浙江农业学报 ›› 2022, Vol. 34 ›› Issue (5): 1039-1048.DOI: 10.3969/j.issn.1004-1524.2022.05.19
收稿日期:
2021-03-08
出版日期:
2022-05-25
发布日期:
2022-06-06
作者简介:
杜红(1964—),女,河南睢县人,硕士,副教授,主要从事作物栽培生理研究。E-mail: duhong1964@126.com
基金资助:
DU Hong1(), LI Yupeng2, CHENG Wen3, XIAO Rongying4, HU Peng5
Received:
2021-03-08
Online:
2022-05-25
Published:
2022-06-06
摘要:
为探究Cd胁迫下丛枝菌根真菌(AMF)对植物根系和土壤微环境的影响,以黑麦草为供试植物、变形球囊霉(Glomus versiforme)为供试AMF,以Cd浓度(0、10、20、30 mg·kg-1)和是否对黑麦草接种AMF为双因素,设计8个处理,开展盆栽试验。结果显示:随着Cd浓度增加,AMF侵染率和孢子数量显著(P<0.05)降低。相同Cd浓度下,接种AMF显著(P<0.05)改善了黑麦草的根系构型(根系总长度、根系总投影面积、根系总体积、根尖数、根分叉数)。在相同Cd浓度下,接种AMF显著(P<0.05)增加了土壤中真菌、细菌和放线菌的数量,土壤微生物生物量碳、微生物生物量氮含量,以及土壤多酚氧化酶活性,和土壤易提取球囊霉素相关土壤蛋白和总球囊霉素相关土壤蛋白含量。这说明,接种AMF能够通过改善植物根系和微生物环境、提高土壤相关酶活性和球囊霉素含量等,增加植物抗性。
中图分类号:
杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048.
DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048.
图1 AMF侵染黑麦草根系情况(左图展示菌丝+孢子结构,右图展示根内菌丝)
Fig.1 AMF infection of L. perenne roots (left photo shows mycelium+spore structure, right photos shows endophytic hyphae)
接种 Inoculation | Cd浓度 Cd concentration/(mg·kg-1) | 菌根侵染率 Colonization rate/% | 孢子数 Number of spores/cm-1 | 株高 Plant height/cm | 地上部干重 Dry weigh of shoot/g |
---|---|---|---|---|---|
NM | 0 | — | — | 34.8±2.2 bc | 3.609±0.386 a |
10 | — | — | 30.8±2.4 de | 2.623±0.198 c | |
20 | — | — | 28.0±1.8 ef | 2.510±0.134 cd | |
30 | — | — | 22.9±1.3 g | 2.138±0.180 d | |
AMF | 0 | 53.0±7.5 a | 15.3±3.1 a | 42.6±2.3 a | 3.897±0.282 a |
10 | 47.6±2.5 ab | 12.3±2.5 ab | 37.3±1.8 b | 3.507±0.346 ab | |
20 | 42.7±2.5 bc | 10.7±1.2 bc | 32.0±2.3 cd | 3.125±0.205 b | |
30 | 37.7±2.5 c | 7.3±0.6 c | 25.9±1.3 fg | 2.406±0.261 cd |
表1 不同处理下AMF侵染与黑麦草生长情况
Table 1 AMF infection status and growth of L. perenne under different treatments
接种 Inoculation | Cd浓度 Cd concentration/(mg·kg-1) | 菌根侵染率 Colonization rate/% | 孢子数 Number of spores/cm-1 | 株高 Plant height/cm | 地上部干重 Dry weigh of shoot/g |
---|---|---|---|---|---|
NM | 0 | — | — | 34.8±2.2 bc | 3.609±0.386 a |
10 | — | — | 30.8±2.4 de | 2.623±0.198 c | |
20 | — | — | 28.0±1.8 ef | 2.510±0.134 cd | |
30 | — | — | 22.9±1.3 g | 2.138±0.180 d | |
AMF | 0 | 53.0±7.5 a | 15.3±3.1 a | 42.6±2.3 a | 3.897±0.282 a |
10 | 47.6±2.5 ab | 12.3±2.5 ab | 37.3±1.8 b | 3.507±0.346 ab | |
20 | 42.7±2.5 bc | 10.7±1.2 bc | 32.0±2.3 cd | 3.125±0.205 b | |
30 | 37.7±2.5 c | 7.3±0.6 c | 25.9±1.3 fg | 2.406±0.261 cd |
图2 不同处理下黑麦草的根系活力 柱上无相同字母的表示处理间差异显著(P<0.05)。下同。
Fig.2 Root activity of L. perenne under different treatments Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
