浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2818-2829.DOI: 10.3969/j.issn.1004-1524.20230127
张喜闻1(), 郭晓农1,2,3,*(
), 王泽兴1, 王亚玲1
收稿日期:
2023-02-08
出版日期:
2023-12-25
发布日期:
2023-12-27
作者简介:
张喜闻(1999—),男,贵州黔东南人,硕士研究生,主要从事饲草料资源开发与利用研究。E-mail: caideyu2020@126.com
通讯作者:
*郭晓农,E-mail:gxnwww@126.com
基金资助:
ZHANG Xiwen1(), GUO Xiaonong1,2,3,*(
), WANG Zexing1, WANG Yaling1
Received:
2023-02-08
Online:
2023-12-25
Published:
2023-12-27
摘要:
本试验通过不同益生菌配伍发酵藜麦秸秆饲料,探究复合益生菌发酵藜麦秸秆饲料的最佳发酵工艺。试验选取乳酸菌、酵母菌、解淀粉芽孢杆菌为发酵菌剂,由乳酸菌和酵母菌、乳酸菌和解淀粉芽孢杆菌组成不同比例配伍,设置三因素三水平的正交试验,每种复合菌剂发酵藜麦秸秆饲料包括9个试验组,同时设置空白对照组,试验中的三因素分别为藜麦秸秆饲料发酵的混菌比例,发酵时间和发酵含水量,每个因素下设置3个水平分别为混菌比例1∶1、1∶2、2∶1;发酵含水量为50%、60%、70%,通过设置短期(3 d、5 d、7 d)和长期(10 d、20 d、30 d)发酵藜麦秸秆,检测不同试验组藜麦秸秆发酵后的营养指标,确定藜麦秸秆优势发酵菌种及发酵工艺,并通过响应面法优化处理,获得最优发酵工艺。试验结果表明,当发酵条件设置含水量为60%,发酵时间为30 d,乳酸菌和酵母菌菌剂添加比例为1∶2时,藜麦秸秆饲料营养含量变化较为显著。乳酸菌和酵母菌长期发酵藜麦秸秆饲料其效益更显著,乳酸菌和解淀粉芽孢杆菌短期和长期发酵藜麦秸秆饲料都对其具有一定的促进作用。综上所述,藜麦秸秆饲料的最佳发酵工艺为,发酵菌剂(乳酸菌和酵母菌)的比例为1∶2,含水量为60%,发酵时间为30 d,此时藜麦秸秆饲料的粗蛋白、粗脂肪、粗纤维、粗灰分含量分别为14.68%、3.67%、24.37%、11.26%,经响应面法优化后粗蛋白、粗脂肪、粗纤维、粗灰分的含量分别为14.69%、3.71%、24.36%、11.22%。
中图分类号:
张喜闻, 郭晓农, 王泽兴, 王亚玲. 不同复合益生菌对藜麦秸秆发酵饲料的发酵工艺优化[J]. 浙江农业学报, 2023, 35(12): 2818-2829.
ZHANG Xiwen, GUO Xiaonong, WANG Zexing, WANG Yaling. Optimization of fermentation process of quinoa straw fermented feed with different compound probiotics[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2818-2829.
