浙江农业学报 ›› 2021, Vol. 33 ›› Issue (2): 270-277.DOI: 10.3969/j.issn.1004-1524.2021.02.10
黄咏明(), 宋放, 王策, 姚京磊, 王志静, 何利刚, 吴黎明, 蒋迎春*(
)
收稿日期:
2020-05-18
出版日期:
2021-02-25
发布日期:
2021-02-25
通讯作者:
蒋迎春
作者简介:
蒋迎春,E-mail: 546447505@qq.com基金资助:
HUANG Yongming(), SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun*(
)
Received:
2020-05-18
Online:
2021-02-25
Published:
2021-02-25
Contact:
JIANG Yingchun
摘要:
以枳实生苗为试验材料,通过两年重复试验分析了不切除主根、切除1/3主根、切除1/2主根、切除2/3主根等4个不同水平根系修剪处理下枳实生苗生长发育、根系构型和营养吸收的情况,并检测了不同水平根系修剪处理对侧根发育关键基因表达量的影响。结果表明,切除1/2主根处理增加了枳实生苗的株高、茎粗、地上部鲜重和根系鲜重,改善了根系构型参数(侧根数、总根长、根表面积和平均长度),增加了根系P、K、Ca、B、Fe、Na和Zn等营养元素含量。另外,实时荧光定量PCR(qRT-PCR)检测发现,根系修剪处理诱导了侧根发育关键基因HOX1和CYP2的积累,并抑制了IAA11和IAA13的表达。综上所述,适度根系修剪可能通过诱导HOX1、CYP2基因的上调和IAA11、IAA13基因的下调来调控枳实生苗侧根的生长发育,改善根系构型,从而提高枳实生苗对营养元素的吸收能力及植株的生长发育。
中图分类号:
黄咏明, 宋放, 王策, 姚京磊, 王志静, 何利刚, 吴黎明, 蒋迎春. 根系修剪对枳生长及相关基因表达的影响[J]. 浙江农业学报, 2021, 33(2): 270-277.
HUANG Yongming, SONG Fang, WANG Ce, YAO Jinglei, WANG Zhijing, HE Ligang, WU Liming, JIANG Yingchun. Effects of root pruning on growth and expression of related genes in Poncirus trifoliata[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 270-277.
引物名称 Primer name | 引物序列 Primer sequences(5'-3') |
---|---|
IAA11-F | TGTTCCACCAGCCAACAACT |
IAA11-R | AGCCAAGAAACATGCCCCAT |
IAA13-F | ACTGGGCTTGAGTCTTGGTG |
IAA13-R | ACTAGGTCTCCTCCCAGCAG |
CYP2-F | GTTCTTCGTCTGTACGGCCA |
CYP2-R | GAGCTGGACCCCACTTTCTC |
HOX1-F | AAGCCCAAGAAGCGGTATCC |
HOX1-R | ATCAACGGTTGGCTCCCATT |
eIF1α-F | CCCCAAAGAATCAGAAACCAT |
eIF1α-R | TGCCGAGCATACGAAGGAC |
表1 引物序列
Table 1 Primer sequences
引物名称 Primer name | 引物序列 Primer sequences(5'-3') |
---|---|
IAA11-F | TGTTCCACCAGCCAACAACT |
IAA11-R | AGCCAAGAAACATGCCCCAT |
IAA13-F | ACTGGGCTTGAGTCTTGGTG |
IAA13-R | ACTAGGTCTCCTCCCAGCAG |
CYP2-F | GTTCTTCGTCTGTACGGCCA |
CYP2-R | GAGCTGGACCCCACTTTCTC |
HOX1-F | AAGCCCAAGAAGCGGTATCC |
HOX1-R | ATCAACGGTTGGCTCCCATT |
eIF1α-F | CCCCAAAGAATCAGAAACCAT |
eIF1α-R | TGCCGAGCATACGAAGGAC |
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 株高 Plant height/cm | 茎粗 Stem diameter/cm | 鲜重Fresh weight/g | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
2018 | RP0 | 17.01±2.25 ab | 0.28±0.03 ab | 0.64±0.03 b | 1.27±0.24 b |
RP1 | 18.38±1.88 a | 0.26±0.01 b | 0.65±0.62 ab | 1.11±0.91 ab | |
RP2 | 18.37±1.36 a | 0.31±0.04 a | 0.72±0.20 a | 1.44±0.17 a | |
