浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2240-2250.DOI: 10.3969/j.issn.1004-1524.2022.10.18
收稿日期:2021-05-26
出版日期:2022-10-25
发布日期:2022-10-26
作者简介:商佳胤 (1981—),男,山东阳信人,硕士,副研究员,主要从事葡萄栽培生理研究。 E-mail: shangjiayin2007@163.com.cn
基金资助:
SHANG Jiayin1(
), ZHANG Xinjian2, LI Kai1, ZHANG He1, WANG Dan1
Received:2021-05-26
Online:2022-10-25
Published:2022-10-26
摘要:
为了明确日光温室栽培葡萄行间适宜的覆盖材料,采用3种不同材质的覆盖材料,使用沟壕垂直剖面法研究其对不同土层的葡萄根系数、土壤含水量、pH值、电导率(EC)以及土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶活性的影响。结果表明:覆盖无纺布、地布、地膜处理,葡萄直径<2 mm吸收根比例较高,分别为59.46%、71.43%、52.53%,而对照组中2~5 mm的根系数量更高,为41.10%;覆盖材料可以显著提升葡萄根系总数,覆盖无纺布还可以显著提升0~20 cm 根系分布比例(36.93%),对照组为15.07%;覆盖地膜、地布可以提高土壤表层的保水效果;覆盖材料会提高土壤浅层的pH值,降低EC值;覆盖材料对土壤酶活性有一定的影响,其中对土壤蔗糖酶和过氧化氢酶活性的作用尤为明显。通过综合分析以透气性较佳的无纺布作为覆盖材料效果最好。
中图分类号:
商佳胤, 张新建, 李凯, 张鹤, 王丹. 不同覆盖材料对设施葡萄根系分布及土壤理化特性的影响[J]. 浙江农业学报, 2022, 34(10): 2240-2250.
SHANG Jiayin, ZHANG Xinjian, LI Kai, ZHANG He, WANG Dan. Effects of different covering materials on root distribution and soil physical and chemical properties of protected cultivation of grape[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2240-2250.
| 根系粗度 Root size/mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
|---|---|---|---|---|---|---|---|---|
| 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
| ≥10 | 2 b | 2.02 c | 4 a | 4.40 a | 5 a | 4.50 a | 3 b | 4.11 b |
| 5~<10 | 14 a | 14.14 b | 5 b | 5.49 c | 18 a | 16.22 b | 16 a | 21.92 a |
| 2~<5 | 31 a | 31.31 b | 17 c | 18.68 c | 22 b | 19.82 c | 30 a | 41.10 a |
| <2 | 52 b | 52.53 c | 65 a | 71.43 a | 66 a | 59.46 b | 24 c | 32.88 d |
| 合计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
表1 不同覆盖材料下葡萄根系数量及比例
Table 1 Root number and proportion of grape under different covering materials
| 根系粗度 Root size/mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
|---|---|---|---|---|---|---|---|---|
| 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
| ≥10 | 2 b | 2.02 c | 4 a | 4.40 a | 5 a | 4.50 a | 3 b | 4.11 b |
| 5~<10 | 14 a | 14.14 b | 5 b | 5.49 c | 18 a | 16.22 b | 16 a | 21.92 a |
| 2~<5 | 31 a | 31.31 b | 17 c | 18.68 c | 22 b | 19.82 c | 30 a | 41.10 a |
| <2 | 52 b | 52.53 c | 65 a | 71.43 a | 66 a | 59.46 b | 24 c | 32.88 d |
| 合计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
| 土层深度 Depth of soil/ mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
|---|---|---|---|---|---|---|---|---|
| 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
| 0~<10 | 2 b | 2.02 b | 4 b | 4.40 b | 16 a | 14.41 a | 1 b | 1.37 b |
| 10~<20 | 11 c | 11.11 c | 34 a | 37.34 a | 25 b | 22.52 b | 10 c | 13.70 c |