接种 Inoculation | Cd浓度 Cd concentration/ (mg·kg-1) | 根系总长度 Total root length/cm | 根系总投影面积 Total root projection area/cm2 | 根系总体积 Total root volume/cm3 | 根尖数 Number of root tips | 根分叉数 Number of root branches |
---|---|---|---|---|---|---|
NM | 0 | 365.0±8.8 b | 31.3±1.1 b | 0.159±0.004 a | 2 080.3±225.5 ab | 1 378.0±167.9 ab |
10 | 305.3±14.3 d | 23.1±3.1 cd | 0.124±0.009 b | 1 604.0±165.4 cd | 1 129.0±105.5 cd | |
20 | 203.3±13.0 ef | 18.6±3.0 e | 0.086±0.011 c | 1 251.0±96.6 ef | 771.7±130.5 ef | |
30 | 153.7±19.7 g | 11.9±1.2 f | 0.062±0.015 d | 1 045.7±71.6 f | 567.3±59.9 f | |
AMF | 0 | 399.7±20.9 a | 38.7±2.9 a | 0.169±0.004 a | 2 149.0±266.1 a | 1 562.3±117.8 a |
10 | 334.2±12.6 c | 32.8±2.5 b | 0.134±0.010 b | 1 814.0±174.8 bc | 1 234.7±101.4 bc | |
20 | 230.6±15.0 e | 25.1±1.7 c | 0.102±0.011 c | 1 371.7±118.6 de | 925.0±122.3 de | |
30 | 203.9±16.1 ef | 19.6±1.1 de | 0.092±0.015 c | 1 080.0±131.4 f | 741.3±111.5 ef |
表2 不同处理下黑麦草的根系构型
Table 2 Root architecture of L. perenne under different treatments
接种 Inoculation | Cd浓度 Cd concentration/ (mg·kg-1) | 根系总长度 Total root length/cm | 根系总投影面积 Total root projection area/cm2 | 根系总体积 Total root volume/cm3 | 根尖数 Number of root tips | 根分叉数 Number of root branches |
---|---|---|---|---|---|---|
NM | 0 | 365.0±8.8 b | 31.3±1.1 b | 0.159±0.004 a | 2 080.3±225.5 ab | 1 378.0±167.9 ab |
10 | 305.3±14.3 d | 23.1±3.1 cd | 0.124±0.009 b | 1 604.0±165.4 cd | 1 129.0±105.5 cd | |
20 | 203.3±13.0 ef | 18.6±3.0 e | 0.086±0.011 c | 1 251.0±96.6 ef | 771.7±130.5 ef | |
30 | 153.7±19.7 g | 11.9±1.2 f | 0.062±0.015 d | 1 045.7±71.6 f | 567.3±59.9 f | |
AMF | 0 | 399.7±20.9 a | 38.7±2.9 a | 0.169±0.004 a | 2 149.0±266.1 a | 1 562.3±117.8 a |
10 | 334.2±12.6 c | 32.8±2.5 b | 0.134±0.010 b | 1 814.0±174.8 bc | 1 234.7±101.4 bc | |
20 | 230.6±15.0 e | 25.1±1.7 c | 0.102±0.011 c | 1 371.7±118.6 de | 925.0±122.3 de | |
30 | 203.9±16.1 ef | 19.6±1.1 de | 0.092±0.015 c | 1 080.0±131.4 f | 741.3±111.5 ef |
接种 Inoculation | Cd浓度 Cd concentration/(mg·kg-1) | 真菌 Fungi/(104 g-1) | 细菌 Bacteria/(105CFU·g-1) | 放线菌 Actinomyces/(105 g-1) |
---|---|---|---|---|
NM | 0 | 1.45±0.19 cd | 1.73±0.07 c | 4.26±0.39 b |
10 | 1.24±0.13 de | 1.46±0.05 cd | 3.43±0.18 c | |
20 | 1.13±0.11 e | 1.31±0.12 d | 2.46±0.19 de | |
30 | 1.06±0.10 e | 1.23±0.08 d | 2.32±0.15 e | |
AMF | 0 | 2.51±0.31 a | 3.10±0.19 a | 5.17±0.29 a |
10 | 2.06±0.09 b | 2.35±0.27 b | 4.13±0.44 b | |
20 | 1.59±0.07 c | 1.73±0.31 c | 3.05±0.63 cd | |
30 | 1.22±0.05 de | 1.41±0.13 d | 3.17±0.25 c |
表3 不同处理下土壤微生物群落组成
