0.7 a | 135±5 b | 22.2±2.0 a | 6.52±0.16 f |
KL20 | 1.76±0.14 a | 138±9 ab | 12.4±0.7 a | 135±10 b | 23.6±2.7 a | 6.66±0.07 cde |
KL35 | 1.83±0.08 a | 137±4 abc | 12.6±0.5 a | 141±4 ab | 23.0±3.9 a | 6.61±0.08 def |
KL50 | 1.71±0.12 a | 130±6 cd | 12.6±1.0 a | 143±8 ab | 22.9±1.3 a | 6.58±0.11 ef |
[1] | 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略[J]. 中国农业科学, 2002,35(9):1095-1103. |
PENG S B, HUANG J L, ZHONG X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002,35(9):1095-1103.(in Chinese with English abstract) | |
[2] | 朱兆良. 我国土壤供氮和化肥氮去向研究的进展[J]. 土壤, 1985,17(1):2-9. |
ZHU Z L. Review on soil nitrogen supply and fate of applied fertilizer nitrogen[J]. Soils, 1985,17(1):2-9. (in Chinese) | |
[3] | 李庆逵, 朱兆良, 于天仁. 中国农业持续发展中的肥料问题[M]. 南昌: 江西科学技术出版社, 1998. |
[4] | 李荣刚. 高产农田氮素肥效与调控途径: 以江苏太湖稻麦两熟农区为例推及全省[D]. 北京: 中国农业大学, 2000. |
LI R G. Nitrogen fertilizer efficiency and regulation in high yield farmland: taking the rice-wheat double cropping area in Taihu Lake area of Jiangsu Province as an example and extending the whole province[D]. Beijing: China Agricultural University, 2000.(in Chinese with English abstract) | |
[5] | CHEN G, CHEN Y, ZHAO G H, et al. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?[J]. Agriculture, Ecosystems & Environment, 2015,209:26-33. |
[6] | 秦道珠, 黄平娜, 徐明岗, 等. 施用控释肥对粳稻生长发育及产量的影响[J]. 中国农学通报, 2008,24(8):283-286. |
QIN D Z, HUANG P N, XU M G, et al. Application of controlled-release fertilizer on the growth and yield of japonica rice[J]. Chinese Agricultural Science Bulletin, 2008,24(8):283-286.(in Chinese with English abstract) | |
[7] | 古慧娟, 石元亮, 于阁杰, 等. 我国缓/控释肥料的应用效应研究进展[J]. 土壤通报, 2011,42(1):220-224. |
GU H J, SHI Y L, YU G J, et al. Research advances on the use efficiency of slow/controlled release fertilizer[J]. Chinese Journal of Soil Science, 2011,42(1):220-224.(in Chinese with English abstract) | |
[8] | 李敏, 郭熙盛, 叶舒娅, 等. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响[J]. 植物营养与肥料学报, 2013,19(4):808-815. |
LI M, GUO X S, YE S Y, et al. Effects of sulfur-and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice[J]. Journal of Plant Nutrition and Fertilizer, 2013,19(4):808-815.(in Chinese with English abstract) | |
[9] | 胡铁军, 张怀杰, 应小军, 等. 脲铵氮肥对冬小麦产量和氮肥利用率的影响[J]. 浙江农业科学, 2019,60(11):2006-2007. |
HU T J, ZHANG H J, YING X J, et al. Effect of urea ammonium on yield and nitrogen use efficiency of winter wheat[J]. Journal of Zhejiang Agricultural Sciences, 2019,60(11):2006-2007. (in Chinese) | |
[10] | 黄锦法, 石艳平, 王润屹, 等. 环保型节氮肥料: 脲铵在晚稻上的施用效果研究[J]. 环境污染与防治, 2013,35(3):72-74. |