RP3 | 15.04±1.63 b | 0.28±0.06 ab | 0.48±0.09 b | 0.84±0.10 c | |
2019 | RP0 | 16.15±2.15 bc | 0.27±0.05 b | 0.59±0.18 b | 1.05±0.12 b |
RP1 | 18.07±1.86 a | 0.25±0.01 c | 0.59±0.15 b | 0.94±0.23 bc | |
RP2 | 18.23±1.45 a | 0.31±0.04 a | 0.65±0.18 a | 1.15±0.13 a | |
RP3 | 15.48±1.80 c | 0.28±0.02 ab | 0.54±0.11 b | 0.86±0.24 c |
表2 不同根系修剪处理下枳实生苗生长情况
Table 2 The growth of Poncirus trifoliata seedlings under different root pruning treatments
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 株高 Plant height/cm | 茎粗 Stem diameter/cm | 鲜重Fresh weight/g | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
2018 | RP0 | 17.01±2.25 ab | 0.28±0.03 ab | 0.64±0.03 b | 1.27±0.24 b |
RP1 | 18.38±1.88 a | 0.26±0.01 b | 0.65±0.62 ab | 1.11±0.91 ab | |
RP2 | 18.37±1.36 a | 0.31±0.04 a | 0.72±0.20 a | 1.44±0.17 a | |
RP3 | 15.04±1.63 b | 0.28±0.06 ab | 0.48±0.09 b | 0.84±0.10 c | |
2019 | RP0 | 16.15±2.15 bc | 0.27±0.05 b | 0.59±0.18 b | 1.05±0.12 b |
RP1 | 18.07±1.86 a | 0.25±0.01 c | 0.59±0.15 b | 0.94±0.23 bc | |
RP2 | 18.23±1.45 a | 0.31±0.04 a | 0.65±0.18 a | 1.15±0.13 a | |
RP3 | 15.48±1.80 c | 0.28±0.02 ab | 0.54±0.11 b | 0.86±0.24 c |
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 每株侧根数 Lateral root number per plant | 根系总长度 Total root length/cm | 表面积 Surface area/cm2 | 平均长度 Average length/cm |
---|---|---|---|---|---|
2018 | RP0 | 148±18 b | 254.37±49.02 b | 21.35±3.08 b | 1.14±0.19 a |
RP1 | 164±21 b | 235.59±38.41 b | 20.06±2.08 b | 1.21±0.0.9 a | |
RP2 | 250±19 a | 355.54±28.34 a | 33.86±3.53 a | 1.31±0.08 a | |
RP3 | 181±23 b | 202.63±16.26 b | 16.83±1.39 b | 1.06±0.13 a | |
2019 | RP0 | 135±11 b | 255.20±6.27 b | 20.67±0.69 b | 1.15±0.12 b |
RP1 | 155±10 b | 230.02±11.16 b | 20.05±0.41 b | 1.18±0.10 b | |
RP2 | 237±23 a | 368.73±14.86 a | 35.43±2.16 a | 1.32±0.06 a | |
RP3 | 179±16 ab | 215.65±17.05 b | 18.75±2.08 b | 1.03±0.08 b |
表3 不同根系修剪处理下枳实生苗根系构型参数
Table 3 The root architecture system parameters of Poncirus trifoliata seedlings under different root pruning treatments
检测年份 Detection year | 根系修剪处理 Root prunning treatments | 每株侧根数 Lateral root number per plant | 根系总长度 Total root length/cm | 表面积 Surface area/cm2 | 平均长度 Average length/cm |
---|---|---|---|---|---|
2018 | RP0 | 148±18 b | 254.37±49.02 b | 21.35±3.08 b | 1.14±0.19 a |
RP1 | 164±21 b | 235.59±38.41 b | 20.06±2.08 b | 1.21±0.0.9 a | |
