浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2251-2258.DOI: 10.3969/j.issn.1004-1524.2022.10.19
高志远1(), 杨淑娜1, 王朝丽2, 王智豪1, 奚昕琰1, 何娟2, 贾惠娟1,*(
)
收稿日期:
2021-11-01
出版日期:
2022-10-25
发布日期:
2022-10-26
通讯作者:
贾惠娟
作者简介:
*贾惠娟,E-mail: jiahuijuan@zju.edu.cn基金资助:
GAO Zhiyuan1(), YANG Shuna1, WANG Zhaoli2, WANG Zhihao1, XI Xinyan1, HE Juan2, JIA Huijuan1,*(
)
Received:
2021-11-01
Online:
2022-10-25
Published:
2022-10-26
Contact:
JIA Huijuan
摘要:
在位于杭州市余杭区的某连作10年的桃园,使用生物熏蒸和化学熏蒸方式对桃园土壤进行消毒,其中,生物熏蒸分别以茭白秸秆、鸡粪砻糠为材料,化学熏蒸以棉隆为材料,于旺盛生长季,测定处理前后土壤微生物群落、土壤酶活性和土壤基础理化性质的变化,探究不同熏蒸消毒方式对桃园连作土壤的影响。结果表明,化学熏蒸显著(P<0.05)降低了镰孢菌属(Fusarium)等有害菌的相对丰度,并显著(P<0.05)降低了真菌、细菌群落的多样性、丰富度和均匀度;而生物熏蒸则显著(P<0.05)提升了镰孢菌属的相对丰度,并显著(P<0.05)降低了真菌、细菌的多样性和细菌丰富度、真菌均匀度。此外,2种生物熏蒸显著(P<0.05)提高了青霉属(Penicillium)、毛壳菌属(Chaetomium)等有益菌类的相对丰度,而化学熏蒸对沙蜥属(Saitozyma)、毛壳菌属等有益真菌存在显著(P<0.05)抑制作用。生物熏蒸显著(P<0.05)提高了土壤脲酶、蔗糖酶和过氧化氢酶活性,茭白秸秆熏蒸还显著(P<0.05)提高了土壤酸性磷酸酶活性,而鸡粪砻糠熏蒸却显著(P<0.05)降低了土壤酸性磷酸酶活性;化学熏蒸显著(P<0.05)降低了土壤脲酶、过氧化氢酶活性和酸性磷酸酶活性。茭白秸秆熏蒸后,土壤有机质和氮磷钾等养分含量显著(P<0.05)提高,且缓解了土壤酸化;鸡粪砻糠处理后,土壤交换性镁、钙含量显著(P<0.05)升高;棉隆熏蒸后,土壤氮磷钾养分含量显著(P<0.05)下降。综上,适当的生物熏蒸有利于改善土壤微生物群落结构,提高土壤养分;化学熏蒸有利于抑制土壤有害菌生长,但不利于土壤酶活性的发挥,及土壤养分的转化和积累。
中图分类号:
高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258.
GAO Zhiyuan, YANG Shuna, WANG Zhaoli, WANG Zhihao, XI Xinyan, HE Juan, JIA Huijuan. Effects of different fumigation on continuous cropping soil in peach orchard[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2251-2258.