| 20~<30 | 46 a | 46.46 a | 22 c | 24.18 b | 25 c | 22.52 b | 37 b | 50.68 a |
| 30~<40 | 10 a | 10.10 b | 11 a | 12.09 a | 4 b | 3.60 c | 10 a | 13.70 a |
| 40~<50 | 5 a | 5.05 c | 4 a | 4.40 c | 7 a | 6.31 b | 6 a | 8.22 a |
| 50~<60 | 11 b | 11.11 a | 3 d | 3.30 c | 14 a | 12.61 a | 6 c | 8.22 b |
| 60~<70 | 8 b | 8.08 b | 10 b | 10.99 b | 17 a | 15.32 a | 2 c | 2.74 c |
| 70~<80 | 6 a | 6.06 a | 3 b | 3.30 b | 3 b | 2.70 b | 1 c | 1.37 c |
| 总计Total | 99 b | 100 | 91 c | 100 | 111 a | 100 | 73 d | 100 |
表2 不同覆盖材料下葡萄根系垂直分布情况
Table 2 Vertical distribution of grape roots under different covering materials
| 土层深度 Depth of soil/ mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
|---|---|---|---|---|---|---|---|---|
| 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
| 0~<10 | 2 b | 2.02 b | 4 b | 4.40 b | 16 a | 14.41 a | 1 b | 1.37 b |
| 10~<20 | 11 c | 11.11 c | 34 a | 37.34 a | 25 b | 22.52 b | 10 c | 13.70 c |
| 20~<30 | 46 a | 46.46 a | 22 c | 24.18 b | 25 c | 22.52 b | 37 b | 50.68 a |
| 30~<40 | 10 a | 10.10 b | 11 a | 12.09 a | 4 b | 3.60 c | 10 a | 13.70 a |
| 40~<50 | 5 a | 5.05 c | 4 a | 4.40 c | 7 a | 6.31 b | 6 a | 8.22 a |
| 50~<60 | 11 b | 11.11 a | 3 d | 3.30 c | 14 a | 12.61 a | 6 c | 8.22 b |
| 60~<70 | 8 b | 8.08 b | 10 b | 10.99 b | 17 a | 15.32 a | 2 c | 2.74 c |
| 70~<80 | 6 a | 6.06 a | 3 b | 3.30 b | 3 b | 2.70 b | 1 c | 1.37 c |
| 总计Total | 99 b | 100 | 91 c | 100 | 111 a | 100 | 73 d | 100 |
| 主蔓距离 Level distance/cm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
|---|---|---|---|---|---|---|---|---|
| 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
| -40~<-30 | 13 a | 13.13 b | 8 b | 8.79 d | 12 a | 10.81 c | 12 a | 16.44 a |
| -30~<-20 | 8 b | 8.08 b | 14 a | 15.38 a | 10 b | 9.01 b | 7 b | 9.59 b |
| -20~<-10 | 14 a | 14.14 a | 2 c | 2.20 d | 14 a | 12.61 b | 6 b | 8.22 c |
| -10~<0 | 12 a | 12.12 b | 12 a | 13.19 b | 13 a | 11.71 b | 12 a | 16.44 a |
| 0~<10 | 10 b | 10.10 d | 17 a | 18.68 a | 16 a | 14.41 d | 9 b | 12.33 c |
| 10~<20 | 22 a | 22.22 a | 13 b | 14.29 c | 20 a | 18.02 b | 10 b | 13.70 c |
| 20~<30 | 11 ab | 11.11 a | 10 b | 10.99 a | 13 a | 11.71 a | 9 b | 12.33 a |
| 30~<40 | 9 b | 9.09 c | 15 a | 16.48 a | 13 a | 11.72 b | 8 b | 10.96 b |
| 总计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
表3 不同覆盖材料下葡萄根系水平分布情况
Table 3 Horizontal distribution of grape roots under different covering materials
| 主蔓距离 Level distance/cm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
|---|---|---|---|---|---|---|---|---|
| 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
| -40~<-30 | 13 a | 13.13 b | 8 b | 8.79 d | 12 a | 10.81 c | 12 a | 16.44 a |
