浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2240-2250.DOI: 10.3969/j.issn.1004-1524.2022.10.18
收稿日期:
2021-05-26
出版日期:
2022-10-25
发布日期:
2022-10-26
作者简介:
商佳胤 (1981—),男,山东阳信人,硕士,副研究员,主要从事葡萄栽培生理研究。 E-mail: shangjiayin2007@163.com.cn
基金资助:
SHANG Jiayin1(), ZHANG Xinjian2, LI Kai1, ZHANG He1, WANG Dan1
Received:
2021-05-26
Online:
2022-10-25
Published:
2022-10-26
摘要:
为了明确日光温室栽培葡萄行间适宜的覆盖材料,采用3种不同材质的覆盖材料,使用沟壕垂直剖面法研究其对不同土层的葡萄根系数、土壤含水量、pH值、电导率(EC)以及土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶活性的影响。结果表明:覆盖无纺布、地布、地膜处理,葡萄直径<2 mm吸收根比例较高,分别为59.46%、71.43%、52.53%,而对照组中2~5 mm的根系数量更高,为41.10%;覆盖材料可以显著提升葡萄根系总数,覆盖无纺布还可以显著提升0~20 cm 根系分布比例(36.93%),对照组为15.07%;覆盖地膜、地布可以提高土壤表层的保水效果;覆盖材料会提高土壤浅层的pH值,降低EC值;覆盖材料对土壤酶活性有一定的影响,其中对土壤蔗糖酶和过氧化氢酶活性的作用尤为明显。通过综合分析以透气性较佳的无纺布作为覆盖材料效果最好。
中图分类号:
商佳胤, 张新建, 李凯, 张鹤, 王丹. 不同覆盖材料对设施葡萄根系分布及土壤理化特性的影响[J]. 浙江农业学报, 2022, 34(10): 2240-2250.
SHANG Jiayin, ZHANG Xinjian, LI Kai, ZHANG He, WANG Dan. Effects of different covering materials on root distribution and soil physical and chemical properties of protected cultivation of grape[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2240-2250.
根系粗度 Root size/mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
---|---|---|---|---|---|---|---|---|
数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
≥10 | 2 b | 2.02 c | 4 a | 4.40 a | 5 a | 4.50 a | 3 b | 4.11 b |
5~<10 | 14 a | 14.14 b | 5 b | 5.49 c | 18 a | 16.22 b | 16 a | 21.92 a |
2~<5 | 31 a | 31.31 b | 17 c | 18.68 c | 22 b | 19.82 c | 30 a | 41.10 a |
<2 | 52 b | 52.53 c | 65 a | 71.43 a | 66 a | 59.46 b | 24 c | 32.88 d |
合计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
表1 不同覆盖材料下葡萄根系数量及比例
Table 1 Root number and proportion of grape under different covering materials
根系粗度 Root size/mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
---|---|---|---|---|---|---|---|---|
数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
≥10 | 2 b | 2.02 c | 4 a | 4.40 a | 5 a | 4.50 a | 3 b | 4.11 b |
5~<10 | 14 a | 14.14 b | 5 b | 5.49 c | 18 a | 16.22 b | 16 a | 21.92 a |
2~<5 | 31 a | 31.31 b | 17 c | 18.68 c | 22 b | 19.82 c | 30 a | 41.10 a |
<2 | 52 b | 52.53 c | 65 a | 71.43 a | 66 a | 59.46 b | 24 c | 32.88 d |
合计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
土层深度 Depth of soil/ mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
---|---|---|---|---|---|---|---|---|
数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
0~<10 | 2 b | 2.02 b | 4 b | 4.40 b | 16 a | 14.41 a | 1 b | 1.37 b |
10~<20 | 11 c | 11.11 c | 34 a | 37.34 a | 25 b | 22.52 b | 10 c | 13.70 c |