真菌 Fungi | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
子囊菌门Ascomycota | 49.15 | 57.29 | 71.35 | 83.07* | 59.50 | 85.92* |
沙蜥属Saitozyma | 11.07 | 22.92* | 11.62 | 6.79 | 13.94 | 3.49* |
Plectosphaerella | 1.07 | 0.20* | 8.69 | 0.17* | 0.95 | 0.02* |
青霉属Penicillium | 1.32 | 2.39* | 2.48 | 6.93* | 0.28 | 3.21* |
篮状菌属Talaromyces | 0.29 | —* | 0.27 | 0.53* | 0.31 | —* |
镰孢菌属Fusarium | 2.60 | 8.51* | 5.93 | 21.79* | 11.34 | 2.98* |
新赤壳属Neocosmospora | 1.79 | 1.75 | 1.26 | 2.52* | 2.14 | 25.55* |
毛壳菌属Chaetomium | 1.38 | 2.39* | 1.14 | 8.67* | 1.96 | 0.16* |
担子菌门Basidiomycota | 40.20 | 36.37 | 17.31 | 11.34 | 31.44 | 11.05* |
表1 不同处理对土壤主要真菌相对丰度的影响
Table 1 Effect of different treatments on relative abundance of main fungi species %
真菌 Fungi | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
子囊菌门Ascomycota | 49.15 | 57.29 | 71.35 | 83.07* | 59.50 | 85.92* |
沙蜥属Saitozyma | 11.07 | 22.92* | 11.62 | 6.79 | 13.94 | 3.49* |
Plectosphaerella | 1.07 | 0.20* | 8.69 | 0.17* | 0.95 | 0.02* |
青霉属Penicillium | 1.32 | 2.39* | 2.48 | 6.93* | 0.28 | 3.21* |
篮状菌属Talaromyces | 0.29 | —* | 0.27 | 0.53* | 0.31 | —* |
镰孢菌属Fusarium | 2.60 | 8.51* | 5.93 | 21.79* | 11.34 | 2.98* |
新赤壳属Neocosmospora | 1.79 | 1.75 | 1.26 | 2.52* | 2.14 | 25.55* |
毛壳菌属Chaetomium | 1.38 | 2.39* | 1.14 | 8.67* | 1.96 | 0.16* |
担子菌门Basidiomycota | 40.20 | 36.37 | 17.31 | 11.34 | 31.44 | 11.05* |
细菌 Bacteria | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
放线菌门Actinobacteriota | 22.61 | 25.66 | 24.50 | 36.11* | 25.31 | 31.93* |
微球菌科Micrococcaceae | 0.11 | 0.78* | 0.70 | 2.56* | 0.83 | 2.90* |
微杆菌科Microbacteriaceae | 0.32 | 2.44* | 0.60 | 1.68* | 0.74 | 2.47 |
链霉菌科Streptomycetaceae | 1.05 | 1.13 | 3.20 | 1.31* | 2.05 | 0.71* |
变形菌门Proteobacteria | 21.90 | 32.54* | 25.18 | 25.14 | 25.44 | 16.60* |
根瘤菌科Rhizobiaceae | 0.36 | 2.26* | 0.71 | 2.18* | 2.07 | 0.78* |
黄色杆菌科Xanthobacteraceae | 4.39 | 4.29 | 4.81 | 2.69* | 6.01 | 0.68* |
绿弯菌门Chloroflexi | 16.71 | 8.89* | 16.83 | 10.48* | 13.95 | 14.94 |
酸杆菌门Acidobacteriota | 15.39 | 11.01 | 13.50 | 7.84* | 13.44 | 2.21* |
厚壁菌门Firmicutes | 8.73 | 9.09* | 5.05 | 6.03* | 5.00 | 19.87* |
芽孢杆菌科Bacillaceae | 3.63 | 4.81 | 1.92 | 2.70* | 5.95 | 6.48* |
类芽孢杆菌科Paenibacillaceae | 1.19 | 1.18 | 8.15 | 0.64* | 0.78 | 3.59* |
表2 不同处理对土壤主要细菌相对丰度的影响
Table 2 Effect of different treatments on relative abundance of main bacteria species %
细菌 Bacteria | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
放线菌门Actinobacteriota | 22.61 | 25.66 | 24.50 | 36.11* | 25.31 | 31.93* |
微球菌科Micrococcaceae | 0.11 | 0.78* | 0.70 | 2.56* | 0.83 | 2.90* |
微杆菌科Microbacteriaceae | 0.32 | 2.44* | 0.60 | 1.68* | 0.74 | 2.47 |
链霉菌科Streptomycetaceae | 1.05 | 1.13 | 3.20 | 1.31* | 2.05 | 0.71* |
变形菌门Proteobacteria | 21.90 | 32.54* | 25.18 | 25.14 | 25.44 | 16.60* |
根瘤菌科Rhizobiaceae | 0.36 | 2.26* | 0.71 | 2.18* | 2.07 | 0.78* |
黄色杆菌科Xanthobacteraceae | 4.39 | 4.29 | 4.81 | 2.69* | 6.01 | 0.68* |
