浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2205-2212.DOI: 10.3969/j.issn.1004-1524.2021.11.23
• 综述 • 上一篇
收稿日期:2020-09-21
出版日期:2021-11-25
发布日期:2021-11-26
作者简介:*王教瑜,E-mail: wangjiaoyu78@sina.com通讯作者:
王教瑜
基金资助:
WANG Shizhen(
), WANG Jiaoyu*(
), WANG Yanli, SUN Guocang
Received:2020-09-21
Online:2021-11-25
Published:2021-11-26
Contact:
WANG Jiaoyu
摘要:
小麦麦瘟病,由梨孢菌小麦专化型(Magnaporthe oryzae, sp. Triticum, MoT) 侵染所致,最早于1985年在巴西发现,随后传播到其他南美国家。2016与2017年,麦瘟病登陆亚洲,相继在孟加拉国和印度暴发,对亚洲乃至全世界的小麦生产形成了潜在威胁。近年来,世界各国的科学家对麦瘟病进行了广泛和深入的研究,取得了较大进展。本文对小麦麦瘟病病原菌、侵染过程、流行因素和小麦抗病基因的研究进展进行了综述,并介绍了小麦麦瘟病抗性评价的方法。本研究组研究发现,在人工接种条件下,水稻来源的稻瘟病菌株(MoO)可侵染小麦引起典型麦瘟症状。笔者认为,虽然目前我国还没有麦瘟病发生的报道,但部分地区存在麦瘟病的发病条件,随着全球气候变暖麦瘟病有暴发的可能,需引起高度重视。建议加快麦瘟病发病机理及小麦抗性基因发掘的研究,以提升我国麦瘟病的研究水平,并为预防麦瘟病的发生未雨绸缪。
中图分类号:
王士臻, 王教瑜, 王艳丽, 孙国仓. 麦瘟病与小麦抗麦瘟基因研究进展[J]. 浙江农业学报, 2021, 33(11): 2205-2212.
WANG Shizhen, WANG Jiaoyu, WANG Yanli, SUN Guocang. Progress of wheat blast and blast resistance gene in wheat[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2205-2212.
图1 小麦叶片(A)及穗部(B)受侵染后表现及受麦瘟病侵染后的田间情况(C) 图来自 https://www.k-state.edu/wheatblast/about/。
Fig.1 Wheat leaves(A) and spike(B) after infected by P. oryzae and the field condition of wheat blast(C) The figures were obtained from the website of https://www.k-state.edu/wheatblast/about/.
| 抗性基因 Resistance gene | 染色体位置 Chromosome location | 小麦品种 Wheat accession | 小麦来源 Origin | 无毒基因 AVR-gene | 抗性类型 Resistance type | 高温/穗部抗性情况 Resistance in high temperature/spike | 文献 Reference |
|---|---|---|---|---|---|---|---|
| Rmg1(Rwt4) | 1D | 普通小麦Common wheat, N4 | 日本Japan | PWT4 | MoA | +/- | [ |
| Rmg2 | 7A | 普通小麦Common wheat, Thatcher | — | MoT | -/- | [ | |
| Rmg3 | 6B | 普通小麦Common wheat, Thatcher | — | MoT | -/- | [ | |
| Rmg4 | 4A | 普通小麦Common wheat, N4 | 日本Japan | MoD (MgD) | U/U | [ | |
| Rmg5 | 6D | 普通小麦 | — | MoD (MgD) | U/U | [ | |
| Common wheat,Red Egyptain | |||||||
| Rmg6 | 1D | 普通小麦 Common wheat, N4/CS/Sch | 日本Japan/中国 China/日本Japan | PWT3(A1) | MoL | U/U | [ |
| Rmg7 | 2A | 四倍体材料 Tetraploid accessions, St17/St24/St25 | — | AVR-Rmg8 (=AVR-Rmg7) | MoT | -/+ | [ |
| Rmg8 | 2B | 普通小麦Common wheat, S-615 | — | MoT | +/+ | [ | |
| RmgGR119 | Unidentified | 小麦材料 Wheat accessions, GR119 | 阿尔巴尼亚 Albania | MoT | +/+ | [ |
表1 小麦中已鉴定的抗性基因
Table 1 Identified resistance gene in wheat accessions
| 抗性基因 Resistance gene | 染色体位置 Chromosome location | 小麦品种 Wheat accession | 小麦来源 Origin | 无毒基因 AVR-gene | 抗性类型 Resistance type | 高温/穗部抗性情况 Resistance in high temperature/spike | 文献 Reference |
|---|---|---|---|---|---|---|---|
| Rmg1(Rwt4) | 1D | 普通小麦Common wheat, N4 | 日本Japan | PWT4 | MoA | +/- | [ |
| Rmg2 | 7A | 普通小麦Common wheat, Thatcher | — | MoT | -/- | [ | |
| Rmg3 | 6B | 普通小麦Common wheat, Thatcher | — | MoT | -/- | [ | |