20~<30 | 46 a | 46.46 a | 22 c | 24.18 b | 25 c | 22.52 b | 37 b | 50.68 a |
30~<40 | 10 a | 10.10 b | 11 a | 12.09 a | 4 b | 3.60 c | 10 a | 13.70 a |
40~<50 | 5 a | 5.05 c | 4 a | 4.40 c | 7 a | 6.31 b | 6 a | 8.22 a |
50~<60 | 11 b | 11.11 a | 3 d | 3.30 c | 14 a | 12.61 a | 6 c | 8.22 b |
60~<70 | 8 b | 8.08 b | 10 b | 10.99 b | 17 a | 15.32 a | 2 c | 2.74 c |
70~<80 | 6 a | 6.06 a | 3 b | 3.30 b | 3 b | 2.70 b | 1 c | 1.37 c |
总计Total | 99 b | 100 | 91 c | 100 | 111 a | 100 | 73 d | 100 |
表2 不同覆盖材料下葡萄根系垂直分布情况
Table 2 Vertical distribution of grape roots under different covering materials
土层深度 Depth of soil/ mm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
---|---|---|---|---|---|---|---|---|
数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
0~<10 | 2 b | 2.02 b | 4 b | 4.40 b | 16 a | 14.41 a | 1 b | 1.37 b |
10~<20 | 11 c | 11.11 c | 34 a | 37.34 a | 25 b | 22.52 b | 10 c | 13.70 c |
20~<30 | 46 a | 46.46 a | 22 c | 24.18 b | 25 c | 22.52 b | 37 b | 50.68 a |
30~<40 | 10 a | 10.10 b | 11 a | 12.09 a | 4 b | 3.60 c | 10 a | 13.70 a |
40~<50 | 5 a | 5.05 c | 4 a | 4.40 c | 7 a | 6.31 b | 6 a | 8.22 a |
50~<60 | 11 b | 11.11 a | 3 d | 3.30 c | 14 a | 12.61 a | 6 c | 8.22 b |
60~<70 | 8 b | 8.08 b | 10 b | 10.99 b | 17 a | 15.32 a | 2 c | 2.74 c |
70~<80 | 6 a | 6.06 a | 3 b | 3.30 b | 3 b | 2.70 b | 1 c | 1.37 c |
总计Total | 99 b | 100 | 91 c | 100 | 111 a | 100 | 73 d | 100 |
主蔓距离 Level distance/cm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
---|---|---|---|---|---|---|---|---|
数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
-40~<-30 | 13 a | 13.13 b | 8 b | 8.79 d | 12 a | 10.81 c | 12 a | 16.44 a |
-30~<-20 | 8 b | 8.08 b | 14 a | 15.38 a | 10 b | 9.01 b | 7 b | 9.59 b |
-20~<-10 | 14 a | 14.14 a | 2 c | 2.20 d | 14 a | 12.61 b | 6 b | 8.22 c |
-10~<0 | 12 a | 12.12 b | 12 a | 13.19 b | 13 a | 11.71 b | 12 a | 16.44 a |
0~<10 | 10 b | 10.10 d | 17 a | 18.68 a | 16 a | 14.41 d | 9 b | 12.33 c |
10~<20 | 22 a | 22.22 a | 13 b | 14.29 c | 20 a | 18.02 b | 10 b | 13.70 c |
20~<30 | 11 ab | 11.11 a | 10 b | 10.99 a | 13 a | 11.71 a | 9 b | 12.33 a |
30~<40 | 9 b | 9.09 c | 15 a | 16.48 a | 13 a | 11.72 b | 8 b | 10.96 b |
总计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
表3 不同覆盖材料下葡萄根系水平分布情况
Table 3 Horizontal distribution of grape roots under different covering materials
主蔓距离 Level distance/cm | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK | ||||
---|---|---|---|---|---|---|---|---|
数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | 数量 Number | 百分比 Percent/% | |
