浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2195-2204.DOI: 10.3969/j.issn.1004-1524.2021.11.22
收稿日期:
2020-10-06
出版日期:
2021-11-25
发布日期:
2021-11-26
通讯作者:
何志文
作者简介:
*何志文,E-mail: 837191347@qq.com基金资助:
LUO Haipinga,b(), HE Zhiwena,b,*(
), LI Zhuoyaa,b
Received:
2020-10-06
Online:
2021-11-25
Published:
2021-11-26
Contact:
HE Zhiwen
摘要:
基于动态空间杜宾模型实证测算和分析中国(不含香港、澳门、台湾)2008—2018年省级层面的粮食全要素生产率增产效应。研究显示:2008—2018年中国粮食全要素生产率稳步提升,由2008年的1.024增至2018年的1.156,高效率产区由2008年的0个增至2018年的11个,但提升过程出现“马太效应”。粮食全要素生产率的提升能够显著促进粮食增产,其增产效应仅次于粮食播种面积。从全国层面看,邻近地区粮食全要素生产率的提升对本地粮食增产具有显著的正溢出效应。从空间结构看,粮食全要素生产率的溢出效应存在显著的空间异质性,中部地区存在显著负溢出效应,西部地区表现为正溢出效应,东部地区无显著溢出效应。
中图分类号:
罗海平, 何志文, 李卓雅. 基于动态空间杜宾模型的2008—2018年中国粮食全要素生产率增产效应[J]. 浙江农业学报, 2021, 33(11): 2195-2204.
LUO Haiping, HE Zhiwen, LI Zhuoya. Yield-increasing effect of grain total factor productivity in China from 2008 to 2018 based on dynamic space Durbin model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2195-2204.
区域Region | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
全国Nationwide | 1.024 | 1.003 | 1.009 | 1.041 | 1.058 | 1.075 | 1.072 | 1.084 | 1.091 | 1.146 | 1.156 |
东部East China | 1.016 | 1.001 | 1.003 | 1.05 | 1.056 | 1.068 | 1.042 | 1.071 | 1.091 | 1.129 | 1.139 |
中部Central China | 1.051 | 1.011 | 1.041 | 1.084 | 1.102 | 1.123 | 1.13 | 1.134 | 1.126 | 1.236 | 1.222 |
西部West China | 1.013 | 0.998 | 0.994 | 1.004 | 1.031 | 1.050 | 1.061 | 1.062 | 1.068 | 1.102 | 1.127 |
北京Beijing | 1.077 | 1.004 | 1.004 | 1.127 | 1.137 | 1.171 | 1.029 | 1.161 | 1.190 | 1.191 | 1.189 |
天津Tianjin | 1.009 | 1.025 | 1.025 | 1.043 | 1.004 | 1.052 | 1.021 | 1.041 | 1.103 | 1.212 | 1.210 |
河北Hebei | 1.024 | 1.027 | 1.027 | 1.094 | 1.117 | 1.155 | 1.150 | 1.141 | 1.185 | 1.247 | 1.227 |
山西Shanxi | 0.997 | 0.999 | 0.999 | 1.069 | 1.123 | 1.143 | 1.162 | 1.104 | 1.211 | 1.553 | 1.528 |
内蒙古Inner Mongolia | 1.132 | 1.103 | 1.103 | 1.213 | 1.240 | 1.310 | 1.241 | 1.248 | 1.227 | 1.379 | 1.467 |
辽宁Liaoning | 1.043 | 0.940 | 0.940 | 1.087 | 1.089 | 1.151 | 0.917 | 1.027 | 1.101 | 1.168 | 1.095 |
吉林Jilin | 1.118 | 1.025 | 1.025 | 1.085 | 1.106 | 1.258 | 1.216 | 1.200 | 1.225 | 1.321 | 1.144 |
黑龙江Heilongjiang | 1.175 | 1.245 | 1.245 | 1.366 | 1.339 | 1.347 | 1.355 | 1.338 | 1.270 | 1.476 | 1.477 |
上海Shanghai | 1.040 | 1.047 | 1.047 | 1.040 | 1.036 | 1.077 | 1.084 | 1.099 | 1.125 | 1.191 | 1.266 |
江苏Jiangsu | 1.006 | 1.026 | 1.026 | 1.043 | 1.059 | 1.070 | 1.088 | 1.100 | 1.069 | 1.095 | 1.123 |
浙江Zhejiang | 1.025 | 1.015 | 1.015 | 1.047 | 1.034 | 0.984 | 1.005 | 0.990 | 1.007 | 0.998 | 1.032 |
安徽Anhui | 1.029 | 1.038 | 1.038 | 1.056 | 1.108 | 1.104 | 1.150 | 1.190 | 1.147 | 1.248 | 1.249 |
福建Fujian | 1.019 | 1.016 | 1.016 | 1.037 | 1.038 | 1.046 | 1.054 | 1.049 | 1.047 | 1.106 | 1.129 |