绿弯菌门Chloroflexi | 16.71 | 8.89* | 16.83 | 10.48* | 13.95 | 14.94 |
酸杆菌门Acidobacteriota | 15.39 | 11.01 | 13.50 | 7.84* | 13.44 | 2.21* |
厚壁菌门Firmicutes | 8.73 | 9.09* | 5.05 | 6.03* | 5.00 | 19.87* |
芽孢杆菌科Bacillaceae | 3.63 | 4.81 | 1.92 | 2.70* | 5.95 | 6.48* |
类芽孢杆菌科Paenibacillaceae | 1.19 | 1.18 | 8.15 | 0.64* | 0.78 | 3.59* |
指标 Index | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
Shannon指数Shannon index | 4.76 | 3.58* | 4.15 | 3.37* | 4.25 | 3.78* |
Ace指数Ace index | 810.26 | 837.69* | 824.15 | 665.64* | 1 167.33 | 277.85* |
Heip指数Heip index | 0.15 | 0.05* | 0.08 | 0.05* | 0.07 | 0.02* |
表3 不同处理对土壤真菌α-多样性的影响
Table 3 Effects of different treatments on α-diversity of soil fungi
指标 Index | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
Shannon指数Shannon index | 4.76 | 3.58* | 4.15 | 3.37* | 4.25 | 3.78* |
Ace指数Ace index | 810.26 | 837.69* | 824.15 | 665.64* | 1 167.33 | 277.85* |
Heip指数Heip index | 0.15 | 0.05* | 0.08 | 0.05* | 0.07 | 0.02* |
指标 Index | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
Shannon指数Shannon index | 6.71 | 6.32* | 6.73 | 6.21* | 6.86 | 5.85* |
Ace指数Ace index | 3 942.44 | 3 038.89* | 3 712.55 | 2 555.78* | 4 737.62 | 2 340.85* |
Heip指数Heip index | 0.27 | 0.25 | 0.28 | 0.26 | 0.27 | 0.21* |
表4 不同处理对土壤细菌α-多样性的影响
Table 4 Effects of different treatments on α-diversity of soil bacteria
指标 Index | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
Shannon指数Shannon index | 6.71 | 6.32* | 6.73 | 6.21* | 6.86 | 5.85* |
Ace指数Ace index | 3 942.44 | 3 038.89* | 3 712.55 | 2 555.78* | 4 737.62 | 2 340.85* |
Heip指数Heip index | 0.27 | 0.25 | 0.28 | 0.26 | 0.27 | 0.21* |
图1 不同处理对土壤酶活性的影响同一处理在消毒前后柱上无相同字母的表示差异显著(P<0.05)。
Fig.1 Effects of different treatments on soil enzymes activities Under the same treatment, bars marked without the same letters indicated significant difference before and after disinfection at P<0.05.
指标 Index | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
有机质Organic matter/(g·kg-1) | 11.50 | 28.30* | 17.40 | 12.50* | 11.80 | 12.70 |
全氮Total nitrogen/(mg·kg-1) | 1 080.00 | 1 440.00* | 625.00 | 660.00* | 1 110.00 | 871.00* |
有效磷Available phosphorus/(mg·kg-1) | 162.00 | 386.00* | 77.60 | 133.00* | 92.20 | 77.90* |
速效钾Available potassium/(mg·kg-1) | 345.00 | 893.00* | 260.00 | 319.00* | 250.00 | 200.00* |
交换性钙Exchangeable calcium/(cmol·kg-1) | 3.20 | 10.40* | 1.20 | 7.70* | 8.10 | 7.70 |
交换性镁 Exchangeable magnesium/(cmol·kg-1) | 1.00 | 3.10* | 0.50 | 4.40* | 2.10 | 0.90* |
pH | 4.76 | 5.51* | 4.52 | 4.93 | 5.21 | 5.07 |
电导率Electrical conductivity/(mS·m-1) | 40.50 | 147.00* | 49.00 | 63.10 | 29.70 | 46.10* |
表5 不同处理对土壤基础理化性质的影响
Table 5 Effects of different treatments on basic physiochemical properties of soil
指标 Index | T1 | T2 | T3 | |||
---|---|---|---|---|---|---|
消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | 消毒前 Before disinfection | 消毒后 After disinfection | |