水平 Level | 含水量 Moisture content/% | 发酵时间 Fermentation time/d | 乳酸菌∶酵母菌 Lactobacillus∶Saccharomyces cerevisiae | 乳酸菌∶解淀粉芽孢杆菌 Lactobacillus∶Bacillus amyloliquefaciens |
---|---|---|---|---|
1 | 50 | 3 | 1∶1 | 1∶1 |
2 | 60 | 5 | 1∶2 | 1∶2 |
3 | 70 | 7 | 2∶1 | 2∶1 |
4 5 6 | 50 60 70 | 10 20 30 | 1∶1 1∶2 2∶1 | 1∶1 1∶2 2∶1 |
表1 短期与长期发酵藜麦秸秆饲料正交因素水平表
Table 1 Orthogonal factor level table for short-term and long-term fermentation of quinoa straw feed
水平 Level | 含水量 Moisture content/% | 发酵时间 Fermentation time/d | 乳酸菌∶酵母菌 Lactobacillus∶Saccharomyces cerevisiae | 乳酸菌∶解淀粉芽孢杆菌 Lactobacillus∶Bacillus amyloliquefaciens |
---|---|---|---|---|
1 | 50 | 3 | 1∶1 | 1∶1 |
2 | 60 | 5 | 1∶2 | 1∶2 |
3 | 70 | 7 | 2∶1 | 2∶1 |
4 5 6 | 50 60 70 | 10 20 30 | 1∶1 1∶2 2∶1 | 1∶1 1∶2 2∶1 |
处理 Treatment | 含水量 Moisture content/% | 发酵时间 Fermentation time/d | 乳酸菌∶酵母菌 Lactobacillus∶ Saccharomyces cerevisiae | 菌剂添加量Amount of bacteria added/g | |
---|---|---|---|---|---|
乳酸菌 Lactobacillus | 酵母菌 Saccharomyces cerevisiae | ||||
0 | — | — | — | — | — |
1 | 50 | 3 | 1∶1 | 1 | 1 |
2 | 60 | 3 | 1∶2 | 1 | 2 |
3 | 70 | 3 | 2∶1 | 1 | 0.5 |
4 | 50 | 5 | 1∶2 | 1 | 2 |
5 | 60 | 5 | 1∶1 | 1 | 1 |
6 | 70 | 5 | 2∶1 | 1 | 0.5 |
7 | 50 | 7 | 2∶1 | 1 | 0.5 |
8 | 60 | 7 | 1∶2 | 1 | 2 |
9 | 70 | 7 | 1∶1 | 1 | 1 |
10 | 50 | 10 | 1∶1 | 1 | 1 |
11 | 60 | 10 | 1∶2 | 1 | 2 |
12 | 70 | 10 | 2∶1 | 1 | 0.5 |
13 | 50 | 20 | 1∶2 | 1 | 2 |
14 | 60 | 20 | 1∶1 | 1 | 1 |
15 | 70 | 20 | 2∶1 | 1 | 0.5 |
16 | 50 | 30 | 2∶1 | 1 | 0.5 |
17 | 60 | 30 | 1∶2 | 1 | 2 |
18 | 70 | 30 | 1∶1 | 1 | 1 |
表2 短期与长期发酵乳酸菌和酵母菌藜麦秸秆饲料发酵对照组与正交试验处理组
Table 2 Orthogonal test treatments and the control for short-term and long-term fermentation of Lactobacillus and Saccharomyces cerevisiae in quinoa straw feed
处理 Treatment | 含水量 Moisture content/% | 发酵时间 Fermentation time/d | 乳酸菌∶酵母菌 Lactobacillus∶ Saccharomyces cerevisiae | 菌剂添加量Amount of bacteria added/g | |
---|---|---|---|---|---|
乳酸菌 Lactobacillus | 酵母菌 Saccharomyces cerevisiae | ||||
0 | — | — | — | — | — |
1 | 50 | 3 | 1∶1 | 1 | 1 |
2 | 60 | 3 | 1∶2 | 1 | 2 |
3 | 70 | 3 | 2∶1 | 1 | 0.5 |
4 | 50 | 5 | 1∶2 | 1 | 2 |
5 | 60 | 5 | 1∶1 | 1 | 1 |
6 | 70 | 5 | 2∶1 | 1 | 0.5 |
7 | 50 | 7 | 2∶1 | 1 | 0.5 |
8 | 60 | 7 | 1∶2 | 1 | 2 |
9 | 70 | 7 | 1∶1 | 1 | 1 |
10 | 50 | 10 | 1∶1 | 1 | 1 |
11 | 60 | 10 | 1∶2 | 1 | 2 |
12 | 70 | 10 | 2∶1 | 1 | 0.5 |
13 | 50 | 20 | 1∶2 | 1 | 2 |
14 | 60 | 20 | 1∶1 | 1 | 1 |
15 | 70 | 20 | 2∶1 | 1 | 0.5 |
16 | 50 | 30 | 2∶1 | 1 | 0.5 |
17 | 60 | 30 | 1∶2 | 1 | 2 |
18 | 70 | 30 | 1∶1 | 1 | 1 |
图1 乳酸菌和酵母菌,乳酸菌和解淀粉芽孢杆菌藜麦秸秆发酵试验结果比较
Fig.1 Comparison of fermentation test results of quinoa straw by Lactobacillus and Saccharomyces cerevisiae, Lactobacillus and Bacillus amyloliquefaciens
图2 乳酸菌和酵母菌、乳酸菌和解淀粉芽孢杆菌短期(A、B)和长期(C、D)发酵藜麦秸秆饲料粗蛋白含量响应面图
Fig.2 Response surface map of crude protein content of quinoa straw feed fermented by Lactobacillus and Saccharomyces cerevisiae, Lactobacillus and Bacillus amyloliquefaciens in short-term (A, B) and long-term (C, D) fermentation