-40~<-30 | 13 a | 13.13 b | 8 b | 8.79 d | 12 a | 10.81 c | 12 a | 16.44 a |
-30~<-20 | 8 b | 8.08 b | 14 a | 15.38 a | 10 b | 9.01 b | 7 b | 9.59 b |
-20~<-10 | 14 a | 14.14 a | 2 c | 2.20 d | 14 a | 12.61 b | 6 b | 8.22 c |
-10~<0 | 12 a | 12.12 b | 12 a | 13.19 b | 13 a | 11.71 b | 12 a | 16.44 a |
0~<10 | 10 b | 10.10 d | 17 a | 18.68 a | 16 a | 14.41 d | 9 b | 12.33 c |
10~<20 | 22 a | 22.22 a | 13 b | 14.29 c | 20 a | 18.02 b | 10 b | 13.70 c |
20~<30 | 11 ab | 11.11 a | 10 b | 10.99 a | 13 a | 11.71 a | 9 b | 12.33 a |
30~<40 | 9 b | 9.09 c | 15 a | 16.48 a | 13 a | 11.72 b | 8 b | 10.96 b |
总计Total | 99 b | 100.00 | 91 c | 100.00 | 111 a | 100.00 | 73 d | 100.00 |
项目 Item | 根系数量 Root number | 水分含量 Moisture content | pH | EC | 脲酶 Urease | 酸性磷酸酶 Acid phosphatase | 蔗糖酶 Invertase | 过氧化氢酶 Catalase |
---|---|---|---|---|---|---|---|---|
根系数量Root number | 1 | |||||||
水分含量Moisture content | 0.160 | 1 | ||||||
pH | -0.084 | 0.485* | 1 | |||||
EC | -0.134 | 0.001 | -0.263 | 1 | ||||
脲酶 Urease | -0.492* | -0.393 | -0.496* | 0.337 | 1 | |||
酸性磷酸酶Acid phosphatase | -0.287 | -0.553* | -0.367 | -0.310 | 0.420 | 1 | ||
蔗糖酶Invertase | 0.837** | -0.021 | -0.219 | -0.135 | -0.508* | -0.076 | 1 | |
过氧化氢酶Catalase | -0.193 | -0.220 | -0.171 | 0.150 | 0.522* | 0.204 | -0.064 | 1.000 |
表4 不同处理指标的相关性分析
Table 4 Correlation analysis of different treatment indexes
项目 Item | 根系数量 Root number | 水分含量 Moisture content | pH | EC | 脲酶 Urease | 酸性磷酸酶 Acid phosphatase | 蔗糖酶 Invertase | 过氧化氢酶 Catalase |
---|---|---|---|---|---|---|---|---|
根系数量Root number | 1 | |||||||
水分含量Moisture content | 0.160 | 1 | ||||||
pH | -0.084 | 0.485* | 1 | |||||
EC | -0.134 | 0.001 | -0.263 | 1 | ||||
脲酶 Urease | -0.492* | -0.393 | -0.496* | 0.337 | 1 | |||
酸性磷酸酶Acid phosphatase | -0.287 | -0.553* | -0.367 | -0.310 | 0.420 | 1 | ||
蔗糖酶Invertase | 0.837** | -0.021 | -0.219 | -0.135 | -0.508* | -0.076 | 1 | |
过氧化氢酶Catalase | -0.193 | -0.220 | -0.171 | 0.150 | 0.522* | 0.204 | -0.064 | 1.000 |
成分 Component | 初始特征值Initial eigenvalue | 载荷平方和Load sum of squares | ||||
---|---|---|---|---|---|---|
总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | 总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | |
1 | 2.894 | 36.181 | 36.181 | 2.894 | 36.181 | 36.181 |
2 | 1.872 | 23.401 | 59.582 | 1.872 | 23.401 | 59.582 |
3 | 1.360 | 16.996 | 76.578 | 1.360 | 16.996 | 76.578 |
4 | 0.837 | 10.463 | 87.042 | |||
5 | 0.474 | 5.920 | 92.962 | |||
6 | 0.292 | 3.652 | 96.613 | |||
7 | 0.212 | 2.654 | 99.268 | |||
8 | 0.059 | 0.732 | 100.000 |
表5 主成分方差解释
Table 5 Explanation of principal component variance