Table 3 Soil microbial community under different treatments
接种 Inoculation | Cd浓度 Cd concentration/(mg·kg-1) | 真菌 Fungi/(104 g-1) | 细菌 Bacteria/(105CFU·g-1) | 放线菌 Actinomyces/(105 g-1) |
---|---|---|---|---|
NM | 0 | 1.45±0.19 cd | 1.73±0.07 c | 4.26±0.39 b |
10 | 1.24±0.13 de | 1.46±0.05 cd | 3.43±0.18 c | |
20 | 1.13±0.11 e | 1.31±0.12 d | 2.46±0.19 de | |
30 | 1.06±0.10 e | 1.23±0.08 d | 2.32±0.15 e | |
AMF | 0 | 2.51±0.31 a | 3.10±0.19 a | 5.17±0.29 a |
10 | 2.06±0.09 b | 2.35±0.27 b | 4.13±0.44 b | |
20 | 1.59±0.07 c | 1.73±0.31 c | 3.05±0.63 cd | |
30 | 1.22±0.05 de | 1.41±0.13 d | 3.17±0.25 c |
接种 Inoculation | Cd浓度 Cd concentration/ (mg·kg-1) | 脱氢酶 Dehydrogenase activity/(mg·g-1) | 酸性磷酸酶 Acid phosphatase activity/(mg·g-1) | 过氧化氢酶 Catalase activity/ (mg·g-1) | 多酚氧化酶 Polyphenol oxidase activity/(mg·g-1) |
---|---|---|---|---|---|
NM | 0 | 0.693±0.134 d | 53.4±6.6 a | 0.803±0.165 d | 0.132±0.020 b |
10 | 0.797±0.162 cd | 42.8±2.7 bcd | 1.027±0.090 cd | 0.093±0.030 c | |
20 | 0.840±0.195 bcd | 39.5±3.5 cde | 1.240±0.082 abc | 0.063±0.010 d | |
30 | 0.970±0.080 abc | 34.2±3.3 ef | 1.333±0.061 ab | 0.060±0.010 d | |
AMF | 0 | 0.797±0.163 cd | 47.5±4.4 ab | 1.090±0.134 c | 0.163±0.020 a |
10 | 0.853±0.120 bcd | 45.7±4.5 bc | 1.193±0.146 bc | 0.125±0.020 b | |
20 | 1.043±0.066 ab | 36.9±3.0 def | 1.437±0.190 a | 0.105±0.020 bc | |
30 | 1.087±0.129 a | 30.9±1.3 f | 1.450±0.177 a | 0.076±0.020 cd |
表4 不同处理下土壤酶活性
Table 4 Soil enzyme activities of L. perenne under different treatments
接种 Inoculation | Cd浓度 Cd concentration/ (mg·kg-1) | 脱氢酶 Dehydrogenase activity/(mg·g-1) | 酸性磷酸酶 Acid phosphatase activity/(mg·g-1) | 过氧化氢酶 Catalase activity/ (mg·g-1) | 多酚氧化酶 Polyphenol oxidase activity/(mg·g-1) |
---|---|---|---|---|---|
NM | 0 | 0.693±0.134 d | 53.4±6.6 a | 0.803±0.165 d | 0.132±0.020 b |
10 | 0.797±0.162 cd | 42.8±2.7 bcd | 1.027±0.090 cd | 0.093±0.030 c | |
20 | 0.840±0.195 bcd | 39.5±3.5 cde | 1.240±0.082 abc | 0.063±0.010 d | |
30 | 0.970±0.080 abc | 34.2±3.3 ef | 1.333±0.061 ab | 0.060±0.010 d | |
AMF | 0 | 0.797±0.163 cd | 47.5±4.4 ab | 1.090±0.134 c | 0.163±0.020 a |
10 | 0.853±0.120 bcd | 45.7±4.5 bc | 1.193±0.146 bc | 0.125±0.020 b | |
20 | 1.043±0.066 ab | 36.9±3.0 def | 1.437±0.190 a | 0.105±0.020 bc | |
30 | 1.087±0.129 a | 30.9±1.3 f | 1.450±0.177 a | 0.076±0.020 cd |
[1] |
KRZEBIETKE S, MACKIEWICZ-WALEC E, SIENKIEWICZ S, et al. Effect of manure and mineral fertilisers on the content of light and heavy polycyclic aromatic hydrocarbons in soil[J]. Scientific Reports, 2020, 10: 4573.