RP2 | 250±19 a | 355.54±28.34 a | 33.86±3.53 a | 1.31±0.08 a | |
RP3 | 181±23 b | 202.63±16.26 b | 16.83±1.39 b | 1.06±0.13 a | |
2019 | RP0 | 135±11 b | 255.20±6.27 b | 20.67±0.69 b | 1.15±0.12 b |
RP1 | 155±10 b | 230.02±11.16 b | 20.05±0.41 b | 1.18±0.10 b | |
RP2 | 237±23 a | 368.73±14.86 a | 35.43±2.16 a | 1.32±0.06 a | |
RP3 | 179±16 ab | 215.65±17.05 b | 18.75±2.08 b | 1.03±0.08 b |
检测年份 Detection year | 根系修剪处理 Root pruning treatments | 大量元素含量 Macro-element content/% | 中量元素含量 Secondary element content/% | 微量元素含量 Trace-element content/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | B | Fe | Na | Zn | ||
2018 | RP0 | 1.72 ±0.51 c | 0.50 ±0.07 b | 1.46 ±0.27 c | 3.96 ±0.37 c | 1.25 ±0.04 c | 25.37 ±3.96 c | 82.68 ±3.92 c | 73.51 ±21.81 c | 8.39 ±4.17 c |
RP1 | 2.16 ±0.26 ab | 0.59 ±0.07 b | 2.08 ±0.87 b | 4.60 ±1.00 bc | 1.42 ±0.18 bc | 44.61 ±4.34 a | 89.06 ±4.99 bc | 90.38 ±13.75 b | 10.19 ±7.00 bc | |
RP2 | 1.99 ±0.05 b | 0.78 ±0.11 a | 2.67 ±1.08 ab | 7.17 ±0.34 a | 1.61 ±0.21 b | 41.57 ±1.92 ab | 125.17 ±5.18 a | 108.25 ±7.76 a | 19.85 ±3.64 ab | |
RP3 | 2.26 ±0.15 a | 0.72 ±0.04 ab | 3.68 ±0.28 a | 5.95 ±1.24 ab | 1.94 ±0.05 a | 26.85 ±1.96 bc | 114.41 ±6.43 ab | 85.91 ±4.99 bc | 25.19 ±2.02 a | |
2019 | RP0 | 1.91 ±0.02 b | 0.60 ±0.04 c | 2.73 ±1.22 b | 5.49 ±1.24 c | 1.52 ±0.21 b | 28.11 ±6.44 b | 80.50 ±29.82 b | 53.24 ±8.70 b | 11.88 ±6.67 c |
RP1 | 2.23 ±0.02 ab | 0.82 ±0.05 a | 3.07 ±0.19 ab | 6.93 ±1.08 ab | 1.68 ±0.37 ab | 34.36 ±1.11 ab | 87.34 ±15.41 b | 64.35 ±15.65 b | 14.85 ±8.46 bc | |
RP2 | 2.16 ±0.19 b | 0.76 ±0.02 ab | 3.11 ±0.67 a | 7.09 ±0.44 a | 1.70 ±0.10 ab | 40.38 ±2.93 a | 147.03 ±24.8 a | 90.37 ±13.75 a | 27.01 ±3.75 a | |
RP3 | 2.32 ±0.03 a | 0.74 ±0.05 b | 3.17 ±0.71 a | 6.46 ±1.10 bc | 1.80 ±0.18 a | 28.72 ±3.66 b | 98.57 ±12.81 b | 79.38 ±3.51 b | 25.18 ±2.02 ab |
表4 不同根系修剪处理下枳实生苗根系营养元素含量
Table 4 The contents of nutrient elements in roots of Poncirus trifoliata seedlings under different root pruning treatments
检测年份 Detection year | 根系修剪处理 Root pruning treatments | 大量元素含量 Macro-element content/% | 中量元素含量 Secondary element content/% | 微量元素含量 Trace-element content/(mg·kg-1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | B | Fe | Na | Zn | ||
2018 | RP0 | 1.72 ±0.51 c | 0.50 ±0.07 b | 1.46 ±0.27 c | 3.96 ±0.37 c | 1.25 ±0.04 c | 25.37 ±3.96 c | 82.68 ±3.92 c | 73.51 ±21.81 c | 8.39 ±4.17 c |