江西Jiangxi | 1.015 | 0.989 | 0.989 | 1.025 | 1.035 | 1.048 | 1.056 | 1.053 | 1.056 | 1.111 | 1.146 |
山东Shandong | 1.024 | 1.023 | 1.023 | 1.035 | 1.047 | 1.037 | 1.032 | 1.051 | 1.045 | 1.062 | 1.057 |
河南Henan | 1.009 | 1.009 | 1.009 | 1.016 | 1.021 | 1.025 | 1.023 | 1.069 | 1.046 | 1.081 | 1.103 |
湖北Hubei | 1.033 | 1.027 | 1.027 | 1.045 | 1.054 | 1.060 | 1.067 | 1.093 | 1.039 | 1.059 | 1.058 |
湖南Hunan | 1.029 | 0.996 | 0.996 | 1.013 | 1.030 | 0.996 | 1.014 | 1.022 | 1.015 | 1.038 | 1.067 |
广东Guangdong | 0.944 | 0.988 | 0.988 | 1.021 | 1.044 | 0.997 | 1.029 | 1.030 | 1.030 | 1.058 | 1.053 |
广西Guangxi | 1.002 | 0.989 | 0.989 | 0.998 | 1.038 | 1.062 | 1.074 | 1.069 | 1.080 | 1.031 | 1.050 |
海南Hainan | 0.969 | 0.920 | 0.920 | 0.974 | 1.015 | 1.010 | 1.056 | 1.092 | 1.101 | 1.091 | 1.149 |
重庆Chongqing | 1.027 | 0.971 | 0.971 | 0.938 | 0.934 | 0.946 | 0.927 | 0.923 | 0.927 | 0.855 | 0.860 |
四川Sichuan | 1.015 | 1.008 | 1.008 | 1.019 | 1.020 | 1.046 | 1.044 | 1.067 | 1.081 | 1.113 | 1.129 |
贵州Guizhou | 0.945 | 0.825 | 0.825 | 0.615 | 0.739 | 0.785 | 0.828 | 0.821 | 0.823 | 0.895 | 0.824 |
云南Yunnan | 1.018 | 0.991 | 0.991 | 1.053 | 1.072 | 1.112 | 1.132 | 1.146 | 1.165 | 1.213 | 1.221 |
西藏Tibet | 1.001 | 0.949 | 0.949 | 0.966 | 0.957 | 0.898 | 0.942 | 0.913 | 0.921 | 0.984 | 0.990 |
陕西Shaanxi | 1.031 | 1.073 | 1.073 | 1.109 | 1.159 | 1.158 | 1.151 | 1.180 | 1.183 | 1.169 | 1.205 |
甘肃Gansu | 1.055 | 1.088 | 1.088 | 1.132 | 1.205 | 1.216 | 1.224 | 1.234 | 1.236 | 1.298 | 1.361 |
青海Qinghai | 0.930 | 0.890 | 0.890 | 0.920 | 0.853 | 0.838 | 0.862 | 0.835 | 0.890 | 0.884 | 0.904 |
宁夏Ningxia | 1.053 | 1.104 | 1.104 | 1.101 | 1.183 | 1.218 | 1.281 | 1.264 | 1.245 | 1.340 | 1.396 |
新疆Xinjiang | 0.946 | 0.945 | 0.945 | 0.979 | 0.978 | 1.009 | 1.028 | 1.041 | 1.033 | 1.060 | 1.110 |
表1 2008—2018年的粮食全要素生产率
Table 1 Grain total factor productivity in 2008-2018
区域Region | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|---|---|---|---|---|
全国Nationwide | 1.024 | 1.003 | 1.009 | 1.041 | 1.058 | 1.075 | 1.072 | 1.084 | 1.091 | 1.146 | 1.156 |
东部East China | 1.016 | 1.001 | 1.003 | 1.05 | 1.056 | 1.068 | 1.042 | 1.071 | 1.091 | 1.129 | 1.139 |
中部Central China | 1.051 | 1.011 | 1.041 | 1.084 | 1.102 | 1.123 | 1.13 | 1.134 | 1.126 | 1.236 | 1.222 |
西部West China | 1.013 | 0.998 | 0.994 | 1.004 | 1.031 | 1.050 | 1.061 | 1.062 | 1.068 | 1.102 | 1.127 |
北京Beijing | 1.077 | 1.004 | 1.004 | 1.127 | 1.137 | 1.171 | 1.029 | 1.161 | 1.190 | 1.191 | 1.189 |
天津Tianjin | 1.009 | 1.025 | 1.025 | 1.043 | 1.004 | 1.052 | 1.021 | 1.041 | 1.103 | 1.212 | 1.210 |
河北Hebei | 1.024 | 1.027 | 1.027 | 1.094 | 1.117 | 1.155 | 1.150 | 1.141 | 1.185 | 1.247 | 1.227 |
山西Shanxi | 0.997 | 0.999 | 0.999 | 1.069 | 1.123 | 1.143 | 1.162 | 1.104 | 1.211 | 1.553 | 1.528 |
内蒙古Inner Mongolia | 1.132 | 1.103 | 1.103 | 1.213 | 1.240 | 1.310 | 1.241 | 1.248 | 1.227 | 1.379 | 1.467 |