| Rmg4 | 4A | 普通小麦Common wheat, N4 | 日本Japan | MoD (MgD) | U/U | [ | |
| Rmg5 | 6D | 普通小麦 | — | MoD (MgD) | U/U | [ | |
| Common wheat,Red Egyptain | |||||||
| Rmg6 | 1D | 普通小麦 Common wheat, N4/CS/Sch | 日本Japan/中国 China/日本Japan | PWT3(A1) | MoL | U/U | [ |
| Rmg7 | 2A | 四倍体材料 Tetraploid accessions, St17/St24/St25 | — | AVR-Rmg8 (=AVR-Rmg7) | MoT | -/+ | [ |
| Rmg8 | 2B | 普通小麦Common wheat, S-615 | — | MoT | +/+ | [ | |
| RmgGR119 | Unidentified | 小麦材料 Wheat accessions, GR119 | 阿尔巴尼亚 Albania | MoT | +/+ | [ |
图2 苗期叶片抗病鉴定评价示意图[29] 0,没有明显可见的侵染点;1,针孔型斑点;2,小的病斑(<1.5 mm);3,病斑中等大小但分布稀疏(<3 mm); 4,大而典型的病斑;5,叶片完全枯萎。B,代表褐色;G,代表绿色。
Fig.2 Evaluation criterion of resistance grade of wheat blast in seedling stage[29] 0, No visible infection; 1, Pinhead spots; 2, Small lesions (<1.5 mm); 3, Sscattered lesions of intermediate size (<3 mm); 4, Large typical lesion; 5, Complete blighting of leaf blades. A disease score comprised a number denoting the lesion size and a letter indicating the lesion color: ‘B’ for brown, and ‘G’ for green.
图3 穗期抗病鉴定评价示意图 0,没有明显可见的侵染点;1,针孔型斑点;2,小的病斑(<1.5 mm);3,病斑中等大小但分布稀疏(<3 mm); 4,白绿色病斑且无明显由于过敏性反应而产生的褐色病斑;5,麦穗完全枯萎。
Fig.3 Evaluation criterion of resistance grade of wheat blast in heading stage 0, No visible infection; 1, Pinhead spots; 2, Small lesions (<1.5 mm); 3, Scattered lesions of intermediate size (<3 mm); 4, Mixture of green and white tissues with no apparent browning caused by hypersensitive reaction; 5, Complete blighting of the spike.
| [1] |
CRUZ C D, VALENT B. Wheat blast disease: danger on the move[J]. Tropical Plant Pathology, 2017, 42(3):210-222.
DOI URL |
| [2] |
CRUZ C D, BOCKUS W W, STACK J P, et al. Preliminary assessment of resistance among US wheat cultivars to the Triticum pathotype of Magnaporthe oryzae[J]. Plant Disease, 2012, 96(10):1501-1505.
DOI URL |
| [3] |
KOHLI M M, MEHTA Y R, GUZMAN E, et al. Pyricularia blast-a threat to wheat cultivation[J]. Czech Journal of Genetics and Plant Breeding, 2011, 47(Special Issue):S130-S134.
DOI URL |
| [4] |
CALLAWAY E. Devastating wheat fungus appears in Asia for first time[J]. Nature, 2016, 532(7600):421-422.
DOI URL |
| [5] |
ISLAM M T, CROLL D, GLADIEUX P, et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae[J]. BMC Biology, 2016, 14:84.
DOI URL |
| [6] |
CERESINI P C, CASTROAGUDÍN V L, RODRIGUES F Á, et al. Wheat blast: past, present, and future[J]. Annual Review of Phytopathology, 2018, 56:427-456.
DOI URL |
| [7] |
MOTTALEB K A, SINGH P K, SONDER K, et al. Threat of wheat blast to South Asia’s food security: an ex-ante analysis[J]. PLoS One, 2018, 13(5):e0197555.
DOI URL |
| [8] |
URASHIMA A S. Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil[J]. Plant Disease, 1993, 77(12):1211.