| -30~<-20 | 8 b | 8.08 b | 14 a | 15.38 a | 10 b | 9.01 b | 7 b | 9.59 b |
| -20~<-10 | 14 a | 14.14 a | 2 c | 2.20 d | 14 a | 12.61 b | 6 b | 8.22 c |
| -10~<0 | 12 a | 12.12 b | 12 a | 13.19 b | 13 a | 11.71 b | 12 a | 16.44 a |
| 0~<10 | 10 b | 10.10 d | 17 a | 18.68 a | 16 a | 14.41 d | 9 b | 12.33 c |
| 10~<20 | 22 a | 22.22 a | 13 b | 14.29 c | 20 a | 18.02 b | 10 b | 13.70 c |
| 20~<30 | 11 ab | 11.11 a | 10 b | 10.99 a | 13 a | 11.71 a | 9 b | 12.33 a |
| 30~<40 | 9 b | 9.09 c | 15 a | 16.48 a | 13 a | 11.72 b | 8 b | 10.96 b |
| 总计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
| 项目 Item | 根系数量 Root number | 水分含量 Moisture content | pH | EC | 脲酶 Urease | 酸性磷酸酶 Acid phosphatase | 蔗糖酶 Invertase | 过氧化氢酶 Catalase |
|---|---|---|---|---|---|---|---|---|
| 根系数量Root number | 1 | |||||||
| 水分含量Moisture content | 0.160 | 1 | ||||||
| pH | -0.084 | 0.485* | 1 | |||||
| EC | -0.134 | 0.001 | -0.263 | 1 | ||||
| 脲酶 Urease | -0.492* | -0.393 | -0.496* | 0.337 | 1 | |||
| 酸性磷酸酶Acid phosphatase | -0.287 | -0.553* | -0.367 | -0.310 | 0.420 | 1 | ||
| 蔗糖酶Invertase | 0.837** | -0.021 | -0.219 | -0.135 | -0.508* | -0.076 | 1 | |
| 过氧化氢酶Catalase | -0.193 | -0.220 | -0.171 | 0.150 | 0.522* | 0.204 | -0.064 | 1.000 |
表4 不同处理指标的相关性分析
Table 4 Correlation analysis of different treatment indexes
| 项目 Item | 根系数量 Root number | 水分含量 Moisture content | pH | EC | 脲酶 Urease | 酸性磷酸酶 Acid phosphatase | 蔗糖酶 Invertase | 过氧化氢酶 Catalase |
|---|---|---|---|---|---|---|---|---|
| 根系数量Root number | 1 | |||||||
| 水分含量Moisture content | 0.160 | 1 | ||||||
| pH | -0.084 | 0.485* | 1 | |||||
| EC | -0.134 | 0.001 | -0.263 | 1 | ||||
| 脲酶 Urease | -0.492* | -0.393 | -0.496* | 0.337 | 1 | |||
| 酸性磷酸酶Acid phosphatase | -0.287 | -0.553* | -0.367 | -0.310 | 0.420 | 1 | ||
| 蔗糖酶Invertase | 0.837** | -0.021 | -0.219 | -0.135 | -0.508* | -0.076 | 1 | |
| 过氧化氢酶Catalase | -0.193 | -0.220 | -0.171 | 0.150 | 0.522* | 0.204 | -0.064 | 1.000 |
| 成分 Component | 初始特征值Initial eigenvalue | 载荷平方和Load sum of squares | ||||
|---|---|---|---|---|---|---|
| 总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | 总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | |
| 1 | 2.894 | 36.181 | 36.181 | 2.894 | 36.181 | 36.181 |
| 2 | 1.872 | 23.401 | 59.582 | 1.872 | 23.401 | 59.582 |
| 3 | 1.360 | 16.996 | 76.578 | 1.360 | 16.996 | 76.578 |
| 4 | 0.837 | 10.463 | 87.042 | |||
| 5 | 0.474 | 5.920 | 92.962 | |||
| 6 | 0.292 | 3.652 | 96.613 | |||
| 7 | 0.212 | 2.654 | 99.268 | |||
| 8 | 0.059 | 0.732 | 100.000 | |||
表5 主成分方差解释
Table 5 Explanation of principal component variance