RP1 | 2.16 ±0.26 ab | 0.59 ±0.07 b | 2.08 ±0.87 b | 4.60 ±1.00 bc | 1.42 ±0.18 bc | 44.61 ±4.34 a | 89.06 ±4.99 bc | 90.38 ±13.75 b | 10.19 ±7.00 bc | |
RP2 | 1.99 ±0.05 b | 0.78 ±0.11 a | 2.67 ±1.08 ab | 7.17 ±0.34 a | 1.61 ±0.21 b | 41.57 ±1.92 ab | 125.17 ±5.18 a | 108.25 ±7.76 a | 19.85 ±3.64 ab | |
RP3 | 2.26 ±0.15 a | 0.72 ±0.04 ab | 3.68 ±0.28 a | 5.95 ±1.24 ab | 1.94 ±0.05 a | 26.85 ±1.96 bc | 114.41 ±6.43 ab | 85.91 ±4.99 bc | 25.19 ±2.02 a | |
2019 | RP0 | 1.91 ±0.02 b | 0.60 ±0.04 c | 2.73 ±1.22 b | 5.49 ±1.24 c | 1.52 ±0.21 b | 28.11 ±6.44 b | 80.50 ±29.82 b | 53.24 ±8.70 b | 11.88 ±6.67 c |
RP1 | 2.23 ±0.02 ab | 0.82 ±0.05 a | 3.07 ±0.19 ab | 6.93 ±1.08 ab | 1.68 ±0.37 ab | 34.36 ±1.11 ab | 87.34 ±15.41 b | 64.35 ±15.65 b | 14.85 ±8.46 bc | |
RP2 | 2.16 ±0.19 b | 0.76 ±0.02 ab | 3.11 ±0.67 a | 7.09 ±0.44 a | 1.70 ±0.10 ab | 40.38 ±2.93 a | 147.03 ±24.8 a | 90.37 ±13.75 a | 27.01 ±3.75 a | |
RP3 | 2.32 ±0.03 a | 0.74 ±0.05 b | 3.17 ±0.71 a | 6.46 ±1.10 bc | 1.80 ±0.18 a | 28.72 ±3.66 b | 98.57 ±12.81 b | 79.38 ±3.51 b | 25.18 ±2.02 ab |
图2 不同根系修剪处理下枳侧根生长发育相关基因的表达模式 柱状图上无相同小写字母的表示各处理间差异显著(P<0.05)
Fig.2 The expression profiles of lateral root growth and development related genes of Poncirus trifoliata under different root prunning treatments Different lowercase letters above the columns represent statistically significant (P<0.05) differences among treatments
[1] |
孙敏红, 卢晓鹏, 曹雄军, 等. 不同氮素形态对枳橙幼苗根系生长及氮素吸收动力学特性的影响[J]. 林业科学, 2015,51(12):113-120.
DOI URL |
SUN M H, LU X P, CAO X J, et al. Effect of different nitrogen forms on root growth and dynamic kinetics characteristics for Citrus sinensis × Poncirus trifoliata[J]. Scientia Silvae Sinicae, 2015,51(12):113-120.(in Chinese with English abstract) | |
[2] | 杨喜田, 陈久美, 唐妍, 等. 侧柏幼苗切根后根系内源激素含量的变化[J]. 河南农业大学学报, 2011,45(1):66-70. |
YANG X T, CHEN J M, TANG Y, et al. Changes of endogenous phytohormone contents in Platycladus orientalis roots after root-cutting[J]. Journal of Henan Agricultural University, 2011,45(1):66-70.(in Chinese with English abstract) | |
[3] |
VILCHES-BARRO A, MAIZEL A. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana[J]. Current Opinion in Plant Biology, 2015,23:31-38.
DOI URL PMID |
[4] |
DE SMET I, WHITE P J, BENGOUGH A G, et al. Analyzing lateral root development: how to move forward[J]. The Plant Cell, 2012,24(1):15-20.