成分 Component | 初始特征值Initial eigenvalue | 载荷平方和Load sum of squares | ||||
---|---|---|---|---|---|---|
总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | 总计 Total | 方差百分比 Variance percentage/% | 累积百分比 Cumulative percentage/% | |
1 | 2.894 | 36.181 | 36.181 | 2.894 | 36.181 | 36.181 |
2 | 1.872 | 23.401 | 59.582 | 1.872 | 23.401 | 59.582 |
3 | 1.360 | 16.996 | 76.578 | 1.360 | 16.996 | 76.578 |
4 | 0.837 | 10.463 | 87.042 | |||
5 | 0.474 | 5.920 | 92.962 | |||
6 | 0.292 | 3.652 | 96.613 | |||
7 | 0.212 | 2.654 | 99.268 | |||
8 | 0.059 | 0.732 | 100.000 |
变量 Variable | 主成分1 PC1 | 主成分2 PC2 | 主成分3 PC3 |
---|---|---|---|
根系数Root number (X1) | -0.665 | 0.630 | 0.210 |
水分含量 Moisture content (X2) | -0.608 | -0.508 | 0.194 |
pH(X3) | -0.504 | -0.647 | -0.306 |
EC(X4) | 0.257 | -0.158 | 0.867 |
脲酶Urease (X5) | 0.903 | -0.042 | 0.201 |
酸性磷酸酶 Acid phosphatase(X6) | 0.613 | 0.377 | -0.569 |
蔗糖酶Invertase (X7) | -0.532 | 0.788 | 0.136 |
过氧化氢酶 Catalase (X8) | 0.537 | 0.093 | 0.223 |
表6 主成分载荷矩阵
Table 6 Principal component load matrix
变量 Variable | 主成分1 PC1 | 主成分2 PC2 | 主成分3 PC3 |
---|---|---|---|
根系数Root number (X1) | -0.665 | 0.630 | 0.210 |
水分含量 Moisture content (X2) | -0.608 | -0.508 | 0.194 |
pH(X3) | -0.504 | -0.647 | -0.306 |
EC(X4) | 0.257 | -0.158 | 0.867 |
脲酶Urease (X5) | 0.903 | -0.042 | 0.201 |
酸性磷酸酶 Acid phosphatase(X6) | 0.613 | 0.377 | -0.569 |
蔗糖酶Invertase (X7) | -0.532 | 0.788 | 0.136 |
过氧化氢酶 Catalase (X8) | 0.537 | 0.093 | 0.223 |
项目 Item | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK |
---|---|---|---|---|
主成分1 PC1 | -4.512 6 | 3.636 2 | 5.173 1 | -4.296 7 |
主成分2 PC2 | 0.828 5 | -0.616 3 | -1.361 0 | 0.827 0 |
主成分3 PC3 | -1.396 4 | 3.450 4 | 4.638 3 | -6.692 3 |
贡献率Contribution rate/% | -0.716 5 | 2.207 7 | 2.805 0 | -4.394 5 |
排名Rank | 3 | 2 | 1 | 4 |
表7 不同覆盖处理的主成分得分
Table 7 Principal component score of different coverage treatments
项目 Item | 地膜A Film A | 地布B Floor cloth B | 无纺布C Non woven fabric C | 对照组CK |
---|---|---|---|---|
主成分1 PC1 | -4.512 6 | 3.636 2 | 5.173 1 | -4.296 7 |
主成分2 PC2 | 0.828 5 | -0.616 3 | -1.361 0 | 0.827 0 |
主成分3 PC3 | -1.396 4 | 3.450 4 | 4.638 3 | -6.692 3 |
贡献率Contribution rate/% | -0.716 5 | 2.207 7 | 2.805 0 | -4.394 5 |
排名Rank | 3 | 2 | 1 | 4 |
[1] | 徐锴, 赵德英, 闫帅, 等. 覆盖对梨园土壤微生物、梨树生长及果实品质的影响[J]. 中国果树, 2020(6): 46-49. |
XU K, ZHAO D Y, YAN S, et al. Effects of mulching on soil microorganism, pear tree growth and fruit quality in pear orchard[J]. China Fruits, 2020(6): 46-49. (in Chinese) | |
[2] |
徐锴, 张少瑜, 袁继存, 等. 地膜和秸秆覆盖对梨园土壤养分的影响[J]. 浙江农业学报, 2017, 29(3): 421-427.