| 成分 Component | 初始特征值Initial eigenvalue | 载荷平方和Load sum of squares | ||||
|---|---|---|---|---|---|---|
| 总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | 总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | |
| 1 | 2.894 | 36.181 | 36.181 | 2.894 | 36.181 | 36.181 |
| 2 | 1.872 | 23.401 | 59.582 | 1.872 | 23.401 | 59.582 |
| 3 | 1.360 | 16.996 | 76.578 | 1.360 | 16.996 | 76.578 |
| 4 | 0.837 | 10.463 | 87.042 | |||
| 5 | 0.474 | 5.920 | 92.962 | |||
| 6 | 0.292 | 3.652 | 96.613 | |||
| 7 | 0.212 | 2.654 | 99.268 | |||
| 8 | 0.059 | 0.732 | 100.000 | |||
| 变量 Variable | 主成分1 PC1 | 主成分2 PC2 | 主成分3 PC3 |
|---|---|---|---|
| 根系数Root number (X1) | -0.665 | 0.630 | 0.210 |
| 水分含量 Moisture content (X2) | -0.608 | -0.508 | 0.194 |
| pH(X3) | -0.504 | -0.647 | -0.306 |
| EC(X4) | 0.257 | -0.158 | 0.867 |
| 脲酶Urease (X5) | 0.903 | -0.042 | 0.201 |
| 酸性磷酸酶 Acid phosphatase(X6) | 0.613 | 0.377 | -0.569 |
| 蔗糖酶Invertase (X7) | -0.532 | 0.788 | 0.136 |
| 过氧化氢酶 Catalase (X8) | 0.537 | 0.093 | 0.223 |
表6 主成分载荷矩阵
Table 6 Principal component load matrix
| 变量 Variable | 主成分1 PC1 | 主成分2 PC2 | 主成分3 PC3 |
|---|---|---|---|
| 根系数Root number (X1) | -0.665 | 0.630 | 0.210 |
| 水分含量 Moisture content (X2) | -0.608 | -0.508 | 0.194 |
| pH(X3) | -0.504 | -0.647 | -0.306 |
| EC(X4) | 0.257 | -0.158 | 0.867 |
| 脲酶Urease (X5) | 0.903 | -0.042 | 0.201 |
| 酸性磷酸酶 Acid phosphatase(X6) | 0.613 | 0.377 | -0.569 |
| 蔗糖酶Invertase (X7) | -0.532 | 0.788 | 0.136 |
| 过氧化氢酶 Catalase (X8) | 0.537 | 0.093 | 0.223 |
| 项目 Item | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK |
|---|---|---|---|---|
| 主成分1 PC1 | -4.512 6 | 3.636 2 | 5.173 1 | -4.296 7 |
| 主成分2 PC2 | 0.828 5 | -0.616 3 | -1.361 0 | 0.827 0 |
| 主成分3 PC3 | -1.396 4 | 3.450 4 | 4.638 3 | -6.692 3 |
| 贡献率Contribution rate/% | -0.716 5 | 2.207 7 | 2.805 0 | -4.394 5 |
| 排名Rank | 3 | 2 | 1 | 4 |
表7 不同覆盖处理的主成分得分
Table 7 Principal component score of different coverage treatments
| 项目 Item | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK |
|---|---|---|---|---|
| 主成分1 PC1 | -4.512 6 | 3.636 2 | 5.173 1 | -4.296 7 |
| 主成分2 PC2 | 0.828 5 | -0.616 3 | -1.361 0 | 0.827 0 |
| 主成分3 PC3 | -1.396 4 | 3.450 4 | 4.638 3 | -6.692 3 |
| 贡献率Contribution rate/% | -0.716 5 | 2.207 7 | 2.805 0 | -4.394 5 |
| 排名Rank | 3 | 2 | 1 | 4 |
| [1] | 徐锴, 赵德英, 闫帅, 等. 覆盖对梨园土壤微生物、梨树生长及果实品质的影响[J]. 中国果树, 2020(6): 46-49. |
| XU K, ZHAO D Y, YAN S, et al. Effects of mulching on soil microorganism, pear tree growth and fruit quality in pear orchard[J]. China Fruits, 2020(6): 46-49. (in Chinese) | |
| [2] |
徐锴, 张少瑜, 袁继存, 等. 地膜和秸秆覆盖对梨园土壤养分的影响[J]. 浙江农业学报, 2017, 29(3): 421-427.