DOI URL PMID |
[5] | 邢国芳, 冯万军, 牛旭龙, 等. 植物激素调控侧根发育的生理机制[J]. 植物生理学报, 2015,51(12):2101-2108. |
XING G F, FENG W J, NIU X L, et al. Physiological mechanisms in phytohormone regulation of plant lateral root development[J]. Plant Physiology Journal, 2015,51(12):2101-2108.(in Chinese with English abstract) | |
[6] |
MUCHA J, JAGODZINSKI A M, BULAJ B, et al. Functional response of Quercus robur L. to taproot pruning: a 5-year case study[J]. Annals of Forest Science, 2018,75(1):1-12.
DOI URL |
[7] | 张肖凌, 赵永平. 葡萄试管苗根系修剪及药剂处理对其移栽成活率的影响[J]. 北方园艺, 2010(24):59-60. |
ZHANG X L, ZHAO Y P. Effects of root system pruning and chemical treatment on transplanting survival rate of grape plantlets in vitro[J]. Northern Horticulture, 2010(24):59-60.(in Chinese with English abstract) | |
[8] | 许建兰, 马瑞娟, 俞明亮, 等. 不同断根方式对桃胚培苗移栽的影响[J]. 江西农业学报, 2016,28(9):23-26. |
XU J L, MA R J, YU M L, et al. Effects of different root-cutting modes on transplanting of embryo-culture peach seedlings[J]. Acta Agriculturae Jiangxi, 2016,28(9):23-26.(in Chinese with English abstract) | |
[9] | 吴娇娇, 张谦, 刘士平, 等. 细胞周期因子与植物根系发育[J]. 植物生理学通讯, 2008,44(4):621-629. |
WU J J, ZHANG Q, LIU S P, et al. Cell cycle factors and plant root development[J]. Plant Physiology Communications, 2008,44(4):621-629.(in Chinese with English abstract) | |
[10] |
TWORKOSKI T, MILLER S, SCORZA R. Relationship of pruning and growth morphology with hormone ratios in shoots of pillar and standard peach trees[J]. Journal of Plant Growth Regulation, 2006,25(2):145-155.
DOI URL |
[11] |
VYSOTSKAYA L B, TIMERGALINA L N, SIMONYAN M V, et al. Growth rate, IAA and cytokinin content of wheat seedling after root pruning[J]. Plant Growth Regulation, 2001,33(1):51-57.
DOI URL |
[12] |
MENG F N, XIANG D, ZHU J S, et al. Molecular mechanisms of root development in rice[J]. Rice, 2019,12(1):1-10.
DOI URL PMID |
[13] |
ZHU Z X, LIU Y, LIU S J, et al. A gain-of-function mutation in OsIAA11 affects lateral root development in rice[J]. Molecular Plant, 2012,5(1):154-161.
DOI URL |
[14] |
KITOMI Y, INAHASHI H, TAKEHISA H, et al. OsIAA13-mediated auxin signaling is involved in lateral root initiation in rice[J]. Plant Science, 2012,190:116-122.
DOI URL |
[15] |
KANG B, ZHANG Z C, WANG L L, et al. OsCYP2, a chaperone involved in degradation of auxin-responsive proteins, plays crucial roles in rice lateral root initiation[J]. The Plant Journal, 2013,74(1):86-97.
DOI URL PMID |
[16] |
GUO K, XIA K, YANG Z M. Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide[J]. Journal of Experimental Botany, 2008,59(12):3443-3452.
DOI URL PMID |
[17] |
HAN B, XU S, XIE Y J, et al. ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development[J]. Plant Science, 2012,184:63-74.
DOI URL |
[18] |
MARHAVYP, MONTESINOS J C, ABUZEINEH A, et al. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation[J]. Genes & Development, 2016,30(4):471-483.
DOI URL PMID |
[19] |
FUKAKI H, TASAKA M. Hormone interactions during lateral root formation[J]. Plant Molecular Biology, 2009,69(4):437-449.