有机质Organic matter/(g·kg-1) | 11.50 | 28.30* | 17.40 | 12.50* | 11.80 | 12.70 |
全氮Total nitrogen/(mg·kg-1) | 1 080.00 | 1 440.00* | 625.00 | 660.00* | 1 110.00 | 871.00* |
有效磷Available phosphorus/(mg·kg-1) | 162.00 | 386.00* | 77.60 | 133.00* | 92.20 | 77.90* |
速效钾Available potassium/(mg·kg-1) | 345.00 | 893.00* | 260.00 | 319.00* | 250.00 | 200.00* |
交换性钙Exchangeable calcium/(cmol·kg-1) | 3.20 | 10.40* | 1.20 | 7.70* | 8.10 | 7.70 |
交换性镁 Exchangeable magnesium/(cmol·kg-1) | 1.00 | 3.10* | 0.50 | 4.40* | 2.10 | 0.90* |
pH | 4.76 | 5.51* | 4.52 | 4.93 | 5.21 | 5.07 |
电导率Electrical conductivity/(mS·m-1) | 40.50 | 147.00* | 49.00 | 63.10 | 29.70 | 46.10* |
[1] | 李远想, 王尚堃. 果树再植病研究进展[J]. 北方园艺, 2019(4): 149-154. |
LI Y X, WANG S K. Research progress on fruit replant disease[J]. Northern Horticulture, 2019(4): 149-154. (in Chinese with English abstract) | |
[2] | 董晓民, 高晓兰, 刘伟, 等. 桃连作障碍中自毒作用的研究进展[J]. 黑龙江农业科学, 2021(2): 123-127. |
DONG X M, GAO X L, LIU W, et al. Research progress of autotoxicity in continuous cropping obstacle of peach[J]. Heilongjiang Agricultural Sciences, 2021(2): 123-127. (in Chinese with English abstract) | |
[3] | 张晓颖. 生物质炭对桃连作障碍的缓解作用[J]. 农业科技通讯, 2018(1): 155-157. |
ZHANG X Y. The mitigation effect of biomass charcoal on continuous cropping obstacles of peach[J]. Bulletin of Agricultural Science and Technology, 2018(1): 155-157. (in Chinese) | |
[4] | 牛四坤. 不同作物伴生对连作黄连产量和根际土壤微生物群落的影响[J]. 河南农业科学, 2020, 49(1): 52-60. |
NIU S K. Effects of different crop companion planting on yield and rhizosphere soil microbial community of Coptis chinensis under continuous cropping[J]. Journal of Henan Agricultural Sciences, 2020, 49(1): 52-60. (in Chinese with English abstract) | |
[5] | 孟思达, 韩磊磊, 武春成, 等. 石灰氮对日光温室番茄19年连作障碍土壤的影响[J]. 沈阳农业大学学报, 2021, 52(3): 257-264. |
MENG S D, HAN L L, WU C C, et al. Effect of calcium cyanamid on nineteen years tomato continuous cropping obstacle soil in greenhouse[J]. Journal of Shenyang Agricultural University, 2021, 52(3): 257-264. (in Chinese with English abstract) | |
[6] |
姜伟涛, 陈冉, 王海燕, 等. 棉隆熏蒸处理对平邑甜茶幼苗生长和生物学特性及土壤环境的影响[J]. 应用生态学报, 2020, 31(9): 3085-3092.
DOI |
JIANG W T, CHEN R, WANG H Y, et al. Effects of dazomet fumigation on growth, biological characteristics of Malus hupehensis seedlings and soil environment[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3085-3092. (in Chinese with English abstract) | |
[7] | 王晓芳. 万寿菊生物熏蒸对苹果连作障碍缓解效果及其机理研究[D]. 泰安: 山东农业大学, 2019. |
WANG X F. Alleviation effects and mechanism of Tagetes erecta biofumigation on apple replant disease[D]. Tai’an: Shandong Agricultural University, 2019. (in Chinese with English abstract) | |
[8] | 安娜, 高纪超, 韩雅棋, 等. 施粪肥对人参栽培土壤理化性质和真菌群落结构的影响[J]. 吉林农业大学学报, 2019, 41(6): 695-706. |
AN N, GAO J C, HAN Y Q, et al. Effects of manure application on soil physicochemical properties and fungal community structure in ginseng-planted soil[J]. Journal of Jilin Agricultural University, 2019, 41(6): 695-706. (in Chinese with English abstract) | |