DOI |
|
XU K, ZHANG S Y, YUAN J C, et al. Effects of plastic film and straw mulching on soil nutrients of pear orchard[J]. Acta Agriculturae Zhejiangensis, 2017, 29(3): 421-427. (in Chinese with English abstract)
DOI |
|
| [3] | 徐锴, 赵德英, 袁继存, 等. 地膜和秸秆覆盖对梨园土壤酶活性的影响[J]. 中国南方果树, 2014, 43(6): 94-96. |
| XU K, ZHAO D Y, YUAN J C, et al. Effects of plastic film mulching and straw mulching on soil enzyme activities in pear orchard[J]. South China Fruits, 2014, 43(6): 94-96. (in Chinese) | |
| [4] | 李会科, 赵政阳, 张广军. 果园生草的理论与实践: 以黄土高原南部苹果园生草实践为例[J]. 草业科学, 2005, 22(8): 32-37. |
| LI H K, ZHAO Z Y, ZHANG G J. The theory and practice of grass interplanting in orchards[J]. Pratacultural Science, 2005, 22(8): 32-37. (in Chinese with English abstract) | |
| [5] | 周江涛, 吕德国, 秦嗣军. 不同有机物覆盖对冷凉地区苹果园土壤水温环境及速效养分的影响[J]. 应用生态学报, 2014, 25(9): 2551-2556. |
| ZHOU J T, LYU D G, QIN S J. Effects of different organic matter mulching on water content, temperature, and available nutrients of apple orchard soil in a cold region[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2551-2556. (in Chinese with English abstract) | |
| [6] |
罗玲, 钟奇, 王进, 等. 不同覆盖材料对避雨葡萄园土壤微生物特征及葡萄生长与品质的影响[J]. 核农学报, 2021, 35(2): 471-480.