DOI URL |
[20] |
LAVENUS J, GOH T, ROBERTS I, et al. Lateral root development in Arabidopsis: fifty shades of auxin[J]. Trends in Plant Science, 2013,18(8):450-458.
DOI URL PMID |
[21] |
LASKOWSKI M, TEN TUSSCHER K H . Periodic lateral root priming: what makes it tick?[J]. The Plant Cell, 2017,29(3):432-444.
DOI URL PMID |
[22] | 井大炜, 王明友, 马海林, 等. 断根对杨树切口处细根序级结构与形态特征的影响[J]. 应用与环境生物学报, 2018,24(5):1146-1151. |
JING D W, WANG M Y, MA H L, et al. Effect of root pruning on the architecture and morphological characteristics of different fine root orders in the incision of poplar trees[J]. Chinese Journal of Applied and Environmental Biology, 2018,24(5):1146-1151.(in Chinese with English abstract) | |
[23] | 刘方春, 马海林, 杜振宇, 等. 杨树切口处不同根序细根内源激素与氮代谢关键酶对断根的响应[J]. 生态环境学报, 2018,27(12):2234-2242. |
LIU F C, MA H L, DU Z Y, et al. Response of endogenous hormones and key enzyme of nitrogen metabolism among different branch orders of fine root in the incision of poplar to root pruning[J]. Ecology and Environmental Sciences, 2018,27(12):2234-2242.(in Chinese with English abstract) | |
[24] |
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative Ct method[J]. Nature Protocols, 2008,3(6):1101.
DOI URL PMID |
[25] |
PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research, 2001,29(9):e45.
DOI URL PMID |
[26] | 易健明, 屈武斌, 张成岗. 实时荧光定量PCR的数据分析方法[J]. 生物技术通讯, 2015,26(1):140-145. |
YI J M, QU W B, ZHANG C G. Data analysis methods of real-time fluorescent quantitative PCR[J]. Letters in Biotechnology, 2015,26(1):140-145.(in Chinese with English abstract) | |
[27] | 郝向春, 贾军, 韩丽君, 等. 断根处理对丽豆幼苗生长及根系的影响[J]. 山西林业科技, 2015,44(2):20-22. |
HAO X C, JIA J, HAN L J, et al. Influence of root cutting on growth and root of Calophaca sinica[J]. Shanxi Forestry Science and Technology, 2015,44(2):20-22.(in Chinese with English abstract) | |
[28] |
ZHANG R, PENG F R, YAN P, et al. Effects of root pruning on germinated pecan seedlings[J]. Hortscience, 2015,50(10):1549-1552.
DOI URL |
[29] |
LIU J J, BLOOMBERG M, LI G L, et al. Effects of copper root pruning and radicle pruning on first-season field growth and nutrient status of Chinese cork oak seedlings[J]. New Forests, 2016,47(5):715-729.
DOI URL |
[30] |
BUDIARTO R, POERWANTO R, SANTOSA E, et al. A review of root pruning to regulate Citrus growth[J]. Journal of Tropical Crop Science, 2019,6(1):1-7.
DOI URL |
[31] |
XU P, ZHAO P X, CAI X T, et al. Integration of jasmonic acid and ethylene into auxin signaling in root development[J]. Frontiers in Plant Science, 2020,11:271.
DOI URL PMID |
[32] |
BRÉDA N, HUC R, GRANIER, A, et al. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences[J]. Annals of Forest Science, 2006,63(6):625-644.
DOI URL |
[33] |
XUAN W, ZHU F Y, XU S, et al. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process[J]. Plant Physiology, 2008,148(2):881-893.
DOI URL PMID |
[34] |
CHEN Y H, CHAO Y Y, HSU Y Y, et al. Heme oxygenase is involved in nitric oxide-and auxin-induced lateral root formation in rice[J]. Plant Cell Reports, 2012,31(6):1085-1091.
DOI URL |
[35] |
HSU Y Y, CHAO Y Y, KAO C H. Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium[J]. Journal of Plant Physiology, 2013,170(1):63-69.
