浙江农业学报 ›› 2022, Vol. 34 ›› Issue (12): 2648-2658.DOI: 10.3969/j.issn.1004-1524.2022.12.08
陆玲鸿(
), 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴(
)
收稿日期:2022-03-24
出版日期:2022-12-25
发布日期:2022-12-26
作者简介:*张慧琴,E-mail:zhqzaas@163.com通讯作者:
张慧琴
基金资助:
LU Linghong(
), MA Yuanyuan, GU Xianbin, XIAO Jinping, SONG Genhua, ZHANG Huiqin(
)
Received:2022-03-24
Online:2022-12-25
Published:2022-12-26
Contact:
ZHANG Huiqin
摘要:
为研究不同贮藏温度下不同品种猕猴桃果实软化过程中细胞壁多糖物质降解特性,以及相关果胶降解酶对猕猴桃果实软化进程的影响,测定25 ℃和4 ℃贮藏过程中徐香、金丽、晚绿猕猴桃果实的硬度、细胞壁多糖物质含量和果胶降解相关酶活性,并对其进行相关性分析。结果表明,3个品种猕猴桃果实软化过程中半纤维素、纤维素和共价型果胶(covalent soluble pectin,CSP)含量不断降低,水溶性果胶(water soluble pectin,WSP)含量不断增加,而离子结合型果胶(ionic soluble pectin,ISP)含量相对稳定。晚绿猕猴桃各细胞壁多糖组分含量变化速度最快,金丽次之,徐香最慢。4 ℃贮藏延缓了猕猴桃果实细胞壁多糖物质的降解。相关性分析结果表明,3个品种猕猴桃果实硬度与WSP含量之间均呈显著(P<0.05)负相关,与CSP、半纤维素、纤维素含量之间呈显著正相关。果胶降解酶活性测定结果显示,25 ℃贮藏前期,晚绿猕猴桃内切多聚半乳糖醛酸酶(endo-polygalacturonase,PG)和β-半乳糖苷酶(β-galactosidase,β-Gal)活性显著高于其他两个品种,徐香猕猴桃PG和β-Gal的活性显著低于其他两个品种;4 ℃贮藏前期,晚绿猕猴桃中果胶酸裂解酶(pectate lyase,PL)和α-L-阿拉伯呋喃糖苷酶(α-L-arabinofuranosidase,α-AF)活性显著高于其他两个品种,徐香猕猴桃中PL和α-AF活性显著低于其他两个品种。25 ℃贮藏条件下,与徐香果实软化显著相关的果胶降解酶是PG和β-Gal;4 ℃贮藏条件下,与徐香果实软化显著相关的果胶酶是α-AF和果胶甲酯酶(pectin methylesterase,PME);与金丽和晚绿果实软化显著相关的果胶酶分别是α-AF和PL。综上所述,软化最快的晚绿猕猴桃细胞壁多糖组分含量变化最快,软化最慢的徐香猕猴桃细胞壁多糖组分含量变化最慢。25 ℃贮藏前期,PG和β-Gal活性在晚绿中最高,在徐香中活性最低;4 ℃贮藏前期,PL和α-AF的活性在晚绿中最高,在徐香中最低。这些果胶酶活性的差异是导致晚绿果实软化较快而徐香果实软化较慢的原因之一。
中图分类号:
陆玲鸿, 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报, 2022, 34(12): 2648-2658.
LU Linghong, MA Yuanyuan, GU Xianbin, XIAO Jinping, SONG Genhua, ZHANG Huiqin. Changes of polysaccharide content and pectin degradation related enzyme activities in cell wall during softening of kiwifruit[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2648-2658.
图3 猕猴桃果实软化期间细胞壁物质含量的变化 数据以鲜重计。图4、图5同。
Fig.3 Changes of cell wall material content during softening of kiwifruit Data was detected based on fresh weight. The same as in figure 4 and 5.