DOI URL |
| [9] |
KATO H, YAMAMOTO M, YAMAGUCHI-OZAKI T, et al. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, bambusideae and Zingiberaceae plants[J]. Journal of General Plant Pathology, 2000, 66(1):30-47.
DOI URL |
| [10] |
TOSA Y, HIRATA K, TAMBA H, et al. Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species-specific pathotypes of the blast fungus[J]. Phytopathology, 2004, 94(5):454-462.
DOI URL |
| [11] |
MOFFAT A. Plant genetics. Mapping the sequence of disease resistance[J]. Science, 1994, 265(5180):1804-1805.
DOI URL |
| [12] | LATIF M A. Genetic diversity analyzed by quantitative traits among rice (Oryza sativa L.) genotypes resistant to blast disease[J]. African Journal of Microbiology Research, 2011, 5(25):4383-4391. |
| [13] |
SHARMA T R, RAI A K, GUPTA S K, et al. Rice blast management through host-plant resistance: retrospect and prospects[J]. Agricultural Research, 2012, 1(1):37-52.
DOI URL |
| [14] |
CRUZ C D, KIYUNA J, BOCKUS W W, et al. Magnaporthe oryzae conidia on basal wheat leaves as a potential source of wheat blast inoculum[J]. Plant Pathology, 2015, 64(6):1491-1498.
DOI URL |
| [15] |
FARMAN M, PETERSON G, CHEN L, et al. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States[J]. Plant Disease, 2017, 101(5):684-692.
DOI URL |
| [16] |
ISLAM M T, KIM K H, CHOI J. Wheat blast in Bangladesh: the current situation and future impacts[J]. The Plant Pathology Journal, 2019, 35(1):1-10.
DOI URL |
| [17] |
TAKABAYASHI N, TOSA Y, OH H S, et al. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars[J]. Phytopathology, 2002, 92(11):1182-1188.
DOI URL |
| [18] |
ZHAN S W, MAYAMA S, TOSA Y. Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat[J]. Genome, 2008, 51(3):216-221.
DOI URL |
| [19] |
TAGLE A G, CHUMA I, TOSA Y. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat[J]. Phytopathology, 2015, 105(4):495-499.
DOI URL |
| [20] |
NGA N T T, HAU V T B, TOSA Y. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars[J]. Genome, 2009, 52(9):801-809.
DOI URL |
| [21] |
VY T T P, HYON G S, NGA N T T, et al. Genetic analysis of host-pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat[J]. Journal of General Plant Pathology, 2014, 80(1):59-65.
DOI URL |
| [22] |
ANH V L, ANH N T, TAGLE A G, et al. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat[J]. Phytopathology, 2015, 105(12):1568-1572.
DOI URL |
| [23] |
WANG S Z, ASUKE S VY T T P, et al. A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat Landrace[J]. Phytopathology, 2018, 108(11):1299-1306.
DOI URL |
| [24] | FLOR H H. The complementary genic systems in flax and flax rust[M]// Advances in Genetics. Amsterdam: Elsevier, 1956: 29-54. |
| [25] |
杨德卫, 王莫, 韩利波, 等. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展[J]. 植物学报, 2019, 54(2):265-276.
DOI |
| YANG D W, WANG M, HAN L B, et al. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi[J]. Bulletin of Botany, 2019, 54(2):265-276.(in Chinese with English abstract) | |
| [26] |
ANH V L, INOUE Y, ASUKE S, et al. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8[J]. Molecular Plant Pathology, 2018, 19(5):1252-1256.
DOI URL |
| [27] |
INOUE Y, VY T T P, YOSHIDA K, et al. Evolution of the wheat blast fungus through functional losses in a host specificity determinant[J]. Science, 2017, 357(6346):80-83.
DOI URL |
| [28] |
ASUKE S, NISHIMI S, TOSA Y. At least five major genes are involved in the avirulence of an Eleusine isolate of Pyricularia oryzae on common wheat[J]. Phytopathology, 2020, 110(2):465-471.
DOI URL |
| [29] |
HYON G S, NGA N T T, CHUMA I, et al. Characterization of interactions between barley and various host-specific subgroups of Magnaporthe oryzae and M. grisea[J]. Journal of General Plant Pathology, 2012, 78(4):237-246.
DOI URL |
| [30] |
ASUKE S, TANAKA M, HYON G S, et al. Evolution of an Eleusine-specific subgroup of Pyricularia oryzae through a gain of an avirulence gene[J]. Molecular Plant-Microbe Interactions, 2020, 33(2):153-165.