DOI URL PMID |
[36] | JING H W, YANG X L, ZHANG J, et al. Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling[J]. Nature Communications, 6(1):7395. |
[1] | 徐秀红, 刘金亮, 李栋成, 刘仁祥. 不同类型烟草种质的烟碱含量变化与相关基因表达水平[J]. 浙江农业学报, 2020, 32(9): 1555-1563. |
[2] | 刘坤举, 张小辉, 庞有志, 赵淑娟, 祁艳霞, 王乾昆. 朝鲜鹌鹑GNAS基因表达、克隆及其多态性与羽色的相关性[J]. 浙江农业学报, 2020, 32(8): 1369-1377. |
[3] | 李秋玲, 齐颖, 王琛, 张一名, 王新妤, 尚校兰, 贾永红, 李美茹, 储明星. 热应激对中国荷斯坦牛乳腺组织基因表达及信号通路的影响[J]. 浙江农业学报, 2020, 32(5): 770-778. |
[4] | 卢祎, 高有领, 王水涛, 何盛盛. MicroRNA-499对中华鳖脂类代谢相关基因表达的影响[J]. 浙江农业学报, 2020, 32(5): 798-803. |
[5] | 李维芳, 王春蕾, 王妮, 邓雨正, 姚彦东, 魏丽娟, 廖伟彪. 一氧化氮影响植物不定根发生的研究进展[J]. 浙江农业学报, 2020, 32(4): 742-752. |
[6] | 秦玲, 张鑫, 荣春笑, 莫传园, 范露, 闫婕, 孟莹, 张满让. 苹果多胺氧化酶(PAO)基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(2): 262-273. |
[7] | 张政, 王晓荣, 钱虹, 张兰, 颜鹏, 张丽平, 张新富, 李鑫, 韩文炎. 炭疽病对茶树叶片光合特性的影响[J]. 浙江农业学报, 2020, 32(11): 2020-2026. |
[8] | 张爱菊, 刘士力, 刘金殿, 张根芳, 周志明. 一种三角帆蚌肌浆网Ca2+-ATP酶基因cDNA的全长克隆与表达分析[J]. 浙江农业学报, 2019, 31(4): 545-555. |
[9] | 陈洪强, 夏惠, 王进, 邓群仙, 梁东, 吕秀兰, 唐礼平. 葡萄STS基因家族的鉴定与表达分析[J]. 浙江农业学报, 2019, 31(3): 401-407. |
[10] | 辛世杰, 王晓慧, 戴国俊, 安婷婷, 张涛, 张跟喜, 谢恺舟, 王金玉, 王宏胜. 京海黄鸡柔嫩艾美尔球虫感染对脾脏和盲肠IL-6、IL-8、CCLi2基因表达量的影响及其相关性[J]. 浙江农业学报, 2019, 31(1): 39-46. |
[11] | 宁秋燕, 范凯, 王敏, 石元值. 茶树根系XTHs和伸展蛋白对不同浓度铝的响应[J]. 浙江农业学报, 2018, 30(6): 961-969. |
[12] | 白琪, 鲁艳辉, 郑许松, 吕仲贤. 二化螟两种P450基因CYP4M38和CYP4M39的时空表达分析[J]. 浙江农业学报, 2018, 30(4): 521-527. |
[13] | 鲁黎明, 曾孝敏, 顾会战, 张启莉, 喻晓, 王栋, 何佶弦, 李立芹. 施氮量对烤烟氮代谢关键酶基因表达及代谢产物的影响[J]. 浙江农业学报, 2018, 30(3): 454-460. |
[14] | 曹兴, 张秀省, 侯栋, 隋娟娟, 穆红梅, 高祥斌, 吕福堂, 郭尚敬, 王桂清. 灰葡萄孢菌诱导的百合转录辅激活因子LlMBF1a基因的克隆及其特征分析[J]. 浙江农业学报, 2018, 30(12): 2024-2030. |
[15] | 张丽之, 樊胜, 安娜, 左希亚, 高彩, 张东, 韩明玉. 苹果全基因组PAL基因家族成员的鉴定及表达分析[J]. 浙江农业学报, 2018, 30(12): 2031-2043. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||