图6 猕猴桃果实软化期间果胶甲酯酶、内切多聚半乳糖醛酸酶和果胶酸裂解酶活性变化 数据以蛋白质质量计。下同。
Fig.6 Changes of pectin methylesterase, endo-polygalacturonase and pectate lyase activities during softening of kiwifruit Data was detected based on protein weight. The same as below.
| 品种 Variety | 指标 Index | 温度 Temperapture/ ℃ | 硬度 Firmness | 果胶甲 酯酶 PME | 内切多聚半 乳糖醛酸酶 PG | 果胶酸裂 解酶 PL | β-半乳糖 苷酶 β-Gal | α-L-阿拉伯呋 喃糖苷酶 α-AF |
|---|---|---|---|---|---|---|---|---|
| 徐香 | 硬度Firmness | 25 | — | -0.724 | -0.879* | 0.027 | -0.921** | -0.675 |
| Xuxiang | 4 | — | -0.846** | -0.420 | -0.461 | -0.708* | -0.943** | |
| 水溶性果胶WSP | 25 | -0.986** | 0.655 | 0.807 | 0.087 | 0.903* | 0.730 | |
| 4 | -0.955** | 0.843** | 0.207 | 0.504 | 0.691 | 0.859** | ||
| 离子型果胶ISP | 25 | 0.647 | -0.589 | -0.531 | 0.623 | -0.542 | 0.076 | |
| 4 | 0.619 | -0.340 | -0.529 | -0.443 | -0.566 | -0.711* | ||
| 共价型果胶CSP | 25 | 0.950** | -0.764 | -0.773 | -0.025 | -0.809 | -0.760 | |
| 4 | 0.993** | -0.811* | -0.341 | -0.547 | -0.743* | -0.931** | ||
| 半纤维素HCL | 25 | 0.977** | -0.613 | -0.827* | -0.143 | -0.922** | -0.789 | |
| 4 | 0.908** | -0.859** | -0.296 | -0.394 | -0.642 | -0.868** | ||
| 纤维素CL | 25 | 0.981** | -0.690 | -0.790 | -0.075 | -0.874* | -0.741 | |
| 4 | 0.976** | -0.839** | -0.318 | -0.476 | -0.715* | -0.924** | ||
| 金丽 | 硬度Firmness | 25 | — | -0.185 | -0.333 | -0.787 | -0.376 | -0.783 |
| Jinli | 4 | — | -0.612 | -0.237 | -0.692 | -0.375 | -0.756* | |
| 水溶性果胶WSP | 25 | -0.991** | 0.065 | 0.318 | 0.823 | 0.379 | 0.759 | |
| 4 | -0.911** | 0.696 | 0.377 | 0.807* | 0.552 | 0.918** | ||
| 离子型果胶ISP | 25 | -0.082 | 0.515 | 0.967* | 0.552 | 0.943 | 0.681 | |
| 4 | 0.820* | -0.447 | -0.164 | -0.579 | -0.117 | -0.346 | ||
| 共价型果胶CSP | 25 | 0.965* | 0.038 | -0.098 | -0.686 | -0.162 | -0.601 | |
| 4 | 0.996** | -0.648 | -0.225 | -0.682 | -0.441 | -0.791* | ||
| 半纤维素HCL | 25 | 0.984* | -0.313 | -0.489 | -0.838 | -0.519 | -0.880 | |
| 4 | 0.934** | -0.754* | -0.239 | -0.721* | -0.600 | -0.904** | ||
| 纤维素CL | 25 | 0.997** | -0.256 | -0.400 | -0.803 | -0.434 | -0.827 | |
| 4 | 0.939** | -0.670 | -0.291 | -0.703 | -0.562 | -0.845** | ||
| 晚绿 | 硬度Firmness | 25 | — | -0.765 | 0.009 | 0.366 | -0.300 | -0.686 |
| Wanlv | 4 | — | -0.968* | -0.346 | 0.978* | -0.709 | -0.493 | |
| 水溶性果胶WSP | 25 | -0.987* | 0.844 | 0.147 | -0.343 | 0.449 | 0.790 | |
| 4 | -0.994** | 0.941 | 0.291 | -0.970* | 0.634 | 0.453 | ||
| 离子型果胶ISP | 25 | 0.432 | -0.625 | 0.212 | -0.674 | -0.034 | -0.121 | |
| 4 | -0.065 | 0.212 | 0.262 | -0.149 | 0.750 | 0.610 | ||