DOI |
XU K, ZHANG S Y, YUAN J C, et al. Effects of plastic film and straw mulching on soil nutrients of pear orchard[J]. Acta Agriculturae Zhejiangensis, 2017, 29(3): 421-427. (in Chinese with English abstract)
DOI |
|
[3] | 徐锴, 赵德英, 袁继存, 等. 地膜和秸秆覆盖对梨园土壤酶活性的影响[J]. 中国南方果树, 2014, 43(6): 94-96. |
XU K, ZHAO D Y, YUAN J C, et al. Effects of plastic film mulching and straw mulching on soil enzyme activities in pear orchard[J]. South China Fruits, 2014, 43(6): 94-96. (in Chinese) | |
[4] | 李会科, 赵政阳, 张广军. 果园生草的理论与实践: 以黄土高原南部苹果园生草实践为例[J]. 草业科学, 2005, 22(8): 32-37. |
LI H K, ZHAO Z Y, ZHANG G J. The theory and practice of grass interplanting in orchards[J]. Pratacultural Science, 2005, 22(8): 32-37. (in Chinese with English abstract) | |
[5] | 周江涛, 吕德国, 秦嗣军. 不同有机物覆盖对冷凉地区苹果园土壤水温环境及速效养分的影响[J]. 应用生态学报, 2014, 25(9): 2551-2556. |
ZHOU J T, LYU D G, QIN S J. Effects of different organic matter mulching on water content, temperature, and available nutrients of apple orchard soil in a cold region[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2551-2556. (in Chinese with English abstract) | |
[6] |
罗玲, 钟奇, 王进, 等. 不同覆盖材料对避雨葡萄园土壤微生物特征及葡萄生长与品质的影响[J]. 核农学报, 2021, 35(2): 471-480.
DOI |
LUO L, ZHONG Q, WANG J, et al. Influence of different mulching materials on soil microbe and grape growth in rain-shelter vineyard[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 471-480. (in Chinese with English abstract) | |
[7] | 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4): 1528-1536. |
XUE X M, WANG L P, HAN X P, et al. Effects of different tree disk mulching on soil microbial community structure and diversity in dwarfing rootstock apple orchard[J]. Acta Ecologica Sinica, 2021, 41(4): 1528-1536. (in Chinese with English abstract) | |
[8] | 王淑颖, 李小红, 程娜, 等. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响[J]. 中国农业科学, 2021, 54(2): 345-356. |
WANG S Y, LI X H, CHENG N, et al. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil[J]. Scientia Agricultura Sinica, 2021, 54(2): 345-356. (in Chinese with English abstract) | |
[9] | 任祥, 王琦, 张恩和, 等. 覆盖材料和沟垄比对燕麦产量和水分利用效率的影响[J]. 中国生态农业学报, 2014, 22(8): 945-954. |
REN X, WANG Q, ZHANG E H, et al. Effects of mulching materials and furrow-to-ridge ratios on oat grain/hay yield and water use efficiency under rainwater harvesting cultivation[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 945-954. (in Chinese with English abstract) | |
[10] | 刘小勇, 李红旭, 李建明, 等. 不同覆盖方式对旱地果园水热特征的影响[J]. 生态学报, 2014, 34(3): 746-754. |
LIU X Y, LI H X, LI J M, et al. The effects of different mulching way on soil water thermal characteristics in pear orchard in the arid area[J]. Acta Ecologica Sinica, 2014, 34(3): 746-754. (in Chinese with English abstract) | |
[11] | 曹欣冉, 安贵阳, 张紫嫣. 几种覆盖方式对旱地苹果园土壤养分、酶活性及树体生长的影响[J]. 西北农业学报, 2016, 25(5): 788-794. |