辽宁Liaoning | 1.043 | 0.940 | 0.940 | 1.087 | 1.089 | 1.151 | 0.917 | 1.027 | 1.101 | 1.168 | 1.095 |
吉林Jilin | 1.118 | 1.025 | 1.025 | 1.085 | 1.106 | 1.258 | 1.216 | 1.200 | 1.225 | 1.321 | 1.144 |
黑龙江Heilongjiang | 1.175 | 1.245 | 1.245 | 1.366 | 1.339 | 1.347 | 1.355 | 1.338 | 1.270 | 1.476 | 1.477 |
上海Shanghai | 1.040 | 1.047 | 1.047 | 1.040 | 1.036 | 1.077 | 1.084 | 1.099 | 1.125 | 1.191 | 1.266 |
江苏Jiangsu | 1.006 | 1.026 | 1.026 | 1.043 | 1.059 | 1.070 | 1.088 | 1.100 | 1.069 | 1.095 | 1.123 |
浙江Zhejiang | 1.025 | 1.015 | 1.015 | 1.047 | 1.034 | 0.984 | 1.005 | 0.990 | 1.007 | 0.998 | 1.032 |
安徽Anhui | 1.029 | 1.038 | 1.038 | 1.056 | 1.108 | 1.104 | 1.150 | 1.190 | 1.147 | 1.248 | 1.249 |
福建Fujian | 1.019 | 1.016 | 1.016 | 1.037 | 1.038 | 1.046 | 1.054 | 1.049 | 1.047 | 1.106 | 1.129 |
江西Jiangxi | 1.015 | 0.989 | 0.989 | 1.025 | 1.035 | 1.048 | 1.056 | 1.053 | 1.056 | 1.111 | 1.146 |
山东Shandong | 1.024 | 1.023 | 1.023 | 1.035 | 1.047 | 1.037 | 1.032 | 1.051 | 1.045 | 1.062 | 1.057 |
河南Henan | 1.009 | 1.009 | 1.009 | 1.016 | 1.021 | 1.025 | 1.023 | 1.069 | 1.046 | 1.081 | 1.103 |
湖北Hubei | 1.033 | 1.027 | 1.027 | 1.045 | 1.054 | 1.060 | 1.067 | 1.093 | 1.039 | 1.059 | 1.058 |
湖南Hunan | 1.029 | 0.996 | 0.996 | 1.013 | 1.030 | 0.996 | 1.014 | 1.022 | 1.015 | 1.038 | 1.067 |
广东Guangdong | 0.944 | 0.988 | 0.988 | 1.021 | 1.044 | 0.997 | 1.029 | 1.030 | 1.030 | 1.058 | 1.053 |
广西Guangxi | 1.002 | 0.989 | 0.989 | 0.998 | 1.038 | 1.062 | 1.074 | 1.069 | 1.080 | 1.031 | 1.050 |
海南Hainan | 0.969 | 0.920 | 0.920 | 0.974 | 1.015 | 1.010 | 1.056 | 1.092 | 1.101 | 1.091 | 1.149 |
重庆Chongqing | 1.027 | 0.971 | 0.971 | 0.938 | 0.934 | 0.946 | 0.927 | 0.923 | 0.927 | 0.855 | 0.860 |
四川Sichuan | 1.015 | 1.008 | 1.008 | 1.019 | 1.020 | 1.046 | 1.044 | 1.067 | 1.081 | 1.113 | 1.129 |
贵州Guizhou | 0.945 | 0.825 | 0.825 | 0.615 | 0.739 | 0.785 | 0.828 | 0.821 | 0.823 | 0.895 | 0.824 |
云南Yunnan | 1.018 | 0.991 | 0.991 | 1.053 | 1.072 | 1.112 | 1.132 | 1.146 | 1.165 | 1.213 | 1.221 |
西藏Tibet | 1.001 | 0.949 | 0.949 | 0.966 | 0.957 | 0.898 | 0.942 | 0.913 | 0.921 | 0.984 | 0.990 |
陕西Shaanxi | 1.031 | 1.073 | 1.073 | 1.109 | 1.159 | 1.158 | 1.151 | 1.180 | 1.183 | 1.169 | 1.205 |
甘肃Gansu | 1.055 | 1.088 | 1.088 | 1.132 | 1.205 | 1.216 | 1.224 | 1.234 | 1.236 | 1.298 | 1.361 |
青海Qinghai | 0.930 | 0.890 | 0.890 | 0.920 | 0.853 | 0.838 | 0.862 | 0.835 | 0.890 | 0.884 | 0.904 |
宁夏Ningxia | 1.053 | 1.104 | 1.104 | 1.101 | 1.183 | 1.218 | 1.281 | 1.264 | 1.245 | 1.340 | 1.396 |
新疆Xinjiang | 0.946 | 0.945 | 0.945 | 0.979 | 0.978 | 1.009 | 1.028 | 1.041 | 1.033 | 1.060 | 1.110 |
变量 Variable | 模型Ⅰ Model Ⅰ | 模型Ⅱ Model Ⅱ | 模型Ⅲ Model Ⅲ | 模型Ⅳ Model Ⅳ | 模型Ⅴ Model Ⅴ |
---|---|---|---|---|---|