| 共价型果胶CSP | 25 | 0.999** | -0.781 | -0.037 | 0.380 | -0.342 | -0.719 | |
| 4 | 0.972* | -0.885 | -0.161 | 0.963* | -0.561 | -0.469 | ||
| 半纤维素HCL | 25 | 0.984* | -0.714 | -0.062 | 0.517 | -0.344 | -0.731 | |
| 4 | 0.868 | -0.765 | 0.102 | 0.951* | -0.707 | -0.815 | ||
| 纤维素CL | 25 | 0.992** | -0.760 | -0.079 | 0.455 | -0.371 | -0.747 | |
| 4 | 0.958* | -0.867 | -0.067 | 0.990* | -0.667 | -0.650 |
表1 猕猴桃果实硬度、细胞壁组分和果胶降解酶活性之间的相关性
Table 1 Correlation between firmness, cell wall fractions and pectin-degrading enzymes in kiwifruit
| 品种 Variety | 指标 Index | 温度 Temperapture/ ℃ | 硬度 Firmness | 果胶甲 酯酶 PME | 内切多聚半 乳糖醛酸酶 PG | 果胶酸裂 解酶 PL | β-半乳糖 苷酶 β-Gal | α-L-阿拉伯呋 喃糖苷酶 α-AF |
|---|---|---|---|---|---|---|---|---|
| 徐香 | 硬度Firmness | 25 | — | -0.724 | -0.879* | 0.027 | -0.921** | -0.675 |
| Xuxiang | 4 | — | -0.846** | -0.420 | -0.461 | -0.708* | -0.943** | |
| 水溶性果胶WSP | 25 | -0.986** | 0.655 | 0.807 | 0.087 | 0.903* | 0.730 | |
| 4 | -0.955** | 0.843** | 0.207 | 0.504 | 0.691 | 0.859** | ||
| 离子型果胶ISP | 25 | 0.647 | -0.589 | -0.531 | 0.623 | -0.542 | 0.076 | |
| 4 | 0.619 | -0.340 | -0.529 | -0.443 | -0.566 | -0.711* | ||
| 共价型果胶CSP | 25 | 0.950** | -0.764 | -0.773 | -0.025 | -0.809 | -0.760 | |
| 4 | 0.993** | -0.811* | -0.341 | -0.547 | -0.743* | -0.931** | ||
| 半纤维素HCL | 25 | 0.977** | -0.613 | -0.827* | -0.143 | -0.922** | -0.789 | |
| 4 | 0.908** | -0.859** | -0.296 | -0.394 | -0.642 | -0.868** | ||
| 纤维素CL | 25 | 0.981** | -0.690 | -0.790 | -0.075 | -0.874* | -0.741 | |
| 4 | 0.976** | -0.839** | -0.318 | -0.476 | -0.715* | -0.924** | ||
| 金丽 | 硬度Firmness | 25 | — | -0.185 | -0.333 | -0.787 | -0.376 | -0.783 |
| Jinli | 4 | — | -0.612 | -0.237 | -0.692 | -0.375 | -0.756* | |
| 水溶性果胶WSP | 25 | -0.991** | 0.065 | 0.318 | 0.823 | 0.379 | 0.759 | |
| 4 | -0.911** | 0.696 | 0.377 | 0.807* | 0.552 | 0.918** | ||
| 离子型果胶ISP | 25 | -0.082 | 0.515 | 0.967* | 0.552 | 0.943 | 0.681 | |
| 4 | 0.820* | -0.447 | -0.164 | -0.579 | -0.117 | -0.346 | ||
| 共价型果胶CSP | 25 | 0.965* | 0.038 | -0.098 | -0.686 | -0.162 | -0.601 | |
| 4 | 0.996** | -0.648 | -0.225 | -0.682 | -0.441 | -0.791* | ||
| 半纤维素HCL | 25 | 0.984* | -0.313 | -0.489 | -0.838 | -0.519 | -0.880 | |
| 4 | 0.934** | -0.754* | -0.239 | -0.721* | -0.600 | -0.904** | ||
| 纤维素CL | 25 | 0.997** | -0.256 | -0.400 | -0.803 | -0.434 | -0.827 | |
| 4 | 0.939** | -0.670 | -0.291 | -0.703 | -0.562 | -0.845** | ||
| 晚绿 | 硬度Firmness | 25 | — | -0.765 | 0.009 | 0.366 | -0.300 | -0.686 |
| Wanlv | 4 | — | -0.968* | -0.346 | 0.978* | -0.709 | -0.493 | |