DOI |
| LUO L, ZHONG Q, WANG J, et al. Influence of different mulching materials on soil microbe and grape growth in rain-shelter vineyard[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 471-480. (in Chinese with English abstract) | |
| [7] | 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4): 1528-1536. |
| XUE X M, WANG L P, HAN X P, et al. Effects of different tree disk mulching on soil microbial community structure and diversity in dwarfing rootstock apple orchard[J]. Acta Ecologica Sinica, 2021, 41(4): 1528-1536. (in Chinese with English abstract) | |
| [8] | 王淑颖, 李小红, 程娜, 等. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响[J]. 中国农业科学, 2021, 54(2): 345-356. |
| WANG S Y, LI X H, CHENG N, et al. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil[J]. Scientia Agricultura Sinica, 2021, 54(2): 345-356. (in Chinese with English abstract) | |
| [9] | 任祥, 王琦, 张恩和, 等. 覆盖材料和沟垄比对燕麦产量和水分利用效率的影响[J]. 中国生态农业学报, 2014, 22(8): 945-954. |
| REN X, WANG Q, ZHANG E H, et al. Effects of mulching materials and furrow-to-ridge ratios on oat grain/hay yield and water use efficiency under rainwater harvesting cultivation[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 945-954. (in Chinese with English abstract) | |
| [10] | 刘小勇, 李红旭, 李建明, 等. 不同覆盖方式对旱地果园水热特征的影响[J]. 生态学报, 2014, 34(3): 746-754. |
| LIU X Y, LI H X, LI J M, et al. The effects of different mulching way on soil water thermal characteristics in pear orchard in the arid area[J]. Acta Ecologica Sinica, 2014, 34(3): 746-754. (in Chinese with English abstract) | |
| [11] | 曹欣冉, 安贵阳, 张紫嫣. 几种覆盖方式对旱地苹果园土壤养分、酶活性及树体生长的影响[J]. 西北农业学报, 2016, 25(5): 788-794. |
| CAO X R, AN G Y, ZHANG Z Y. Influence of different mulchings on soil nutrients, enzyme activity and tree growth in non-irrigation apple orchard[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(5): 788-794. (in Chinese with English abstract) | |
| [12] | 于少鹏, 史传奇, 胡宝忠, 等. 古大湖湿地盐碱土壤微生物群落结构及多样性分析[J]. 生态学报, 2020, 40(11): 3764-3775. |
| YU S P, SHI C Q, HU B Z, et al. Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland[J]. Acta Ecologica Sinica, 2020, 40(11): 3764-3775. (in Chinese with English abstract) | |
| [13] | BÖHME L, LANGER U, BÖHME F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments[J]. Agriculture, Ecosystems & Environment, 2005, 109(1/2): 141-152. |
| [14] | DANG T H. Influence of crop rotation on soil fertility in arid-highland of Loess Plateau[J]. Journal of Soil and Water Conservation, 1998, 4 (3) : 44-47. |
| [15] | 关松荫, 张德生, 张志明. 土壤酶及其研究法[M]. 北京: 农业出版社,1986. |
| [16] |
STEFANELLI D, ZOPPOLO R J, PERRY R L, et al. Organic orchard floor management systems for apple effect on rootstock performance in the Midwestern United States[J]. HortScience, 2009, 44(2): 263-267.
DOI URL |
| [17] |
CREGG B M, SCHUTZKI R. Weed control and organic mulches affect physiology and growth of landscape shrubs[J]. HortScience, 2009, 44(5): 1419-1424.
DOI URL |
| [18] | 李仙岳, 郭宇, 丁宗江, 等. 不同地膜覆盖对不同时间尺度地温与玉米产量的影响[J]. 农业机械学报, 2018, 49(9): 247-256. |
| LI X Y, GUO Y, DING Z J, et al. Influence of different film mulchings on soil temperature at different time scales and maize yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 247-256. (in Chinese with English abstract) | |
| [19] | 刘顺国, 付时丰, 汪景宽, 等. 长期地膜覆盖对棕壤水分含量和储量动态变化的影响[J]. 沈阳农业大学学报, 2006, 37(5): 725-730. |
| LIU S G, FU S F, WANG J K, et al. Effect of long-term covering with plastic film on dynamic changes of soil water in brown earth[J]. Journal of Shenyang Agricultural University, 2006, 37(5): 725-730. (in Chinese with English abstract) | |
| [20] |
张帆, 王晨冰, 赵秀梅, 等. 果园垄膜覆盖对土壤微生物量碳氮及土壤呼吸的影响[J]. 核农学报, 2018, 32(7): 1448-1455.