粮食产出时间滞后项Time lag term for grain output | — | — | 0.652*** | — | 0.090*** |
粮食全要素生产率Grain total factor productivity | -0.058 | 0.667*** | 0.185*** | 0.694*** | 0.691*** |
化肥资源Fertilizer resources | 0.117*** | 0.065*** | 0.034** | 0.022 | 0.010 |
水资源Water resources | 0.186*** | 0.055*** | 0.085*** | 0.078*** | 0.044** |
农地Agricultural land | 0.825*** | 0.915*** | 0.235*** | 0.901*** | 0.845*** |
农业劳动力Agricultural labor | -0.095*** | -0.009 | -0.019 | -0.005 | -0.007 |
财政支农Financial support for agriculture | 0.058*** | 0.030*** | 0.006 | 0.025* | 0.024 |
产业结构Industry structure | -0.049*** | 0.048*** | 0.077** | 0.055** | 0.068*** |
粮食全要素生产率空间滞后项 | — | — | — | 0.858*** | 0.961*** |
Spatial lag term of grain total factor productivity |
表2 参数估计结果
Table 2 Parameter estimation results
变量 Variable | 模型Ⅰ Model Ⅰ | 模型Ⅱ Model Ⅱ | 模型Ⅲ Model Ⅲ | 模型Ⅳ Model Ⅳ | 模型Ⅴ Model Ⅴ |
---|---|---|---|---|---|
粮食产出时间滞后项Time lag term for grain output | — | — | 0.652*** | — | 0.090*** |
粮食全要素生产率Grain total factor productivity | -0.058 | 0.667*** | 0.185*** | 0.694*** | 0.691*** |
化肥资源Fertilizer resources | 0.117*** | 0.065*** | 0.034** | 0.022 | 0.010 |
水资源Water resources | 0.186*** | 0.055*** | 0.085*** | 0.078*** | 0.044** |
农地Agricultural land | 0.825*** | 0.915*** | 0.235*** | 0.901*** | 0.845*** |
农业劳动力Agricultural labor | -0.095*** | -0.009 | -0.019 | -0.005 | -0.007 |
财政支农Financial support for agriculture | 0.058*** | 0.030*** | 0.006 | 0.025* | 0.024 |
产业结构Industry structure | -0.049*** | 0.048*** | 0.077** | 0.055** | 0.068*** |
粮食全要素生产率空间滞后项 | — | — | — | 0.858*** | 0.961*** |
Spatial lag term of grain total factor productivity |
时期 Period | 效应类型 Effect type | 效应程度 Effect degree/% | P |
---|---|---|---|
短期 Short term | 直接效应 Direct effect | 0.680 | <0.001 |
溢出效应 Spillover effect | 0.517 | 0.011 | |
总效应 Total effect | 1.197 | <0.001 | |
长期 Long term | 直接效应 Direct effect | 0.748 | <0.001 |
溢出效应 Spillover effect | 0.538 | 0.023 | |
总效应Total effect | 1.286 | <0.001 |
表3 长期和短期溢出效应分解结果
Table 3 Decomposition results of spillover effect in both short term and long term
时期 Period | 效应类型 Effect type | 效应程度 Effect degree/% | P |
---|---|---|---|
短期 Short term | 直接效应 Direct effect | 0.680 | <0.001 |
溢出效应 Spillover effect | 0.517 | 0.011 | |
总效应 Total effect | 1.197 | <0.001 | |
长期 Long term | 直接效应 Direct effect | 0.748 | <0.001 |
溢出效应 Spillover effect | 0.538 | 0.023 | |
总效应Total effect | 1.286 | <0.001 |
指标 Index | 邻接空间权重矩阵 Adjacency space weight matrix | 地理距离权重矩阵 Geographic distance weight matrix | |||
---|---|---|---|---|---|
静态面板 Static panel | 动态面板 Dynamic panel | 静态面板 Static panel | 动态面板 Dynamic panel | ||
粮食产出时间滞后项Time lag term for grain output | — | 0.093*** | — | 0.093*** | |
粮食全要素生产率Grain total factor productivity | 0.655*** | 0.625*** | 0.666*** | 0.638*** | |