DOI URL |
| [31] |
INOUE Y, VY T T P, TANI D C, et al. Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat[J]. New Phytologist, 2021, 229(1):488-500.
DOI URL |
| [32] | 周益林, 何中虎. 警惕麦瘟病全球扩散[J]. 麦类作物学报, 2011, 31(5):989-993. |
| ZHOU Y L, HE Z H. Global warning on the spread of wheat blast[J]. Journal of Triticeae Crops, 2011, 31(5):989-993. (in Chinese with English abstract) | |
| [33] | 曹学仁, 陈林, 周益林, 等. 基于MaxEnt的麦瘟病在全球及中国的潜在分布区预测[J]. 植物保护, 2011, 37(3):80-83. |
| CAO X R, CHEN L, ZHOU Y L, et al. Potential distribution of Magnaporthe grisea in China and the world, predicted by MaxEnt[J]. Plant Protection, 2011, 37(3):80-83.(in Chinese with English abstract) | |
| [34] | DUVEILLER E, HODSON D, SONDER K, et al. An international perspective on wheat blast[C]// 2011 APS-IPPC Joint Meeting Abstracts of Presentations. Honolulu, Hawaii, 2011. |
| [1] | 王一镝, 汪精磊, 胡天华, 徐云敏, 包崇来. 十字花科蔬菜抗根肿病分子标记开发及其在育种上的应用[J]. 浙江农业学报, 2025, 37(6): 1272-1284. |
| [2] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
| [3] | 余欢, 李辉, 陈友波, 石钰仕, 赵德鹏, 龙霞, 谭启松. 鸡腺苷琥珀酸裂解酶互作蛋白的筛选及其功能分析[J]. 浙江农业学报, 2024, 36(3): 515-526. |
| [4] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
| [5] | 刘志艺, 米晓云, 黄聪, 李传峰, 陈宗艳. σNS蛋白与宿主TRAM1因子互作对鸭呼肠孤病毒复制的影响[J]. 浙江农业学报, 2022, 34(7): 1396-1401. |
| [6] | 倪敏舒, 陈丽, 鲍熹, 徐悦, 庄腾寒, 冯磊. 内质网分子伴侣GRP94对伪狂犬病毒增殖的调节作用[J]. 浙江农业学报, 2022, 34(11): 2386-2394. |
| [7] | 黄雷, 李光庆, 姚雪琴, 刘春晴, 谢祝捷, 耿春女. 基因型和环境对不同生育期花椰菜霜霉病的影响[J]. 浙江农业学报, 2020, 32(8): 1420-1426. |
| [8] | 李维芳, 王春蕾, 王妮, 邓雨正, 姚彦东, 魏丽娟, 廖伟彪. 一氧化氮影响植物不定根发生的研究进展[J]. 浙江农业学报, 2020, 32(4): 742-752. |
| [9] | 李磊, 赵花金, 伍子焘, 李升和, 姜锦鹏, 刘畅. 决明子抗氧化作用机制的网络药理学分析[J]. 浙江农业学报, 2020, 32(10): 1855-1865. |
| [10] | 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. 转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019, 31(7): 1205-1214. |
| [11] | 何海燕, 柴荣耀, 邱海萍, 毛雪琴, 王艳丽, 孙国仓. 五个抗稻瘟病基因在浙江省水稻品种中的分布和抗性评价[J]. 浙江农业学报, 2019, 31(6): 922-929. |
| [12] | 王其, 陈小洁, 顾双月, 张欣悦, 杭天露, 丁婷. 杜仲内生拮抗细菌DZSY21诱导玉米抗病基因表达变化的转录组学研究[J]. 浙江农业学报, 2019, 31(3): 345-354. |
| [13] | 罗岸. 烟草卵细胞特异表达基因的克隆与分析[J]. 浙江农业学报, 2017, 29(3): 360-365. |
| [14] | 黄笑梅1,金建峰2,张雪1,朱思眉1,朱柯柯1,赵罗鹏1,蒋明1,*. 青花菜CC\|NBS\|LRR抗病基因BoCNL1的克隆与分析[J]. 浙江农业学报, 2016, 28(2): 259-. |
| [15] | 陈影,屠逸飞,杜志游*. 黄瓜花叶病毒2b蛋白自身互作结构域的研究[J]. 浙江农业学报, 2015, 27(7): 1208-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||