| 水溶性果胶WSP | 25 | -0.987* | 0.844 | 0.147 | -0.343 | 0.449 | 0.790 | |
| 4 | -0.994** | 0.941 | 0.291 | -0.970* | 0.634 | 0.453 | ||
| 离子型果胶ISP | 25 | 0.432 | -0.625 | 0.212 | -0.674 | -0.034 | -0.121 | |
| 4 | -0.065 | 0.212 | 0.262 | -0.149 | 0.750 | 0.610 | ||
| 共价型果胶CSP | 25 | 0.999** | -0.781 | -0.037 | 0.380 | -0.342 | -0.719 | |
| 4 | 0.972* | -0.885 | -0.161 | 0.963* | -0.561 | -0.469 | ||
| 半纤维素HCL | 25 | 0.984* | -0.714 | -0.062 | 0.517 | -0.344 | -0.731 | |
| 4 | 0.868 | -0.765 | 0.102 | 0.951* | -0.707 | -0.815 | ||
| 纤维素CL | 25 | 0.992** | -0.760 | -0.079 | 0.455 | -0.371 | -0.747 | |
| 4 | 0.958* | -0.867 | -0.067 | 0.990* | -0.667 | -0.650 |
| [1] |
STEELHEART C, ALEGRE M L, VERA BAHIMA J, et al. Nitric oxide improves the effect of 1-methylcyclopropene extending the tomato (Lycopersicum esculentum L.) fruit postharvest life[J]. Scientia Horticulturae, 2019, 255: 193-201.
DOI URL |
| [2] | 黄文俊, 钟彩虹. 猕猴桃果实采后生理研究进展[J]. 植物科学学报, 2017, 35(4): 622-630. |
| HUANG W J, ZHONG C H. Research advances in the postharvest physiology of kiwifruit[J]. Plant Science Journal, 2017, 35(4): 622-630. (in Chinese with English abstract) | |
| [3] |
ATKINSON R G, GUNASEELAN K, WANG M Y, et al. Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line[J]. Journal of Experimental Botany, 2011, 62(11): 3821-3835.
DOI PMID |
| [4] |
WHITE A, DE SILVA H N, REQUEJO-TAPIA C, et al. Evaluation of softening characteristics of fruit from 14 species of Actinidia[J]. Postharvest Biology and Technology, 2005, 35(2): 143-151.
DOI URL |
| [5] |
FULLERTON C G, PRAKASH R, NINAN A S, et al. Fruit from two kiwifruit genotypes with contrasting softening rates show differences in the xyloglucan and pectin domains of the cell wall[J]. Frontiers in Plant Science, 2020, 11: 964.
DOI PMID |
| [6] | 钟彩虹, 李大卫, 韩飞, 等. 猕猴桃品种果实性状特征和主成分分析研究[J]. 植物遗传资源学报, 2016, 17(1): 92-99. |
| ZHONG C H, LI D W, HAN F, et al. Fruit characters and principal component analysis of different ploidy of kiwifruit cultivars(Actinidia chinensis Planch)[J]. Journal of Plant Genetic Resources, 2016, 17(1): 92-99. (in Chinese with English abstract) | |
| [7] | 高萌, 屈魏, 冉昪, 等. ‘徐香’与‘海沃德’猕猴桃冷藏期间组织结构与生理变化差异[J]. 园艺学报, 2020, 47(7): 1289-1300. |
| GAO M, QU W, RAN B, et al. Differences in tissue structure and physiological changes of ‘Xuxiang’ and ‘Hayward’ kiwifruit fruits during cold storage[J]. Acta Horticulturae Sinica, 2020, 47(7): 1289-1300. (in Chinese with English abstract) | |
| [8] |
柴吉钏, 刘璐, 陈景丹, 等. 两品种猕猴桃果实采后淀粉降解特性比较分析[J]. 核农学报, 2021, 35(9): 2065-2074.