HUANG J F, SHI Y P, WANG R Y, et al. Preliminary study on the application performance of a new environmentally friendly and nitrogen-saving fertilizer: urea ammonium on late rice[J]. Environmental Pollution & Control, 2013,35(3):72-74.(in Chinese with English abstract) | |
[11] | 张博文, 赵淼, 敖玉琴, 等. 含氯氮肥对太湖稻麦轮作体系氨挥发及作物产量的影响[J]. 植物营养与肥料学报, 2017,23(3):557-566. |
ZHANG B W, ZHAO M, AO Y Q, et al. Effects of chlorine-containing nitrogen fertilizer on ammonia volatilization and yields under rice-wheat rotation system in Taihu Lake region[J]. Journal of Plant Nutrition and Fertilizer, 2017,23(3):557-566.(in Chinese with English abstract) | |
[12] | 胡铁军, 张怀杰, 郑佩君, 等. 3种缓控释肥在双季稻上的应用效果比较[J]. 上海农业科技, 2019(6):96-97. |
HU T J, ZHANG H J, ZHENG P J, et al. Comparison of application effects of three controlled-release fertilizers on double cropping rice[J]. Shanghai Agricultural Science and Technology, 2019(6):96-97.(in Chinese) | |
[13] | 马良, 朱玉祥, 张乐平, 等. 不同缓控释肥对水稻甬优1540产量和效益的影响[J]. 浙江农业科学, 2018,59(4):561-563. |
MA L, ZHU Y X, ZHANG L P, et al. Effects of different controlled released nitrogen on yield and benefits of hybrid rice Yongyou 1540[J]. Journal of Zhejiang Agricultural Sciences, 2018,59(4):561-563.(in Chinese) | |
[14] | 唐拴虎, 谢春生, 孙小文, 等. 水稻施用控释肥料生长效应研究[J]. 中国农学通报, 2004,20(1):149-151. |
TANG S H, XIE C S, SUN X W, et al. Effects of controlled-release fertilizers on rice growth[J]. Chinese Agricultural Science Bulletin, 2004,20(1):149-151.(in Chinese with English abstract) | |
[15] | 黄旭, 唐拴虎, 徐培智, 等. 一次性施用控释肥对超级稻生长及产量的影响[J]. 广东农业科学, 2006,33(9):16-19. |
HUANG X, TANG S H, XU P Z, et al. Effects of one basal fertilization of controlled-release fertilizers on growth and yield in super-rice[J]. Guangdong Agricultural Sciences, 2006,33(9):16-19.(in Chinese) | |
[16] | 邱荣富, 钱丽琴, 王春芳, 等. 水稻缓/控释肥料试验研究初报[J]. 上海农业科技, 2007(2):45-46. |
QIU R F, QIAN L Q, WANG C F, et al. Effects of controlled-release fertilizer on rice growth[J]. Shanghai Agricultural Science and Technology, 2007(2):45-46. | |
[17] | 孙海军, 闵炬, 施卫明, 等. 硝化抑制剂施用对水稻产量与氨挥发的影响[J]. 土壤, 2015,47(6):1027-1033. |
SUN H J, MIN J, SHI W M, et al. Effects of nitrification inhibitor on rice production and ammonia volatilization in paddy rice field[J]. Soils, 2015,47(6):1027-1033.(in Chinese with English abstract) | |
[18] | 陈贵, 陈梅, 张红梅, 等. 籼粳杂交稻与常规粳稻产量、干物质氮素累积转运及氮素利用差异研究[J]. 浙江农业学报, 2018,30(12):1992-2000. |
CHEN G, CHEN M, ZHANG H M, et al. Differences of yield, accumulation and translocation properties of dry matter and N, and N use efficiency between indica-japonica hybrid rice and japonica rice[J]. Acta Agriculturae Zhejiangensis, 2018,30(12):1992-2000.(in Chinese with English abstract) | |