粮食全要素生产率空间滞后项 | 0.127* | 0.175** | 0.328*** | 0.411*** | |
Spatial lag term of grain total factor productivity |
表4 稳健性检验结果
Table 4 Robustness test results
指标 Index | 邻接空间权重矩阵 Adjacency space weight matrix | 地理距离权重矩阵 Geographic distance weight matrix | |||
---|---|---|---|---|---|
静态面板 Static panel | 动态面板 Dynamic panel | 静态面板 Static panel | 动态面板 Dynamic panel | ||
粮食产出时间滞后项Time lag term for grain output | — | 0.093*** | — | 0.093*** | |
粮食全要素生产率Grain total factor productivity | 0.655*** | 0.625*** | 0.666*** | 0.638*** | |
粮食全要素生产率空间滞后项 | 0.127* | 0.175** | 0.328*** | 0.411*** | |
Spatial lag term of grain total factor productivity |
效应类型 Effect type | 东部East China | 中部Central China | 西部West China | ||||
---|---|---|---|---|---|---|---|
W1 | W3 | W1 | W3 | W1 | W3 | ||
直接效应Direct effect | 0.939*** | 0.948*** | 0.463*** | 0.480*** | 0.742*** | 0.696*** | |
溢出效应Spillover effect | 0.027 | 0.017 | -0.177* | -0.164** | 0.738*** | 0.095 | |
总效应Total effect | 0.967*** | 0.964*** | 0.286** | 0.316*** | 1.479*** | 0.791*** |
表5 东、中、西部溢出效应的分解结果
Table 5 Decomposition results of spillover effect in east, west and central China
效应类型 Effect type | 东部East China | 中部Central China | 西部West China | ||||
---|---|---|---|---|---|---|---|
W1 | W3 | W1 | W3 | W1 | W3 | ||
直接效应Direct effect | 0.939*** | 0.948*** | 0.463*** | 0.480*** | 0.742*** | 0.696*** | |
溢出效应Spillover effect | 0.027 | 0.017 | -0.177* | -0.164** | 0.738*** | 0.095 | |
总效应Total effect | 0.967*** | 0.964*** | 0.286** | 0.316*** | 1.479*** | 0.791*** |
[1] | 贺晓宇, 沈坤荣. 现代化经济体系、全要素生产率与高质量发展[J]. 上海经济研究, 2018, 30(6):25-34. |
HE X Y, SHEN K R. Modernized economic system, total factor productivity and high quality development[J]. Shanghai Journal of Economics, 2018, 30(6):25-34.(in Chinese with English abstract) | |
[2] | 柯新利, 孟芬, 马才学. 基于粮食安全与经济发展区域差异的土地资源优化配置: 以武汉城市圈为例[J]. 资源科学, 2014, 36(8):1572-1578. |
KE X L, MENG F, MA C X. Optimizing land resource allocation based on food security and regional difference in economic development: a case study in Wuhan metropolitan[J]. Resources Science, 2014, 36(8):1572-1578.(in Chinese with English abstract) | |
[3] | 邓小云. 新型城镇化进程中的隐性环境问题及其治理对策[J]. 中州学刊, 2016(2):79-83. |
DENG X Y. On recessive environmental problems and their countermeasures during the new-type urbanization[J]. Academic Journal of Zhongzhou, 2016(2):79-83.(in Chinese with English abstract) | |
[4] | 秦立建, 张妮妮, 蒋中一. 土地细碎化、劳动力转移与中国农户粮食生产: 基于安徽省的调查[J]. 农业技术经济, 2011(11):16-23. |
QIN L J, ZHANG N N, JIANG Z Y. Land fragmentation, labor transfer and food production of Chinese farmers: based on the survey in Anhui Province[J]. Journal of Agrotechnical Economics, 2011(11):16-23.(in Chinese) | |
[5] | 张利国, 鲍丙飞. 我国粮食主产区粮食全要素生产率时空演变及驱动因素[J]. 经济地理, 2016, 36(3):147-152. |