DOI |
| CHAI J C, LIU L, CHEN J D, et al. Comparative analysis of starch degradation characteristics of two varieties of kiwifruit after harvest[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2065-2074. (in Chinese with English abstract) | |
| [9] | 孙兴盛, 顾思彤, 蒋海峰, 等. 软枣猕猴桃后熟过程中生理及品质变化规律[J]. 包装工程, 2021, 42(5): 45-54. |
| SUN X S, GU S T, JIANG H F, et al. Physiology and quality change laws of Actinidia arguta during late ripening[J]. Packaging Engineering, 2021, 42(5): 45-54. (in Chinese with English abstract) | |
| [10] | 方金豹, 钟彩虹. 新中国果树科学研究70年: 猕猴桃[J]. 果树学报, 2019, 36(10): 1352-1359. |
| FANG J B, ZHONG C H. Fruit scientific research in New China in the past 70 years: kiwifruit[J]. Journal of Fruit Science, 2019, 36(10): 1352-1359. (in Chinese with English abstract) | |
| [11] | 冉昪, 高萌, 屈魏, 等. 限气包装对‘绿迷一号’软枣猕猴桃采后贮藏特性的影响[J]. 西北农业学报, 2020, 29(12): 1848-1858. |
| RAN B, GAO M, QU W, et al. Effect of air-limiting package on postharvest storage characteristics of ‘Lümi No.1’ Actinidia arguta fruit[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(12): 1848-1858. (in Chinese with English abstract) | |
| [12] |
KIM A N, KIM H J, CHUN J, et al. Degradation kinetics of phenolic content and antioxidant activity of hardy kiwifruit (Actinidia arguta) puree at different storage temperatures[J]. LWT-Food Science and Technology, 2018, 89: 535-541.
DOI URL |
| [13] | POSÉ S, PANIAGUA C, MATAS A J, et al. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy[J]. Trends in Food Science & Technology, 2019, 87: 47-58. |
| [14] |
WANG D D, YEATS T H, ULUISIK S, et al. Fruit softening: revisiting the role of pectin[J]. Trends in Plant Science, 2018, 23(4): 302-310.
DOI PMID |
| [15] |
WANG H, WANG J, MUJUMDAR A S, et al. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids, 2021, 118: 106808.
DOI URL |
| [16] | 陈凯莉, 许轲, 张贤聪, 等. 果实中果胶代谢相关酶基因的研究进展[J]. 园艺学报, 2017, 44(10): 2008-2014. |
| CHEN K L, XU K, ZHANG X C, et al. Advances in genes information involved in pectin metabolism in fruit[J]. Acta Horticulturae Sinica, 2017, 44(10): 2008-2014. (in Chinese with English abstract) | |
| [17] |
BONGHI C, PAGNI S, VIDRIH R, et al. Cell wall hydrolases and amylase in kiwifruit softening[J]. Postharvest Biology and Technology, 1996, 9(1): 19-29.