[19] | ZHANG Y L, FAN J B, WANG D S, et al. Genotypic differences in grain yield and physiological nitrogen use efficiency among rice cultivars[J]. Pedosphere, 2009,19(6):681-691. |
[20] | 陈贵, 张红梅, 沈亚强, 等. 嘉兴地区不同基因型水稻的氮利用效率研究[J]. 浙江农业学报, 2015,27(11):1965-1970. |
CHEN G, ZHANG H M, SHEN Y Q, et al. Characteristics of N utilization efficiency in different rice genotypes in Jiaxing area[J]. Acta Agriculturae Zhejiangensis, 2015,27(11):1965-1970.(in Chinese with English abstract) | |
[21] | 侯红乾, 黄永兰, 冀建华, 等. 缓/控释肥对双季稻产量和氮素利用率的影响[J]. 中国水稻科学, 2016,30(4):389-396. |
HOU H Q, HUANG Y L, JI J H, et al. Effects of controlled-release fertilizer application on double cropping rice yield and nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2016,30(4):389-396.(in Chinese with English abstract) | |
[22] | 符建荣, 马军伟, 姜丽娜, 等. 养分释放可调控型有机无机掺混肥的创制及应用[J]. 浙江农业学报, 2005,17(5):251-256. |
FU J R, MA J W, JIANG L N, et al. Formulating and application of controlled release organic and inorganic blending fertilizers[J]. Acta Agriculturae Zhejiangensis, 2005,17(5):251-256.(in Chinese with English abstract) | |
[23] | 伍少福, 路兴花. 不同施肥方式对水稻生长、养分吸收和品质的影响[J]. 磷肥与复肥, 2017,32(5):43-45. |
WU S F, LU X H. Effects of different fertilization methods on growth, nutrient uptake and quality of rice[J]. Phosphate & Compound Fertilizer, 2017,32(5):43-45.(in Chinese with English abstract) | |
[24] | 焦晓光, 罗盛国, 闻大中. 控释尿素施用对水稻吸氮量及产量的影响[J]. 土壤通报, 2003,34(6):525-528. |
JIAO X G, LUO S G, WEN D Z. Effect of controlled-release urea application on N uptake and rice yield[J]. Chinese Journal of Soil Science, 2003,34(6):525-528.(in Chinese with English abstract) | |
[25] | 杨俊刚, 张冬雷, 徐凯, 等. 控释肥与普通肥料混施对设施番茄生长和土壤硝态氮残留的影响[J]. 中国农业科学, 2012,45(18):3782-3791. |
YANG J G, ZHANG D L, XU K, et al. Effects of mixed application of controlled-release fertilizer and common fertilizers on greenhouse tomato growth, yield, root distribution, and soil nitrate residual[J]. Scientia Agricultura Sinica, 2012,45(18):3782-3791.(in Chinese with English abstract) | |
[26] | 张华艳, 牛灵安, 郝晋珉, 等. 秸秆还田配施缓控释肥对土壤养分和作物产量的影响[J]. 土壤通报, 2018,49(1):140-149. |
ZHANG H Y, NIU L A, HAO J M, et al. Effects of straw returning combined with slow release fertilizer on soil nutrient and crop yield[J]. Chinese Journal of Soil Science, 2018,49(1):140-149.(in Chinese with English abstract) | |
[27] | 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000,9(1):1-6. |
ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000,9(1):1-6.(in Chinese with English abstract) | |