CAO X R, AN G Y, ZHANG Z Y. Influence of different mulchings on soil nutrients, enzyme activity and tree growth in non-irrigation apple orchard[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(5): 788-794. (in Chinese with English abstract) | |
[12] | 于少鹏, 史传奇, 胡宝忠, 等. 古大湖湿地盐碱土壤微生物群落结构及多样性分析[J]. 生态学报, 2020, 40(11): 3764-3775. |
YU S P, SHI C Q, HU B Z, et al. Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland[J]. Acta Ecologica Sinica, 2020, 40(11): 3764-3775. (in Chinese with English abstract) | |
[13] | BÖHME L, LANGER U, BÖHME F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments[J]. Agriculture, Ecosystems & Environment, 2005, 109(1/2): 141-152. |
[14] | DANG T H. Influence of crop rotation on soil fertility in arid-highland of Loess Plateau[J]. Journal of Soil and Water Conservation, 1998, 4 (3) : 44-47. |
[15] | 关松荫, 张德生, 张志明. 土壤酶及其研究法[M]. 北京: 农业出版社,1986. |
[16] |
STEFANELLI D, ZOPPOLO R J, PERRY R L, et al. Organic orchard floor management systems for apple effect on rootstock performance in the Midwestern United States[J]. HortScience, 2009, 44(2): 263-267.
DOI URL |
[17] |
CREGG B M, SCHUTZKI R. Weed control and organic mulches affect physiology and growth of landscape shrubs[J]. HortScience, 2009, 44(5): 1419-1424.
DOI URL |
[18] | 李仙岳, 郭宇, 丁宗江, 等. 不同地膜覆盖对不同时间尺度地温与玉米产量的影响[J]. 农业机械学报, 2018, 49(9): 247-256. |
LI X Y, GUO Y, DING Z J, et al. Influence of different film mulchings on soil temperature at different time scales and maize yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 247-256. (in Chinese with English abstract) | |
[19] | 刘顺国, 付时丰, 汪景宽, 等. 长期地膜覆盖对棕壤水分含量和储量动态变化的影响[J]. 沈阳农业大学学报, 2006, 37(5): 725-730. |
LIU S G, FU S F, WANG J K, et al. Effect of long-term covering with plastic film on dynamic changes of soil water in brown earth[J]. Journal of Shenyang Agricultural University, 2006, 37(5): 725-730. (in Chinese with English abstract) | |
[20] |
张帆, 王晨冰, 赵秀梅, 等. 果园垄膜覆盖对土壤微生物量碳氮及土壤呼吸的影响[J]. 核农学报, 2018, 32(7): 1448-1455.
DOI |
ZHANG F, WANG C B, ZHAO X M, et al. Effect of the ridge film mulching on soil microbial biomass carbon and nitrogen and soil basal respiration in dryland apple orchard[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1448-1455. (in Chinese with English abstract) | |
[21] | 薛菁芳, 高艳梅, 汪景宽. 长期施肥与地膜覆盖对土壤微生物量碳氮的影响[J]. 中国土壤与肥料, 2007(3): 55-58. |
XUE J F, GAO Y M, WANG J K. Effect of long-term fertilization and plastic film-mulching on soil microbial biomass carbon and nitrogen[J]. Soil and Fertilizer Sciences in China, 2007(3): 55-58. (in Chinese with English abstract) | |
[22] |
HAI L, LI X G, LIU X E, et al. Plastic mulch stimulates nitrogen mineralization in urea-amended soils in a semiarid environment[J]. Agronomy Journal, 2015, 107(3): 921-930.