DOI |
| ZHANG F, WANG C B, ZHAO X M, et al. Effect of the ridge film mulching on soil microbial biomass carbon and nitrogen and soil basal respiration in dryland apple orchard[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1448-1455. (in Chinese with English abstract) | |
| [21] | 薛菁芳, 高艳梅, 汪景宽. 长期施肥与地膜覆盖对土壤微生物量碳氮的影响[J]. 中国土壤与肥料, 2007(3): 55-58. |
| XUE J F, GAO Y M, WANG J K. Effect of long-term fertilization and plastic film-mulching on soil microbial biomass carbon and nitrogen[J]. Soil and Fertilizer Sciences in China, 2007(3): 55-58. (in Chinese with English abstract) | |
| [22] |
HAI L, LI X G, LIU X E, et al. Plastic mulch stimulates nitrogen mineralization in urea-amended soils in a semiarid environment[J]. Agronomy Journal, 2015, 107(3): 921-930.
DOI URL |
| [23] | ZHANG H Y, LIU Q J, YU X X, et al. Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut (Arachis hypogaea) cultivated land in the Yimeng Mountainous Area, China[J]. Agriculture, Ecosystems & Environment, 2012, 158: 164-171. |
| [24] | 陈林, 杨新国, 翟德苹, 等. 柠条秸秆和地膜覆盖对土壤水分和玉米产量的影响[J]. 农业工程学报, 2015, 31(2): 108-116. |
| CHEN L, YANG X G, ZHAI D P, et al. Effects of mulching with Caragana powder and plastic film on soil water and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 108-116. (in Chinese with English abstract) | |
| [25] | 李世朋, 蔡祖聪, 杨浩, 等. 长期定位施肥与地膜覆盖对土壤肥力和生物学性质的影响[J]. 生态学报, 2009, 29(5): 2489-2498. |
| LI S P, CAI Z C, YANG H, et al. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties[J]. Acta Ecologica Sinica, 2009, 29(5): 2489-2498. (in Chinese with English abstract) | |
| [26] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
DOI PMID |
| [27] | 沈新磊, 黄思光, 王俊, 等. 半干旱农田生态系统地膜覆盖模式和施氮对小麦产量和氮效率的效应[J]. 西北农林科技大学学报(自然科学版), 2003, 31(1): 1-14. |
| SHEN X L, HUANG S G, WANG J, et al. Effects of plastic film mulching models and nitrogen fertilizer on wheat yield and nitrogen efficiency[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2003, 31(1): 1-14. (in Chinese with English abstract) | |
| [28] | 周礼恺. 土壤酶学[M]. 北京: 科学出版社, 1987. |
| [29] | BURNS R G. Soil enzymes[M]. London: Academic Press, 1994: 93-97. |
| [30] | 赵方杰. 洛桑试验站的长期定位试验: 简介及体会[J]. 南京农业大学学报, 2012, 35(5): 147-153. |
| ZHAO F J. Long-term experiments at Rothamsted Experimental Station: introduction and experience[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 147-153. (in Chinese with English abstract) | |
| [31] | 焦晓光, 隋跃宇, 张兴义. 土壤有机质含量与土壤脲酶活性关系的研究[J]. 农业系统科学与综合研究, 2008, 24(4): 494-496. |
| JIAO X G, SUI Y Y, ZHANG X Y. Study on the relationship between soil organic matter content and soil urease activity[J]. System Sciences and Comprehensive Studies in Agriculture, 2008, 24(4): 494-496. (in Chinese with English abstract) | |
| [32] | 颜慧, 钟文辉, 李忠佩, 等. 长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J]. 应用生态学报, 2008, 19(1): 71-75. |