[28] | 刘若萱, 贺纪正, 张丽梅. 稻田土壤不同水分条件下硝化/反硝化作用及其功能微生物的变化特征[J]. 环境科学, 2014,35(11):4275-4283. |
LIU R X, HE J Z, ZHANG L M. Response of nitrification/denitrification and their associated microbes to soil moisture change in paddy soil[J]. Environmental Science, 2014,35(11):4275-4283.(in Chinese with English abstract) | |
[29] | 李杰, 石元亮, 王玲莉, 等. 硝化抑制剂对稻田土壤N2O排放和硝化、反硝化菌数量的影响[J]. 植物营养与肥料学报, 2019,25(12):2095-2101. |
LI J, SHI Y L, WANG L L, et al. Comparison of nitrification inhibitors on N2O emission and abundances of nitrifier and denitrifier in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2019,25(12):2095-2101.(in Chinese with English abstract) | |
[30] | CHEN G, GUO S W, KRONZUCKER H J, et al. Nitrogen use efficiency (NUE) in rice links to NH+4 toxicity and futile NH+4 cycling in roots[J]. Plant and Soil, 2013,369(1/2):351-363. |
[31] | 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015,47(2):238-244. |
XU R K. Research progresses in soil acidification and its control[J]. Soils, 2015,47(2):238-244.(in Chinese with English abstract) |
[1] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
[2] | 张辉, 车旭升, 吕剑, 缑兆辉, 秦启杰, 罗建, 张国斌. 灌水量与氮素形态对西兰花生产和氮代谢的影响[J]. 浙江农业学报, 2021, 33(2): 308-315. |
[3] | 李金武, 郁继华, 吕剑, 冯致, 杨海兴, 车旭升, 秦启杰, 张洋, 金宁. 不同覆盖方式对高原夏季露地松花菜产量、品质和土壤养分的影响[J]. 浙江农业学报, 2020, 32(9): 1626-1633. |
[4] | 牛素贞, 安红卫, 宋勤飞, 陈正武. 贵州野生茶树立地土壤养分状况分析及综合评价[J]. 浙江农业学报, 2020, 32(6): 1039-1048. |
[5] | 王保君, 程旺大, 陈贵, 沈亚强, 沈盟, 袁晔, 王蕾, 张红梅. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响[J]. 浙江农业学报, 2020, 32(2): 183-190. |
[6] | 陶晶, 邬奇峰, 石江, 李松昊, 葛江飞, 陈俊辉, 徐秋芳, 梁辰飞, 秦华. 间作与接种丛枝菌根真菌对新垦山地玉米产量和土壤肥力的影响[J]. 浙江农业学报, 2020, 32(1): 115-123. |
[7] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
[8] | 陈贵, 陈梅, 张红梅, 王士磊, 施卫明, 程旺大. 籼粳杂交稻与常规粳稻产量、干物质氮素累积转运及氮素利用差异研究[J]. 浙江农业学报, 2018, 30(12): 1992-2000. |
[9] | 徐锴, 张少瑜, 袁继存, 闫帅, 侯桂学, 赵德英. 地膜和秸秆覆盖对梨园土壤养分的影响[J]. 浙江农业学报, 2017, 29(3): 421-427. |
[10] | 宋勤飞, 牛素贞, 陈正武, 尹杰, 周绍均, 岑春娇. 基于主成分分析的花溪古茶树立地土壤养分评价[J]. 浙江农业学报, 2017, 29(11): 1844-1853. |
[11] | 刘学东1,2,3,陈林1,2,3,杨新国1,2,3,赵伟1,2,3,张义凡1,2,3,李学斌4,*. 放牧与围栏对荒漠草原土壤养分及酶活性的影响[J]. 浙江农业学报, 2016, 28(8): 1389-. |
[12] | 刘冲, 王茂文, 邢锦城, 丁海荣, 朱小梅, 赵宝泉, 董静, 温祝桂, 洪立洲. 甘薯种植对苏北沿海滩涂土壤环境的影响[J]. 浙江农业学报, 2016, 28(11): 1908-1914. |
[13] | 朱真令1,2,麻万诸2,任周桥2,沈建国3, 龙文莉2,吕晓男1,2,*. 余杭区耕地地力等级划分及养分空间分布研究[J]. 浙江农业学报, 2015, 27(8): 1462-. |
[14] | 刘术新;丁枫华;*;陈伟祥;徐桂芬;程结. 有机肥对长豇豆连作土壤养分及酶活性的影响[J]. , 2014, 26(3): 0-770774. |
[15] | 计小江;陈义;吴春艳;李超英;李艳;唐旭*. 浙江省稻田土壤养分现状及演变趋[J]. , 2014, 26(3): 0-775778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||