ZHANG L G, BAO B F. Empirical analysis on spatio-temporal evolution and driving forces of food total factor production in major grain producing areas of our country[J]. Economic Geography, 2016, 36(3):147-152.(in Chinese with English abstract) | |
[6] | 薛龙, 刘旗. 河南省粮食生产综合技术效率和全要素生产率分析[J]. 河南农业大学学报, 2013, 47(3):345-350. |
XUE L, LIU Q. Analysis of food production technical efficiency and total factor productivity of Henan Province[J]. Journal of Henan Agricultural University, 2013, 47(3):345-350.(in Chinese with English abstract) | |
[7] | 尹朝静, 李谷成, 葛静芳. 粮食安全:气候变化与粮食生产率增长: 基于HP滤波和序列DEA方法的实证分析[J]. 资源科学, 2016, 38(4):665-675. |
YIN C J, LI G C, GE J F. Food security, climate change and grain productivity growth based on HP filter and sequential DEA methods[J]. Resources Science, 2016, 38(4):665-675.(in Chinese with English abstract) | |
[8] | 董莹, 穆月英. 我国粮食生产效率变化及其影响因素: 基于能源视角的分析[J]. 西北农林科技大学学报(社会科学版), 2014, 14(6):103-111. |
DONG Y, MU Y Y. The research on China’s food producing efficiency change and its influencing factors on the perspective of energy[J]. Journal of Northwest A&F University (Social Science Edition), 2014, 14(6):103-111.(in Chinese with English abstract) | |
[9] | 彭代彦, 文乐. 农村劳动力老龄化、女性化降低了粮食生产效率吗: 基于随机前沿的南北方比较分析[J]. 农业技术经济, 2016(2):32-44. |
PENG D Y, WEN L. Does the aging and feminization of the rural labor force reduce the efficiency of food production: a comparative analysis of North and South based on the stochastic frontier[J]. Journal of Agrotechnical Economics, 2016(2):32-44.(in Chinese) | |
[10] | 高鸣, 宋洪远. 生产率视角下的中国粮食经济增长要素分析[J]. 中国人口科学, 2015(1):59-69. |
GAO M, SONG H Y. Factor analysis on China’s grain economic growth in productivity perspective[J]. Chinese Journal of Population Science, 2015(1):59-69. (in Chinese with English abstract) | |
[11] | 杨义武, 林万龙, 张莉琴. 农业技术进步、技术效率与粮食生产: 来自中国省级面板数据的经验分析[J]. 农业技术经济, 2017(5):46-56. |
YANG Y W, LIN W L, ZHANG L Q. Agricultural technology advancement, technology efficiency and grain production: empirical analysis of provincial panel data in China[J]. Journal of Agrotechnical Economics, 2017(5):46-56.(in Chinese) | |
[12] | 肖小勇, 李秋萍. 中国农业技术空间溢出效应: 1986—2010[J]. 科学学研究, 2014, 32(6):873-881. |
XIAO X Y, LI Q P. The empirical study of agricultural technology spillover effects: based on the spatial panel data of 1986-2010 in China[J]. Studies in Science of Science, 2014, 32(6):873-881. (in Chinese with English abstract) | |
[13] | 伍国勇, 张启楠, 张凡凡. 中国粮食生产效率测度及其空间溢出效应[J]. 经济地理, 2019, 39(9):207-212. |
WU G Y, ZHANG Q N, ZHANG F F. Research on grain production efficiency and its spatial spillover effects in China[J]. Economic Geography, 2019, 39(9):207-212.(in Chinese with English abstract) | |
[14] |
ELHORST P, PIRAS G, ARBIA G. Growth and convergence in a multiregional model with space-time dynamics[J]. Geographical Analysis, 2010, 42(3):338-355.