| YAN H, ZHONG W H, LI Z P, et al. Effects of long-term fertilization on phospholipid fatty acids and enzyme activities in paddy red soil[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 71-75. (in Chinese with English abstract) | |
| [33] | 张华勇, 尹睿, 黄锦法, 等. 稻麦轮作田改为菜地后生化指标的变化[J]. 土壤, 2005, 37(2) : 182-186. |
| ZHANG H Y, YIN R, HUANG J F, et al. Changes in soil biochemical properties caused by cropping system alteration from rice-wheat rotation to vegetable cultivation[J]. Soils, 2005, 37(2) : 182-186. (in Chinese with English abstract) | |
| [34] | 胡文同, 杨志超, 郑心洁, 等. 加气条件下土壤CO2排放对土壤过氧化氢酶活性及番茄生长的响应[J]. 节水灌溉, 2018(12): 12-16,23. |
| HU W T, YANG Z C, ZHENG X J, et al. Response of soil CO2 emission to soil catalase activity and tomato growth under aerated condition[J]. Water Saving Irrigation, 2018(12): 12-16,23. (in Chinese with English abstract) | |
| [35] | 李元, 牛文全, 张明智, 等. 加气灌溉对大棚甜瓜土壤酶活性与微生物数量的影响[J]. 农业机械学报, 2015, 46(8): 121-129. |
| LI Y, NIU W Q, ZHANG M Z, et al. Effects of aeration on rhizosphere soil enzyme activities and soil microbes for muskmelon in plastic greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 121-129. (in Chinese with English abstract) | |
| [36] | 张璇, 牛文全, 甲宗霞. 灌溉后通气对盆栽番茄土壤酶活性的影响[J]. 自然资源学报, 2012, 27(8): 1296-1303. |
| ZHANG X, NIU W Q, JIA Z X. Influences of rhizosphere aeration supplies on soil enzyme activities for potted tomato after irrigation[J]. Journal of Natural Resources, 2012, 27(8): 1296-1303. (in Chinese with English abstract) |
| [1] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. |
| [2] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. |
| [3] | 韦庆翠, 姜娜英, 沈骏扬, 张焕朝, 张衡锋. 化肥减量配施生物质炭对高沙土氮磷淋失及土壤性质的影响[J]. 浙江农业学报, 2025, 37(9): 1943-1950. |
| [4] | 谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754. |
| [5] | 高扬, 张瑜昕, 卜爱爱, 徐佳怡, 马嘉伟, 叶正钱, 柳丹, 方先芝. 基于改进的内梅罗综合指数法的浙江省典型“非粮化”土壤肥力质量评价[J]. 浙江农业学报, 2025, 37(8): 1755-1765. |
| [6] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. |
| [7] | 江振蓝, 陈付勋, 罗双飞, 罗烨琴, 沙晋明. 基于多光谱变换和主成分分析的土壤全铁含量随机森林模型反演[J]. 浙江农业学报, 2025, 37(7): 1521-1532. |
| [8] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [9] | 何昕昀, 邓碧纯, 胡清钰, 冯宏, 郭彦彪. 基于土壤溶液中硝态氮浓度的香蕉氮肥施用研究[J]. 浙江农业学报, 2025, 37(6): 1319-1326. |
| [10] | 任宁, 俞国红, 郑航, 陈志东. 基于离散元法的茶园土壤参数标定[J]. 浙江农业学报, 2025, 37(6): 1353-1359. |
| [11] | 卓文琪, 麻万诸, 卓志清, 朱康莹. 亚热带残积与坡积母质发育的低山林地土壤性状比较[J]. 浙江农业学报, 2025, 37(5): 1121-1129. |
| [12] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [13] | 朱哲毅, 施芳, 宁可, 郑姗. 政策激励对农户保护性耕作技术采纳行为的影响——基于要素质量和时间偏好的视角[J]. 浙江农业学报, 2025, 37(5): 1172-1181. |
| [14] | 王丽, 陈立明, 王鹏飞, 张彬, 穆霄鹏. 有机肥配施菌肥对欧李果实品质和土壤性质的影响[J]. 浙江农业学报, 2025, 37(4): 820-830. |
| [15] | 杜颂, 汤涛, 程曦, 赵学平, 张春荣, 梁晓宇, 王萌, 张震, 李永成, 章程辉. 砜吡草唑及其主要代谢物在土壤中的消解和对土壤酶活性的影响研究[J]. 浙江农业学报, 2025, 37(4): 847-857. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||