图3 乳酸菌和酵母菌、乳酸菌和解淀粉芽孢杆菌短期(A、B)和长期(C、D)发酵藜麦秸秆饲料粗脂肪含量响应面图
Fig.3 Response surface map of crude fat content of quinoa straw feed fermented by Lactobacillus and Saccharomyces cerevisiae, Lactobacillus and Bacillus amyloliquefaciens in short-term (A, B) and long-term (C, D) fermentation
图4 乳酸菌和酵母菌、乳酸菌和解淀粉芽孢杆菌短期(A、B )和长期(C、D)发酵藜麦秸秆饲料粗纤维含量响应面图
Fig.4 Response surface map of crude fiber content of quinoa straw feed fermented by Lactobacillus and Saccharomyces cerevisiae, Lactobacillus and Bacillus amyloliquefaciens in short-term (A, B) and long-term (C, D) fermentation
图5 乳酸菌和酵母菌、乳酸菌和解淀粉芽孢杆菌短期(A、B)和长期(C、D)发酵藜麦秸秆饲料粗灰分含量响应面图
Fig.5 Response surface map of crude ash content of quinoa straw feed fermented by Lactobacillus and Saccharomyces qiyoucil, Lactobacillus and Bacillus amyloliquefaciens in short-term (A, B) and long-term (C, D) fermentation
[1] | 王伟, 邵燕, 庞鹤鸣, 等. 藜麦营养功能及饲料化利用发展前景[J]. 养殖与饲料, 2021, 20(10): 78-81. |
WANG W, SHAO Y, PANG H M, et al. Nutritional function of quinoa and its development prospect of feed utilization[J]. Animals Breeding and Feed, 2021, 20(10): 78-81. (in Chinese) | |
[2] | 余肖飞, 郭晓农, 张妍, 等. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报, 2021, 30(5): 155-164. |
YU X F, GUO X N, ZHANG Y, et al. Optimization of fermentation technology for production of quinoa straw feed using response surface methodology[J]. Acta Prataculturae Sinica, 2021, 30(5): 155-164. (in Chinese with English abstract) | |
[3] | 吕敬, 吴治勇, 郭晓农, 等. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876. |
LYU J, WU Z Y, GUO X N, et al. Optimization of fermented quinoa straw with lactic acid bacteria by response surface methodology[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1866-1876. (in Chinese with English abstract) | |
[4] | 周治. 我国农业秸秆高值化利用现状与困境分析[J]. 中国农业科技导报, 2021, 23(2): 9-16. |
ZHOU Z. Analysis on the present situation and predicament of high-value utilization of agricultural straw in China[J]. Journal of Agricultural Science and Technology, 2021, 23(2): 9-16. (in Chinese with English abstract) | |
[5] | 张志恒, 王玉琴, 任国艳, 等. 基于主成分分析和隶属函数分析评价不同添加剂处理的玉米秸秆青贮的发酵品质[J]. 动物营养学报, 2022, 34(4): 2677-2688. |
ZHANG Z H, WANG Y Q, REN G Y, et al. Evaluation of fermentation quality of corn straw silage treated with different additives based on principal component analysis and membership function analysis[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2677-2688. (in Chinese with English abstract) | |
[6] | 刘海燕, 王秀飞, 王彦靖, 等. 秸秆黄贮的研究进展[J]. 饲料研究, 2021, 44(19): 153-156. |
LIU H Y, WANG X F, WANG Y J, et al. Research progress of stover silage[J]. Feed Research, 2021, 44(19): 153-156. (in Chinese with English abstract) | |
[7] | 宋立立, 王恩. 微生物发酵饲料在畜禽养殖中的应用进展[J]. 饲料研究, 2020, 43(8): 138-141. |
SONG L L, WANG E. Application progress of microbial fermentation feed in livestock and poultry breeding[J]. Feed Research, 2020, 43(8): 138-141. (in Chinese with English abstract) | |