DOI URL |
[2] |
WAN Y N, HUANG Q Q, CAMARA A Y, et al. Water management impacts on the solubility of Cd, Pb, As, and Cr and their uptake by rice in two contaminated paddy soils[J]. Chemosphere, 2019, 228: 360-369.
DOI URL |
[3] |
LIN W W, LIN M H, ZHOU H Y, et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. PLoS One, 2019, 14(5): e0217018.
DOI URL |
[4] |
EID E M, ALRUMMAN S A, EL-BEBANY A F, et al. Evaluation of the potential of sewage sludge as a valuable fertilizer for wheat (Triticum aestivum L.) crops[J]. Environmental Science and Pollution Research, 2019, 26(1): 392-401.
DOI URL |
[5] |
QASWAR M, LIU Y R, HUANG J, et al. Soil nutrients and heavy metal availability under long-term combined application of swine manure and synthetic fertilizers in acidic paddy soil[J]. Journal of Soils and Sediments, 2020, 20(4): 2093-2106.
DOI URL |
[6] | 冯鹏, 孙力, 申晓慧, 等. 多年生黑麦草对Pb、Cd胁迫的响应及富集能力研究[J]. 草业学报, 2016, 25(1): 153-162. |
FENG P, SUN L, SHEN X H, et al. Response and enrichment ability of perennial ryegrass under lead and cadmium stresses[J]. Acta Prataculturae Sinica, 2016, 25(1): 153-162. (in Chinese with English abstract) | |
[7] | 朱美霖, 魏富刚, 崔斌, 等. 土壤Cd胁迫对三七生长和根系DNA损伤及抗氧化酶活性的影响[J]. 植物资源与环境学报, 2014, 23(1): 58-64. |
ZHU M L, WEI F G, CUI B, et al. Effect of soil Cd stress on growth, root system DNA damage and antioxidant enzyme activity of Panax notoginseng[J]. Journal of Plant Resources and Environment, 2014, 23(1): 58-64. (in Chinese with English abstract) | |
[8] | 杨珍平, 郝教敏, 卜玉山, 等. Cd胁迫对5种植物体内Cd积累及根际土壤特性的影响[J]. 水土保持学报, 2011, 25(6): 186-192. |
YANG Z P, HAO J M, BO Y S, et al. Effects of Cd stress on Cd accumulation in organs and rhizospheric soil characteristics with five plants[J]. Journal of Soil and Water Conservation, 2011, 25(6): 186-192. (in Chinese with English abstract) | |
[9] | 周小梅, 赵运林, 董萌, 等. 镉胁迫对洞庭湖湿地土壤微生物数量与活性的影响[J]. 土壤通报, 2016, 47(5): 1148-1153. |
ZHOU X M, ZHAO Y L, DONG M, et al. Effects of cadmium stress on soil microbial quantity and activity in Dongting Lake wetland[J]. Chinese Journal of Soil Science, 2016, 47(5): 1148-1153. (in Chinese with English abstract) | |
[10] | 何俊瑜, 任艳芳, 王阳阳, 等. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应[J]. 生态学报, 2011, 31(2): 522-528. |
HE J Y, REN Y F, WANG Y Y, et al. Root morphological and physiological responses of rice seedlings with different tolerance to cadmium stress[J]. Acta Ecologica Sinica, 2011, 31(2): 522-528. (in Chinese with English abstract) | |
[11] | 姚俊修, 乔艳辉, 杨庆山, 等. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响[J]. 西北林学院学报, 2020, 35(2): 40-46. |
YAO J X, QIAO Y H, YANG Q S, et al. Effects of cadmium stress on the growth and photosynthesis of aigeirosclones[J]. Journal of Northwest Forestry University, 2020, 35(2): 40-46. (in Chinese with English abstract) | |
[12] |
王竹承, 刘辉, 李荣华. 外源硫对镉胁迫下马齿苋光合性状和矿质元素吸收的影响[J]. 生物技术通报, 2020, 36(3): 133-140.