DOI URL |
| [18] | 王贵禧, 韩雅珊. 猕猴桃果实中PME, PG及其抑制因子的研究[J]. 中国农业大学学报, 1998, 3(1): 88-94. |
| WANG G X, HAN Y S. A review of pectinmethylesterase, polygalacturonase and their inhibitors in Actinidia[J]. Journal of China Agricultural University, 1998, 3(1): 88-94. (in Chinese with English abstract) | |
| [19] | 李圆圆, 罗安伟, 李琳, 等. 采前氯吡脲处理对‘秦美’猕猴桃贮藏期间果实硬度及细胞壁降解的影响[J]. 食品科学, 2018, 39(21): 273-278. |
| LI Y Y, LUO A W, LI L, et al. Effect of preharvest 1-(2-chloropyridin-4-yl)-3-phenylurea treatment on fruit firmness and cell wall degradation of ‘Qinmei' kiwifruit during cold storage[J]. Food Science, 2018, 39(21): 273-278. (in Chinese with English abstract) | |
| [20] | 李瑞娟, 杨淑霞, 王丹, 等. 高能电子束辐照对猕猴桃细胞壁降解相关酶活性和基因表达的影响[J]. 食品工业科技, 2022, 43(1): 326-334. |
| LI R J, YANG S X, WANG D, et al. Effect of high energy electron beam irradiation on cell wall degradation related enzyme activities and gene expressions of kiwifruit[J]. Science and Technology of Food Industry, 2022, 43(1): 326-334. (in Chinese with English abstract) | |
| [21] | 冯新, 赖瑞联, 高敏霞, 等. Adβgal-1和Adβgal-2克隆及其在猕猴桃果实软化中的作用[J]. 中国农业科学, 2019, 52(2): 312-326. |
| FENG X, LAI R L, GAO M X, et al. Cloning of Adβgal-1 and Adβgal-2 genes and their roles during fruit softening of kiwifruit[J]. Scientia Agricultura Sinica, 2019, 52(2): 312-326. (in Chinese with English abstract) | |
| [22] |
YANG L, HUANG W, XIONG F, et al. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould[J]. Plant Biotechnology Journal, 2017, 15(12): 1544-1555.
DOI PMID |
| [23] |
FIGUEROA C R, OPAZO M C, VERA P, et al. Effect of postharvest treatment of calcium and auxin on cell wall composition and expression of cell wall-modifying genes in the Chilean strawberry (Fragaria chiloensis) fruit[J]. Food Chemistry, 2012, 132(4): 2014-2022.
DOI URL |
| [24] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. |
| [25] | 徐昌杰, 陈昆松, 张上隆. 气调对猕猴桃果实贮藏的效应及其生理基础[J]. 应用基础与工程科学学报, 1998, 6(2): 30-35. |
| XU C J, CHEN K S, ZHANG S L. Effect of modified atomosphere on postharvest storage of kiwifruit and the mechanisms involved[J]. Journal of Basic Science and Engineering, 1998, 6(2): 30-35. (in Chinese with English abstract) | |
| [26] | 王倩, 郏艳红, 孙海波, 等. 不同耐贮性粉果番茄贮藏期间果实软化相关酶活性的研究[J]. 保鲜与加工, 2020, 20(1): 72-77. |
| WANG Q, JIA Y H, SUN H B, et al. Research on the activities of enzymes involved in fruits softening of pink tomato with different storage property during storage[J]. Storage and Process, 2020, 20(1): 72-77. (in Chinese with English abstract) | |
| [27] |
CAFFALL K H, MOHNEN D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides[J]. Carbohydrate Research, 2009, 344(14): 1879-1900.