DOI URL |
[15] | 张志新, 林立, 黄海蓉. 再论技术进步的农民增收效应: 来自中国14个农业大省2000—2017年的证据[J]. 湖南社会科学, 2020(2):112-120. |
ZHANG Z X, LIN L, HUANG H R. On the effect of technological progress on increasing farmers’ income: evidence from 14 major agricultural provinces of China in 2000-2017[J]. Social Sciences in Hunan, 2020(2):112-120.(in Chinese) | |
[16] | 程惠芳, 陆嘉俊. 知识资本对工业企业全要素生产率影响的实证分析[J]. 经济研究, 2014, 49(5):174-187. |
CHENG H F, LU J J. The empirical analysis of knowledge capital impact on total factor productivity of industry enterprises[J]. Economic Research Journal, 2014, 49(5):174-187.(in Chinese with English abstract) | |
[17] |
GRIFFITH D A, ANSELIN L. Spatial econometrics: methods and models[J]. Economic Geography, 1989, 65(2):160.
DOI URL |
[18] | 李兆亮, 罗小锋, 张俊飚, 等. 中国不同类型农业R&D投入分布的动态演变及其影响因素分析[J]. 中国科技论坛, 2017(1):144-149. |
LI Z L, LUO X F, ZHANG J B, et al. Dynamic evolution and its driving forces of distribution of different kinds of agricultural R & D inputs in China[J]. Forum on Science and Technology in China, 2017(1):144-149.(in Chinese with English abstract) | |
[19] | 罗海平, 周静逸, 何志文. 基于县域尺度的粮食主产区耕地压力空间分异及其影响因子实证研究与预警[J]. 浙江农业学报, 2020, 32(8):1493-1505. |
LUO H P, ZHOU J Y, HE Z W. Empirical study and early warning on spatial differentiation of arable land pressure and its influencing factors in main grain-producing regions based on county scale[J]. Acta Agriculturae Zhejiangensis, 2020, 32(8):1493-1505.(in Chinese with English abstract) | |
[20] | 彭小辉, 史清华, 朱喜. 中国粮食产量连续增长的源泉[J]. 农业经济问题, 2018, 39(1):97-109. |
PENG X H, SHI Q H, ZHU X. The source of China’s grain production growth (2000-2013)[J]. Issues in Agricultural Economy, 2018, 39(1):97-109.(in Chinese with English abstract) | |
[21] | 杨志海, 王雅鹏. 城镇化影响了粮食安全吗?: 来自1 462个县(市)面板数据的实证检验[J]. 城市发展研究, 2012, 19(10):1-5. |
YANG Z H, WANG Y P. Does urbanization influence food safety?: empirical test based on the panel data of 1 462 counties (cities)[J]. Urban Development Studies, 2012, 19(10):1-5.(in Chinese with English abstract) | |
[22] | 王帅, 赵荣钦, 杨青林, 等. 碳排放约束下的农业生产效率及其空间格局: 基于河南省65个村庄的调查[J]. 自然资源学报, 2020, 35(9):2092-2104. |
WANG S, ZHAO R Q, YANG Q L, et al. Agricultural production efficiency and spatial pattern under carbon emission constraint: based on 65 villages of Henan Province[J]. Journal of Natural Resources, 2020, 35(9):2092-2104.(in Chinese with English abstract) | |
[23] |
ZHANG Q, YANG J, SUN Z X, et al. Analyzing the impact factors of energy-related CO2 emissions in China: what can spatial panel regressions tell us?[J]. Journal of Cleaner Production, 2017, 161:1085-1093.
DOI URL |
[24] |
ZHENG X Y, YU Y H, WANG J, et al. Identifying the determinants and spatial nexus of provincial carbon intensity in China: a dynamic spatial panel approach[J]. Regional Environmental Change, 2014, 14(4):1651-1661.