[8] | YEN T T, QUAN T H, NHUNG H T H, et al. Development of antioxidative red dragon fruit bar by using response surface methodology for formulation optimization[J]. Applied Food Research, 2022, 2(2): 100173. |
[9] | ABDELSHAFY A M, EL-NAGGAR E A, KENAWI M N. Enhancing of nutritional properties of quinoa fermented by probiotics[J]. Discover Food, 2022, 2(1): 21. |
[10] | FANG D, DONG Z H, WANG D L, et al. Evaluating the fermentation quality and bacterial community of high-moisture whole-plant quinoa silage ensiled with different additives[J]. Journal of Applied Microbiology, 2022, 132(5): 3578-3589. |
[11] | CHAWANDA E T, MANHOKWE S, JOMBO T Z, et al. Optimisation of malting parameters for quinoa and barley: application of response surface methodology[J]. Journal of Food Quality, 2022, 2022: 1-12. |
[12] | 王世伟, 王卿惠, 翟丽萍, 等. 解淀粉芽胞杆菌抗真菌活性研究进展[J]. 中国微生态学杂志, 2020, 32(8): 971-978. |
WANG S W, WANG Q H, ZHAI L P, et al. Research progress on antifungal activity of Bacillus amyloidii[J]. Chinese Journal of Microecology, 2020, 32(8): 971-978.( in Chinese) | |
[13] | IDOWU M D, TAIWO G, PECH CERVANTES A, et al. Effects of a multicomponent microbial feed additive containing prebiotics and probiotics on health, immune status, metabolism, and performance of newly weaned beef steers during a 35-d receiving period[J]. Translational Animal Science, 2022, 6(2): txac053. |
[14] | 黄世群, 文婷, 秦琳, 等. 青饲料及青贮饲料中水分测定方法的探讨[J]. 四川农业科技, 2020(10): 46-47. |
HUANG S Q, WEN T, QIN L, et al. Discussion on determination method of moisture in green feed and silage[J]. Sichuan Agricultural Science and Technology, 2020(10): 46-47. (in Chinese) | |
[15] | 张甜甜, 纪君波, 徐燕红, 等. 谷氨酰胺对育成期水貂饲粮营养物质消化率和脏器重量的影响[J]. 中国畜牧杂志, 2019, 55(7): 137-141. |
ZHANG T T, JI J B, XU Y H, et al. Effects of glutamine on nutrient digestibility and organ weight of growing mink diet[J]. Chinese Journal of Animal Science, 2019, 55(7): 137-141. (in Chinese) | |
[16] | 袁翠林, 于子洋, 王文丹, 等. 山东省羊常用粗饲料营养价值评定[J]. 草业学报, 2015, 24(6): 220-226. |
YUAN C L, YU Z Y, WANG W D, et al. Evaluation of the nutritional value of goat forages in Shandong Province[J]. Acta Prataculturae Sinica, 2015, 24(6): 220-226. (in Chinese with English abstract) | |
[17] | 孙盛明, 苏艳莉, 张武肖, 等. 饲料中添加枯草芽孢杆菌对团头鲂幼鱼生长性能、肝脏抗氧化指标、肠道菌群结构和抗病力的影响[J]. 动物营养学报, 2016, 28(2): 507-514. |
SUN S M, SU Y L, ZHANG W X, et al. Effects of dietary Bacillus subtilis on growth performance, liver antioxidant ability, intestinal microflora structure and disease resistance of juvenile blunt snout bream(Megalobrama amblycephala)[J]. Chinese Journal of Animal Nutrition, 2016, 28(2): 507-514. (in Chinese with English abstract) | |
[18] | 陈谭星, 孙慧军, 曹力凡, 等. 不同植物生长调节剂对构树营养品质的影响[J]. 饲料研究, 2022, 45(11): 97-101. |
CHEN T X, SUN H J, CAO L F, et al. Effect of different plant growth regulators on nutritional quality of paper mulberry[J]. Feed Research, 2022, 45(11): 97-101. (in Chinese with English abstract) | |
[19] | 董柯. 高效产酸菌的筛选鉴定及其在玉米秸秆青贮中的应用研究[D]. 镇江: 江苏大学, 2021. |