DOI |
WANG Z C, LIU H, LI R H. Effects of exogenous sulfur on photosynthetic characteristics and mineral elements absorption in Portulaca oleracea under cadmium stress[J]. Biotechnology Bulletin, 2020, 36(3): 133-140. (in Chinese with English abstract) | |
[13] | 黑泽文, 向慧敏, 章家恩, 等. 水合欢对重金属Cd、Pb的耐受性及吸收富集特性[J]. 生态毒理学报, 2019, 14(3): 286-296. |
HEI Z W, XIANG H M, ZHANG J E, et al. Tolerance and accumulation ability of Neptunia olerace to Cd and Pb stress in soil[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 286-296. (in Chinese with English abstract) | |
[14] | 罗劲松, 闵运江, 陈玉, 等. 模拟盆栽条件下盐肤木对3种重金属胁迫的耐受性及其富集作用研究[J]. 皖西学院学报, 2020, 36(2): 48-53. |
LUO J S, MIN Y J, CHEN Y, et al. Simulation investigation on the impact of three heavy metals on the Rhus chinensis in potting[J]. Journal of West Anhui University, 2020, 36(2): 48-53. (in Chinese with English abstract) | |
[15] |
DIAGNE N, NGOM M, DJIGHALY P I, et al. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation[J]. Diversity, 2020, 12(10): 370.
DOI URL |
[16] |
HESTRIN R, HAMMER E C, MUELLER C W, et al. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J]. Communications Biology, 2019, 2: 233.
DOI URL |
[17] |
WANG G, WANG L, MA F, et al. Earthworm and arbuscular mycorrhiza interactions: strategies to motivate antioxidant responses and improve soil functionality[J]. Environmental Pollution, 2021, 272: 115980.
DOI URL |
[18] |
CAMPOS M A, DA SILVA F S B, YANO-MELO A M, et al. Responses of guava plants to inoculation with arbuscular mycorrhizal fungi in soil infested with Meloidogyne enterolobii[J]. The Plant Pathology Journal, 2013, 29(3): 242-248.
DOI URL |
[19] | 罗方舟, 向垒, 李慧, 等. 丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响[J]. 农业环境科学学报, 2015, 34(6): 1090-1095. |
LUO F Z, XIANG L, LI H, et al. Effects of arbuscular mycorrhizal fungi(AMF) on growth and Cd accumulation of upland rice and soil enzyme activities in cadmium contaminated soil[J]. Journal of Agro-Environment Science, 2015, 34(6): 1090-1095. (in Chinese with English abstract) | |
[20] | 宁楚涵, 李文彬, 徐启凯, 等. 丛枝菌根真菌促进湿地植物对污染水体中镉的吸收[J]. 应用生态学报, 2019, 30(6): 2063-2071. |
NING C H, LI W B, XU Q K, et al. Arbuscular mycorrhizal fungi enhance cadmium uptake of wetland plants in contaminated water[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2063-2071. (in Chinese with English abstract) | |
[21] | 廖继佩, 林先贵, 曹志洪, 等. 丛枝菌根真菌与重金属的相互作用对玉米根际微生物数量和磷酸酶活性的影响[J]. 应用与环境生物学报, 2002, 8(4): 408-413. |
LIAO J P, LIN X G, CAO Z H, et al. Effect of interactions between arbuscular mycorrhizal fungi and heavy metals on microbial populations and phosphatase activities in the maize rhizosphere[J]. Chinese Journal of Applied and Environmental Biology, 2002, 8(4): 408-413. (in Chinese with English abstract) | |
[22] | 盛萍萍, 刘润进, 李敏. 丛枝菌根观察与侵染率测定方法的比较[J]. 菌物学报, 2011, 30(4): 519-525. |
SHENG P P, LIU R J, LI M. Methodological comparison of observation and colonization measurement of arbuscular mycorrhizal fungi[J]. Mycosystema, 2011, 30(4): 519-525. (in Chinese with English abstract) | |
[23] | 张蜀秋. 植物生理学实验技术教程[M]. 北京: 科学出版社, 2011. |
[24] | 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. |
[25] |
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707.
DOI URL |
[26] |
SPARLING G P, WEST A M. Modifications to the flmigation-extraction technique to permit simultaneous extraction and estimation of soil microbial C and N[J]. Communications in Soil Science and Plant Analysis, 1988, 19(3): 327-344.
DOI URL |
[27] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[28] |
WRIGHT S F, UPADHYAYA A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161(9): 575-586.