[9] | 陈晓婷, 王裕华, 林立文, 等. 连作百香果对土壤理化性质和微生物特性的影响及病原真菌的分离与鉴定[J]. 热带作物学报, 2021, 42(2): 495-502. |
CHEN X T, WANG Y H, LIN L W, et al. Effects of continuous cropping passion fruit on soil physicochemical property, microbial characteristics and isolation, identification of pathogenic fungi[J]. Chinese Journal of Tropical Crops, 2021, 42(2): 495-502. (in Chinese with English abstract) | |
[10] | 王晓芳, 徐少卓, 王玫, 等. 万寿菊生物熏蒸对连作苹果幼苗和土壤微生物的影响[J]. 土壤学报, 2018, 55(1): 213-224. |
WANG X F, XU S Z, WANG M, et al. Effects of soil biofumigation using tateges erecta powder on growth of Malus hupehensis Rehd. seedlings and soil microorganisms in old apple orchard soil[J]. Acta Pedologica Sinica, 2018, 55(1): 213-224. (in Chinese with English abstract) | |
[11] | 张庆华, 曾祥国, 韩永超, 等. 土壤熏蒸剂棉隆和生物菌肥对草莓连作土壤真菌多样性的影响[J]. 微生物学通报, 2018, 45(5): 1048-1060. |
ZHANG Q H, ZENG X G, HAN Y C, et al. Effects of dazomet fumigation and biological fertilizer on strawberry soil fungal diversity under replant conditions[J]. Microbiology China, 2018, 45(5): 1048-1060. (in Chinese with English abstract) | |
[12] | 张先富, 相立, 王艳芳, 等. 草酸青霉A1菌株的鉴定及对苹果4种镰孢病菌的拮抗作用[J]. 园艺学报, 2016, 43(5): 841-852. |
ZHANG X F, XIANG L, WANG Y F, et al. Identification of Penicillium oxalicum A1 strain and antagonistic effects on four species of Fusarium pathogen of apple[J]. Acta Horticulturae Sinica, 2016, 43(5): 841-852. (in Chinese with English abstract) | |
[13] | 刘珊廷, 罗兴录, 吴美艳, 等. 连作与轮作下木薯产量及土壤微生物特征比较[J]. 热带作物学报, 2019, 40(8): 1468-1473. |
LIU S T, LUO X L, WU M Y, et al. Comparison of cassava yield and soil microbial characteristics under continuous cropping and rotation[J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1468-1473. (in Chinese with English abstract) | |
[14] | 许丽婷, 陈佳欣, 李欢欢, 等. 生防菌XC-1的筛选、鉴定及其对马铃薯黑痣病的防效研究[J]. 植物病理学报, 2021, 51(3): 413-422. |
XU L T, CHEN J X, LI H H, et al. Screening, identification and detection of biocontrol effect of strain XC-1 on Potato Black Scurf[J]. Acta Phytopathologica Sinica, 2021, 51(3): 413-422. (in Chinese with English abstract) | |
[15] | 康萍芝, 田生虎, 吴晓燕, 等. 棉隆土壤熏蒸对设施黄瓜枯萎病的田间防效评价[J]. 宁夏农林科技, 2020, 61(9): 16-19. |
KANG P Z, TIAN S H, WU X Y, et al. Field efficacy of dazomet fumigation on cucumber Fusarium wilt in the greenhouse[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(9): 16-19. (in Chinese with English abstract) | |
[16] | 黎妍妍, 李锡宏, 王林, 等. 万寿菊秸秆熏蒸对烟株根际土壤原核微生物群落的影响[J]. 烟草科技, 2021, 54(4): 15-22. |
LI Y Y, LI X H, WANG L, et al. Effect of biofumigation with marigold stalks on prokaryotic microbial community in tobacco rhizosphere soil[J]. Tobacco Science & Technology, 2021, 54(4): 15-22. (in Chinese with English abstract) | |
[17] | 刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展[J]. 中国农学通报, 2011, 27(21): 1-7. |