DOI URL |
[23] | ZHANG H Y, LIU Q J, YU X X, et al. Effects of plastic mulch duration on nitrogen mineralization and leaching in peanut (Arachis hypogaea) cultivated land in the Yimeng Mountainous Area, China[J]. Agriculture, Ecosystems & Environment, 2012, 158: 164-171. |
[24] | 陈林, 杨新国, 翟德苹, 等. 柠条秸秆和地膜覆盖对土壤水分和玉米产量的影响[J]. 农业工程学报, 2015, 31(2): 108-116. |
CHEN L, YANG X G, ZHAI D P, et al. Effects of mulching with Caragana powder and plastic film on soil water and maize yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 108-116. (in Chinese with English abstract) | |
[25] | 李世朋, 蔡祖聪, 杨浩, 等. 长期定位施肥与地膜覆盖对土壤肥力和生物学性质的影响[J]. 生态学报, 2009, 29(5): 2489-2498. |
LI S P, CAI Z C, YANG H, et al. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties[J]. Acta Ecologica Sinica, 2009, 29(5): 2489-2498. (in Chinese with English abstract) | |
[26] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
DOI PMID |
[27] | 沈新磊, 黄思光, 王俊, 等. 半干旱农田生态系统地膜覆盖模式和施氮对小麦产量和氮效率的效应[J]. 西北农林科技大学学报(自然科学版), 2003, 31(1): 1-14. |
SHEN X L, HUANG S G, WANG J, et al. Effects of plastic film mulching models and nitrogen fertilizer on wheat yield and nitrogen efficiency[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 2003, 31(1): 1-14. (in Chinese with English abstract) | |
[28] | 周礼恺. 土壤酶学[M]. 北京: 科学出版社, 1987. |
[29] | BURNS R G. Soil enzymes[M]. London: Academic Press, 1994: 93-97. |
[30] | 赵方杰. 洛桑试验站的长期定位试验: 简介及体会[J]. 南京农业大学学报, 2012, 35(5): 147-153. |
ZHAO F J. Long-term experiments at Rothamsted Experimental Station: introduction and experience[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 147-153. (in Chinese with English abstract) | |
[31] | 焦晓光, 隋跃宇, 张兴义. 土壤有机质含量与土壤脲酶活性关系的研究[J]. 农业系统科学与综合研究, 2008, 24(4): 494-496. |
JIAO X G, SUI Y Y, ZHANG X Y. Study on the relationship between soil organic matter content and soil urease activity[J]. System Sciences and Comprehensive Studies in Agriculture, 2008, 24(4): 494-496. (in Chinese with English abstract) | |
[32] | 颜慧, 钟文辉, 李忠佩, 等. 长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J]. 应用生态学报, 2008, 19(1): 71-75. |
YAN H, ZHONG W H, LI Z P, et al. Effects of long-term fertilization on phospholipid fatty acids and enzyme activities in paddy red soil[J]. Chinese Journal of Applied Ecology, 2008, 19(1): 71-75. (in Chinese with English abstract) | |
[33] | 张华勇, 尹睿, 黄锦法, 等. 稻麦轮作田改为菜地后生化指标的变化[J]. 土壤, 2005, 37(2) : 182-186. |