DOI URL |
[29] | 杨文莹, 孙露莹, 宋凤斌, 等. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11): 3971-3979. |
YANG W Y, SUN L Y, SONG F B, et al. Research advances in species diversity of arbuscular mycorrhizal fungi in terrestrial agro-ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3971-3979. (in Chinese with English abstract) | |
[30] | 段倩倩, 杨晓红, 黄先智. 植物与丛枝菌根真菌在共生早期的信号交流[J]. 微生物学报, 2015, 55(7): 819-825. |
DUAN Q Q, YANG X H, HUANG X Z. Signal exchange between plants and arbuscular mycorrhizae fungi during the early stage of symbiosis: a review[J]. Acta Microbiologica Sinica, 2015, 55(7): 819-825. (in Chinese with English abstract) | |
[31] | 林双双, 孙向伟, 王晓娟, 等. AM真菌提高宿主植物耐受重金属胁迫的生理机制[J]. 草业科学, 2013, 30(3): 365-374. |
LIN S S, SUN X W, WANG X J, et al. Mechanism of plant tolerance to heavy metals enhanced by arbuscular mycorrhizal fungi[J]. Pratacultural Science, 2013, 30(3): 365-374. (in Chinese with English abstract) | |
[32] | 王发园, 林先贵. 丛枝菌根在植物修复重金属污染土壤中的作用[J]. 生态学报, 2007, 27(2): 793-801. |
WANG F Y, LIN X G. Role of a buscular mycorrhizae in phytoremediation of heavy metal-contaminated soils[J]. Acta Ecologica Sinica, 2007, 27(2): 793-801. (in Chinese with English abstract) | |
[33] | 李明亮, 李欢, 王凯荣, 等. Cd胁迫下丛枝菌根对花生生长、光合生理及Cd吸收的影响[J]. 环境化学, 2016, 35(11): 2344-2352. |
LI M L, LI H, WANG K R, et al. Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress[J]. Environmental Chemistry, 2016, 35(11): 2344-2352. (in Chinese with English abstract) | |
[34] | 张旭红, 高艳玲, 林爱军, 等. 重金属污染土壤接种丛枝菌根真菌对蚕豆毒性的影响[J]. 环境工程学报, 2008, 2(2): 274-278. |
ZHANG X H, GAO Y L, LIN A J, et al. Effects of arbuscular mycorrhizal fungi colonization on toxicity of soil contaminated by heavy metals to Vicia faba[J]. Chinese Journal of Environmental Engineering, 2008, 2(2): 274-278. (in Chinese with English abstract) | |
[35] |
蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979-988.
DOI |
JIANG J, SONG M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979-988. (in Chinese with English abstract)
DOI |
|
[36] | 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591. |
SHEN R F, ZHAO X Q. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 2015, 35(20): 6584-6591. (in Chinese with English abstract) | |
[37] | 廖洁, 王天顺, 范业赓, 等. 镉污染对甘蔗生长、土壤微生物及土壤酶活性的影响[J]. 西南农业学报, 2017, 30(9): 2048-2052. |
LIAO J, WANG T S, FAN Y G, et al. Effects of cadmium contamination on sugarcane growth, soil microorganism and soil enzyme activity[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(9): 2048-2052. (in Chinese with English abstract) | |
[38] | 杨良静, 何俊瑜, 任艳芳, 等. Cd胁迫对水稻根际土壤酶活和微生物的影响[J]. 贵州农业科学, 2009, 37(3): 85-88. |
YANG L J, HE J Y, REN Y F, et al. Effects of cadmium stress on microbes and enzyme activity in rice rhizosphere soil[J]. Guizhou Agricultural Sciences, 2009, 37(3): 85-88. (in Chinese with English abstract) | |
[39] | 谢宏鑫, 刘润进, 孙吉庆, 等. AMF与嫁接对西瓜连作土壤理化和微生物状况的影响[J]. 菌物学报, 2018, 37(5): 625-632. |