DOI URL |
[25] | 赵雪雁, 刘江华, 王蓉, 等. 基于市域尺度的中国化肥施用与粮食产量的时空耦合关系[J]. 自然资源学报, 2019, 34(7):1471-1482. |
ZHAO X Y, LIU J H, WANG R, et al. Spatial-temporal coupling relationship between chemical fertilizer application and grain yield in China at city scale[J]. Journal of Natural Resources, 2019, 34(7):1471-1482.(in Chinese with English abstract) | |
[26] | 尹世久, 吴林海, 张勇. 我国粮食产量波动影响因素的经验分析[J]. 系统工程理论与实践, 2009, 29(10):28-34. |
YIN S J, WU L H, ZHANG Y. Empirical analysis of the factors influencing grain yield[J]. Systems Engineering-Theory & Practice, 2009, 29(10):28-34.(in Chinese with English abstract) | |
[27] | 麻坤, 刁钢. 化肥对中国粮食产量变化贡献率的研究[J]. 植物营养与肥料学报, 2018, 24(4):1113-1120. |
MA K, DIAO G. Research on the contribution rate of fertilizer to grain yield in China[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4):1113-1120.(in Chinese with English abstract) | |
[28] | 程名望, 张帅, 潘烜. 农村劳动力转移影响粮食产量了吗?: 基于中国主产区面板数据的实证分析[J]. 经济与管理研究, 2013, 34(10):79-85. |
CHENG M W, ZHANG S, PAN X. Does migration of rural labor affects the grain yield?: an empirical analysis based on panel data of main production district in China[J]. Research on Economics and Management, 2013, 34(10):79-85.(in Chinese with English abstract) | |
[29] | 姜德波, 汝刚, 秦永. 劳动力转移、技术进步与粮食产量: 基于中国主要产粮省份的经验分析[J]. 南京审计大学学报, 2017, 14(1):29-36. |
JIANG D B, RU G, QIN Y. Labor migration, technological progress and grain production[J]. Journal of Nanjing Audit University, 2017, 14(1):29-36.(in Chinese with English abstract) | |
[30] | 徐建军, 星焱. 财政支农粮食产出效应的区域比较研究[J]. 财政研究, 2013(1):54-57. |
XU J J, XING Y. A regional comparative study on the effects of financial supporting agriculture on food output[J]. Public Finance Research, 2013(1):54-57.(in Chinese) | |
[31] | LESAGE J P. An introduction to spatial econometrics[J]. Revue d’Économie Industrielle, 2008(123):19-44. |
[32] | 杨鑫, 穆月英. 我国农业区域发展差异分析及政策选择[J]. 经济问题探索, 2017(2):168-176. |
YANG X, MU Y Y. Analysis of China’s agricultural regional development differences and policy choices[J]. Inquiry into Economic Issues, 2017(2):168-176.(in Chinese) | |
[33] | 吴雪莲, 张俊飚, 丰军辉. 农业科研机构科技创新、空间外溢与农业经济增长[J]. 科技管理研究, 2016, 36(17):79-86. |
WU X L, ZHANG J B, FENG J H. Technological innovation, spillover and agricultural economic growth of agricultural scientific institution technological innovation of agricultural scientific institutions, spillover and agricultural economic growth[J]. Science and Technology Management Research, 2016, 36(17):79-86.(in Chinese with English abstract) |
[1] | 崔宁波, 生世玉. 粮食安全视角下的东北黑土区耕地生态补偿研究[J]. 浙江农业学报, 2021, 33(9): 1759-1769. |
[2] | 张莎莎, 郑循刚, 张必忠. 交通基础设施、空间溢出与农村减贫——基于面板数据的实证研究[J]. 浙江农业学报, 2021, 33(3): 553-564. |
[3] | 刘姣姣, 张钢仁, 高群. 基于VEC-BEKK-GARCH和溢出指数模型的畜产品价格联动效应研究[J]. 浙江农业学报, 2020, 32(9): 1711-1721. |
[4] | 罗海平, 周静逸, 何志文. 基于县域尺度的粮食主产区耕地压力空间分异及其影响因子实证研究与预警[J]. 浙江农业学报, 2020, 32(8): 1493-1506. |
[5] | 李子琳, 韩逸, 郭熙, 国佳欣, 林雯璐. 基于结构方程模型的高安市耕地产能影响因素研究[J]. 浙江农业学报, 2020, 32(5): 866-877. |
[6] | 黄锦东. 福建省粮食生产的耕地利用效应时空分析[J]. 浙江农业学报, 2020, 32(5): 923-930. |
[7] | 罗海平, 潘柳欣, 余兆鹏. 基于粮食安全贡献度的中国粮食主产区粮食供求格局演变[J]. 浙江农业学报, 2020, 32(11): 2077-2087. |
[8] | 张会芳, 尹海燕, 冀保毅, 卓文飞. 1980—2013年河南省粮食生产特点及安全保障机制研究[J]. 浙江农业学报, 2017, 29(1): 1-7. |
[9] | 田秋霞;张仁陟*. 社会转型期县域耕地需求量组合研究[J]. , 2014, 26(1): 0-176. |
[10] | 史常亮;王忠平*. 基于供求视角的中国粮食安全影响因素研究[J]. , 2013, 25(5): 0-1152. |
[11] | 张慧芳;吴宇哲;*;何良将. 我国推行休耕制度的探讨[J]. , 2013, 25(1): 0-170. |
[12] | 许连君;支炳义;刘卫东. 金华市区域土地利用变化及其驱动力分析[J]. , 2007, 19(2): 0-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||