ZHANG H Y, YIN R, HUANG J F, et al. Changes in soil biochemical properties caused by cropping system alteration from rice-wheat rotation to vegetable cultivation[J]. Soils, 2005, 37(2) : 182-186. (in Chinese with English abstract) | |
[34] | 胡文同, 杨志超, 郑心洁, 等. 加气条件下土壤CO2排放对土壤过氧化氢酶活性及番茄生长的响应[J]. 节水灌溉, 2018(12): 12-16,23. |
HU W T, YANG Z C, ZHENG X J, et al. Response of soil CO2 emission to soil catalase activity and tomato growth under aerated condition[J]. Water Saving Irrigation, 2018(12): 12-16,23. (in Chinese with English abstract) | |
[35] | 李元, 牛文全, 张明智, 等. 加气灌溉对大棚甜瓜土壤酶活性与微生物数量的影响[J]. 农业机械学报, 2015, 46(8): 121-129. |
LI Y, NIU W Q, ZHANG M Z, et al. Effects of aeration on rhizosphere soil enzyme activities and soil microbes for muskmelon in plastic greenhouse[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(8): 121-129. (in Chinese with English abstract) | |
[36] | 张璇, 牛文全, 甲宗霞. 灌溉后通气对盆栽番茄土壤酶活性的影响[J]. 自然资源学报, 2012, 27(8): 1296-1303. |
ZHANG X, NIU W Q, JIA Z X. Influences of rhizosphere aeration supplies on soil enzyme activities for potted tomato after irrigation[J]. Journal of Natural Resources, 2012, 27(8): 1296-1303. (in Chinese with English abstract) |
[1] | 田秀, 童炳丽, 谢元贵, 廖小锋, 吴婷婷, 刘济明. 米槁根际细菌对果实药用活性成分的影响及其PICRUST功能预测分析[J]. 浙江农业学报, 2022, 34(9): 1837-1848. |
[2] | 邱乐丰, 张玲, 徐保根, 吴绍华, 徐明星. 种植结构非粮化对农田氮磷流失负荷的影响[J]. 浙江农业学报, 2022, 34(9): 1995-2003. |
[3] | 杨肖芳, 李云端, 孙云帆, 李绍佳, 苗立祥, 张豫超, 蒋桂华. 基质栽培与土壤栽培对越心草莓蔗糖和柠檬酸积累的影响[J]. 浙江农业学报, 2022, 34(7): 1423-1430. |
[4] | 姚燕来, 朱为静, 丁检, 洪磊东, 洪春来, 王卫平, 朱凤香, 何伟科, 洪海清. 浙江省规模化蔬菜基地连作障碍与土壤环境调查分析[J]. 浙江农业学报, 2022, 34(7): 1474-1484. |
[5] | 娄飞, 付天岭, 代良羽, 周凯, 林大松, 何腾兵. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响[J]. 浙江农业学报, 2022, 34(7): 1493-1501. |
[6] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[7] | 王钧, 陆洲, 罗明, 徐飞飞, 张序. 基于机载多光谱的冬小麦返青期土壤墒情反演[J]. 浙江农业学报, 2022, 34(6): 1297-1305. |
[8] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[9] | 张碧云, 程平, 李宏, 武胜利, 张志刚. 不同灌水量条件下苹果树茎流变化规律及其影响因素[J]. 浙江农业学报, 2022, 34(4): 736-745. |
[10] | 王琳, 王娇娇, 曾辉祥. 交易成本视角下日本土壤污染防治策略与启示[J]. 浙江农业学报, 2022, 34(4): 859-869. |
[11] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[12] | 袁文雅, 康益晨, 杨昕宇, 张茹艳, 周春涛, 王勇, 陈喜鹏, 余慧芳, 秦舒浩. 清水苜蓿土壤浸提液对连作马铃薯根际土壤环境酶活性和微生物群落的影响[J]. 浙江农业学报, 2022, 34(2): 240-247. |
[13] | 杨思瑞, 杨卓, 火苗, 张洁, 张力莉, 李胜利, 徐晓锋. 荷斯坦奶牛不同群体牛舍土壤细菌菌群结构差异分析[J]. 浙江农业学报, 2022, 34(2): 275-283. |
[14] | 张棚, 杨雪妍, 洪晶, 张娅俐, 田晓静, 张福梅, 曹竑, 陈士恩, 马忠仁, 丁功涛, 宋礼, 罗丽. 贵州湄潭茶区土壤-茶叶系统中微量元素富集规律与产地溯源[J]. 浙江农业学报, 2022, 34(2): 378-390. |
[15] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||