LIU S J, XIA X, CHEN G M, et al. Study progress on functions and affecting factors of soil enzymes[J]. Chinese Agricultural Science Bulletin, 2011, 27(21): 1-7. (in Chinese with English abstract) | |
[18] | 王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展[J]. 土壤, 2016, 48(1): 12-21. |
WANG L D, WANG F L, GUO C X, et al. Review: progress of soil enzymology[J]. Soils, 2016, 48(1): 12-21. (in Chinese with English abstract) | |
[19] | 沈桂花. 生物熏蒸对烟草连作土壤微生物群落的影响及对青枯病的控制作用研究[D]. 重庆: 西南大学, 2019. |
SHEN G H. Effects of biological fumigation on soil microbial community in continuous cropping of tobacco and control effect on bacterial wilt[D]. Chongqing: Southwest University, 2019. (in Chinese with English abstract) | |
[20] | 王浩, 王益权, 焦彩强, 等. 果园养鸡立体农业生产模式对土壤钙素营养及苹果品质的影响[J]. 干旱地区农业研究, 2014, 32(4): 178-182. |
WANG H, WANG Y Q, JIAO C Q, et al. Effects of chicken-raising stereoscopic agriculture in orchards on soil calcium nutrient and apple quality on Weibei Dryland[J]. Agricultural Research in the Arid Areas, 2014, 32(4): 178-182. (in Chinese with English abstract) | |
[21] | 张典利. 1, 3-D消毒连作土壤对细菌群落及氮素转化的影响[D]. 泰安: 山东农业大学, 2019. |
ZHANG D L. Effects of 1, 3-D fumigation on bacterial community and nitrogen transformation in continuous cropping soil[D]. Tai’an: Shandong Agricultural University, 2019. (in Chinese with English abstract) | |
[22] | 曹云, 吴华山, 郭德杰, 等. 沼液处理对连作西瓜枯萎病发生、产量及品质的影响[J]. 土壤, 2015, 47(5): 904-910. |
CAO Y, WU H S, GUO D J, et al. Effect of biogas slurry application on incidence of Fusarium wilt, fruit yield and quality of watermelon[J]. Soils, 2015, 47(5): 904-910. (in Chinese with English abstract) | |
[23] | 辛焱, 孙振营, 张波. 设施蔬菜土壤连作障碍及治理措施[J]. 吉林农业科学, 2008, 33(6): 100-102. |
XIN Y, SUN Z Y, ZHANG B. The obstacle in soil of succession planting vegetables in protected cultivation and control measurements[J]. Journal of Jilin Agricultural Sciences, 2008, 33(6): 100-102. (in Chinese with English abstract) |
[1] | 姚燕来, 朱为静, 丁检, 洪磊东, 洪春来, 王卫平, 朱凤香, 何伟科, 洪海清. 浙江省规模化蔬菜基地连作障碍与土壤环境调查分析[J]. 浙江农业学报, 2022, 34(7): 1474-1484. |
[2] | 董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. |
[3] | 王燕云, 赵龙杰, 郝春莉, 蔡尽忠. 生物有机肥对不同连作年限设施黄瓜土壤微生物数量和酶活性的影响[J]. 浙江农业学报, 2019, 31(4): 631-638. |
[4] | 萨如拉, 杨恒山, 高聚林, 范富, 张瑞富, 刘晶, 吴帅. 玉米秸秆还田模式对土壤肥力和玉米产量的影响[J]. 浙江农业学报, 2018, 30(2): 268-274. |
[5] | 刘紫英, 黄磊, 袁斌, 刘小林, 徐胜光, 黄涛. 一株草莓连作自毒障碍主要物质苯甲酸降解细菌的筛选及其降解效果研究[J]. 浙江农业学报, 2018, 30(10): 1699-1704. |
[6] | 周开胜. 强还原处理改良西瓜连作土壤[J]. 浙江农业学报, 2017, 29(6): 982-987. |
[7] | 范琳娟, 刘奇志, 王合, 徐振翔, 李维华. 玉米-苹果轮作体系对苹果根际土壤酶活性和pH值的影响[J]. 浙江农业学报, 2017, 29(12): 2084-2090. |
[8] | 徐伟慧, 吴凤芝. 西瓜根际土壤酶及微生物对小麦伴生的响应[J]. 浙江农业学报, 2016, 28(9): 1588-1594. |
[9] | 毛伟华1,吴三玲1,张旭2. 土壤微生物16S rDNA 的Ion Torrent PGM高通量检测方法构建与应用[J]. 浙江农业学报, 2015, 27(12): 2165-. |
[10] | 刘术新;丁枫华;*;陈伟祥;徐桂芬;程结. 有机肥对长豇豆连作土壤养分及酶活性的影响[J]. , 2014, 26(3): 0-770774. |
[11] | 童英富;杨肖芳;廖益民;张豫超;蒋桂华;*. 不同土壤消毒剂和杀菌剂防治草莓土传病害的研究[J]. , 2012, 24(3): 0-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||