XIE H X, LIU R J, SUN J Q, et al. Effects of AMF and grafting on soil physical, chemical and microbial characters in continuous cropping watermelon soil[J]. Mycosystema, 2018, 37(5): 625-632. (in Chinese with English abstract) | |
[40] | 王秀丽, 徐建民, 姚槐应, 等. 重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J]. 环境科学学报, 2003, 23(1): 22-27. |
WANG X L, XU J M, YAO H Y, et al. Effects of Cu, Zn, Cd and Pb compound contamination on soil microbial community[J]. Acta Scientiae Circumstantiae, 2003, 23(1): 22-27. (in Chinese with English abstract) | |
[41] | 杨元根, PATERSON E, CAMPBELL C. 重金属Cu的土壤微生物毒性研究[J]. 土壤通报, 2002, 33(2): 137-141. |
YANG Y G, PATERSON E, CAMPBELL C. Study on microbial toxicity of heavy metal copper[J]. Chinese Journal of Soil Science, 2002, 33(2): 137-141. (in Chinese with English abstract) | |
[42] | 蒲生彦, 王宇, 陈文英, 等. 植物根际土壤酶对重金属污染的响应机制研究综述[J]. 生态毒理学报, 2020, 15(4): 11-20. |
PU S Y, WANG Y, CHEN W Y, et al. Review on the mechanism of plant rhizosphere soil enzyme response to heavy metal pollution[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 11-20. (in Chinese with English abstract) | |
[43] | 高大翔, 郝建朝, 金建华, 等. 重金属汞、镉单一胁迫及复合胁迫对土壤酶活性的影响[J]. 农业环境科学学报, 2008, 27(3): 903-908. |
GAO D X, HAO J C, JIN J H, et al. Effects of single stress and combined stress of Hg and Cd on soil enzyme activities[J]. Journal of Agro-Environment Science, 2008, 27(3): 903-908. (in Chinese with English abstract) |
[1] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[2] | 刘艳伟, 周潇, 杨启良, 茶品元. 不同施肥和灌溉水平对三七生长特性和发病率的影响[J]. 浙江农业学报, 2021, 33(8): 1426-1435. |
[3] | 陈闺, 周杰文, 李海平, 张发明, 李春顺, 柳立, 张毅. 土壤调理剂施用对植烟酸化土壤pH值和烤烟根系特性的影响[J]. 浙江农业学报, 2021, 33(7): 1275-1282. |
[4] | 黄咏明, 宋放, 王策, 姚京磊, 王志静, 何利刚, 吴黎明, 蒋迎春. 根系修剪对枳生长及相关基因表达的影响[J]. 浙江农业学报, 2021, 33(2): 270-277. |
[5] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
[6] | 毛爽, 周万里, 杨帆, 狄小琳, 蔺吉祥, 杨青杰. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报, 2021, 33(10): 1991-2000. |
[7] | 葛金涛, 王江英, 赵文静, 邵小斌, 朱朋波, 汤雪燕, 孙明伟, 刘兴满. 魏可葡萄气生根发育的转录组分析[J]. 浙江农业学报, 2020, 32(9): 1645-1655. |
[8] | 许娜, 王大海, 杜传印, 杜沙沙, 王晓萌, 张彦, 张玉琴, 吴元华, 管恩森, 石屹. 株距对烟苗生长发育的影响[J]. 浙江农业学报, 2020, 32(8): 1342-1350. |
[9] | 兰挚谦, 张凯歌, 张雪艳. 耕层厚度对黄瓜叶片光合荧光与根系生理特性的影响[J]. 浙江农业学报, 2020, 32(7): 1196-1205. |
[10] | 谷建诚, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李华, 李凝玉. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6): 963-970. |
[11] | 林辉, 张锦, 原倩宇, 叶静, 孙万春, 虞轶俊, 俞巧钢, 马军伟. 棘孢木霉和超微粉腐殖质改善连作土壤微生态[J]. 浙江农业学报, 2020, 32(6): 1060-1069. |
[12] | 刘涛, 张翅鹏, 郝瑶玲, 邱丽娟, 黄臣臣. 硫酸盐对土壤铁矿物还原转化及砷释放的影响[J]. 浙江农业学报, 2020, 32(4): 678-684. |
[13] | 王保君, 程旺大, 陈贵, 沈亚强, 沈盟, 袁晔, 王蕾, 张红梅. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响[J]. 浙江农业学报, 2020, 32(2): 183-190. |
[14] | 李美霖, 陈宇眺, 洪晓富, 乔宇颖, 王青霞, 陈喜靖, 沈阿林, 喻曼. 不同氮肥管理方式对稻田土壤微生物群落结构的影响[J]. 浙江农业学报, 2020, 32(2): 308-316. |
[15] | 韩悌倩, 刘震, 刘玉汇, 张小静, 王丽, 张俊莲. 减氮及有机替代对马铃薯根系形态和产量的影响[J]. 浙江农业学报, 2020, 32(12): 2111-2118. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 813
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 385
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||