DOI PMID |
| [28] | 谢俊英. 1-MCP处理对猕猴桃果实衰老控制及其作用机理的研究[D]. 福州: 福建农林大学, 2013. |
| XIE J Y. Effects of 1-MCP treatment on senescence control of kiwifruits and its mechanism involved[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese with English abstract) | |
| [29] | 李明霞. 微波处理对猕猴桃软化相关酶活性及基因表达强度的研究[D]. 合肥: 安徽农业大学, 2016. |
| LI M X. Research on the relative enzymes activity and gene expression intensity in softened kiwifruit caused by microwave processing[D]. Hefei: Anhui Agricultural University, 2016. (in Chinese with English abstract) | |
| [30] | HUANG W, CHEN M, ZHAO T, et al. Genome-wide identification and expression analysis of polygalacturonase gene family in kiwifruit (Actinidia chinensis) during fruit softening[J]. Plants (Basel, Switzerland), 2020, 9(3): E327. |
| [31] | 齐秀东, 魏建梅, 高海生, 等. 梨果实发育软化与果胶多糖降解特性的关系[J]. 中国农业科学, 2015, 48(15): 3027-3037. |
| QI X D, WEI J M, GAO H S, et al. Pectin polysaccharide degradation in relation to the texture softening in pear fruit[J]. Scientia Agricultura Sinica, 2015, 48(15): 3027-3037. (in Chinese with English abstract) |
| [1] | 李强, 刘思彤, 黄显斌, 姜君龙, 邓建宇, 王教瑜, 李玲. 山区猕猴桃溃疡病病原菌的鉴定及不同类型高效防治药剂的筛选[J]. 浙江农业学报, 2025, 37(10): 2116-2128. |
| [2] | 俞沁佩, 孙鹂, 张淑文, 俞浙萍, 郑锡良, 戚行江. 园艺作物果实β-半乳糖苷酶研究进展[J]. 浙江农业学报, 2024, 36(9): 2184-2192. |
| [3] | 高憬, 陆玲鸿, 古咸彬, 范飞, 宋根华, 张慧琴. 猕猴桃AcWRKY94基因的克隆及其在盐胁迫下的功能分析[J]. 浙江农业学报, 2024, 36(11): 2501-2509. |
| [4] | 陈大刚, 徐开未, 彭丹丹, 游浩宇, 杨然, 廖慧苹, 陈远学. 不同水分处理对基质栽培对萼猕猴桃幼苗生长及养分吸收的影响[J]. 浙江农业学报, 2023, 35(12): 2854-2864. |
| [5] | 杨迪, 张乃群, 王雪勇, 张军, 王新军. 基于数量性状的伏牛山野生中华猕猴桃资源综合评价[J]. 浙江农业学报, 2023, 35(10): 2354-2363. |
| [6] | 彭丹丹, 陈大刚, 徐开未, 游浩宇, 杨然, 廖慧苹, 陈远学. 椰糠复合基质对猕猴桃砧木幼苗生长及根系特征的影响[J]. 浙江农业学报, 2023, 35(10): 2364-2377. |
| [7] | 王英珍, 潘芝梅. 二十二份毛花猕猴桃种质资源果实品质的主成分分析与综合评价[J]. 浙江农业学报, 2021, 33(5): 825-830. |
| [8] | 孟庆龙, 张艳, 尚静. 基于高光谱成像的猕猴桃表面疤痕无损识别[J]. 浙江农业学报, 2019, 31(8): 1372-1378. |
| [9] | 王茹琳, 李庆, 王明田. 中华猕猴桃在中国种植适宜性区划[J]. 浙江农业学报, 2018, 30(9): 1504-1512. |
| [10] | 钟永军, 何昕蔚, 余达勇, 蒋晶晶, 江景勇. 台州猕猴桃溃疡病病原菌分子鉴定及药剂筛选[J]. 浙江农业学报, 2018, 30(9): 1548-1554. |
| [11] | 杨颖, 唐伟敏, 陆胜民. 加工条件对细菌纤维素凝胶理化性质的影响[J]. 浙江农业学报, 2018, 30(4): 661-665. |
| [12] | 周然, 吴琼. 模拟不同等级道路运输振动对哈密瓜软化和果胶降解的影响[J]. 浙江农业学报, 2018, 30(11): 1832-1838. |
| [13] | 高帆, 夏惠, 袁雪侦, 黄守义, 刘继, 梁东. 外源褪黑素对盐胁迫下猕猴桃幼苗酚类物质含量和抗氧化能力的影响[J]. 浙江农业学报, 2017, 29(7): 1144-1150. |
| [14] | 张琪琪,万映秀,曹文昕,李炎,张平治*. 小麦籽粒硬度及淀粉糊化特性研究[J]. 浙江农业学报, 2016, 28(5): 731-. |
| [15] | 吕天雯1,栗望薇1,张太奎1,刘惠民1,李琨2,*. 猕猴桃AFLP分析体系的建立及其组培变异苗的动态检测[J]. 浙江农业学报, 2016, 28(4): 618-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||