DONG K. Screening and identification of high-efficiency acid-producing bacteria and its application in corn straw silage[D]. Zhenjiang: Jiangsu University, 2021. (in Chinese with English abstract) | |
[20] | 李茂龙, 谢建亮, 常娟, 等. 微生物饲料添加剂对固原黄牛生长性能和瘤胃微生物区系的影响[J]. 动物营养学报, 2022, 34(6): 3758-3767. |
LI M L, XIE J L, CHANG J, et al. Effects of microbial feed additives on growth performance and rumen microflora of Guyuan yellow cattle[J]. Chinese Journal of Animal Nutrition, 2022, 34(6): 3758-3767. (in Chinese with English abstract) | |
[21] | 谢婉馨, 李顺祥, 冯露雅, 等. 无抗饲料添加剂的研究进展[J]. 生物化工, 2020, 6(3): 164-169. |
XIE W X, LI S X, FENG L Y, et al. Research progress of antibiotics-free feed additive[J]. Biological Chemical Engineering, 2020, 6(3): 164-169. (in Chinese with English abstract) | |
[22] | 杨文鸽, 谢果凰, 颜伟华, 等. 响应面分析法优化海鳗的湿腌工艺[J]. 中国食品学报, 2010, 10(1): 133-139. |
YANG W G, XIE G H, YAN W H, et al. Optimization of wet-salting technology for Muraenesox cinereus using response surface analysis[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(1): 133-139. (in Chinese with English abstract) | |
[23] | 肖卫华, 韩鲁佳, 杨增玲, 等. 响应面法优化黄芪黄酮提取工艺的研究[J]. 中国农业大学学报, 2007, 12(5): 52-56. |
XIAO W H, HAN L J, YANG Z L, et al. Optimization of alcohol extraction techniques of flavonoids from Radix astragali using response surface methodology[J]. Journal of China Agricultural University, 2007, 12(5): 52-56. (in Chinese with English abstract) | |
[24] | DIREKVANDI E, MOHAMMADABADI T, SALEM A Z M. Effect of microbial feed additives on growth performance, microbial protein synthesis, and rumen microbial population in growing lambs[J]. Translational Animal Science, 2020, 4(4): txaa203. |
[25] | DIREKVANDI E, MOHAMMADABADI T, SALEM A Z M. Influence of three microbial feed additives of Megasphaera elsdenii, Saccharomyces cerevisiae and Lactobacillus sp. on ruminal methane and carbon dioxide production, and biofermentation kinetics[J]. Journal of Applied Microbiology, 2021, 131(2): 623-633. |
[26] | JOYJAMRAS K, CHAOTHAM C, CHANVORACHOTE P. Response surface optimization of enzymatic hydrolysis and ROS scavenging activity of silk sericin hydrolysates[J]. Pharmaceutical Biology, 2022, 60(1): 308-318. |
[27] | LEE T T, CHOU C H, WANG C, et al. Bacillus amyloliquefaciens and Saccharomyces cerevisiae feed supplements improve growth performance and gut mucosal architecture with modulations on cecal microbiota in red-feathered native chickens[J]. Animal Bioscience, 2022, 35(6): 869-883. |
[28] | 杨文秀, 陈效儒, 文华, 等. 高植物蛋白饲料中添加蛋白酶对克氏原螯虾生长、免疫力及消化力的影响[J]. 水产学报, 2022, 46(6): 1053-1062. |
YANG W X, CHEN X R, WEN H, et al. Effects of dietary protease supplementation in high-plant-protein diets on the growth, immunity and digestion of red swamp crayfish(Procambarus clarkii)[J]. Journal of Fisheries of China, 2022, 46(6): 1053-1062. (in Chinese with English abstract) | |
[29] | 高俊峰, 邵瑞, 黄婷. 不同地区米糠粕营养价值的研究[J]. 粮食与饲料工业, 2022(3): 50-53. |
GAO J F, SHAO R, HUANG T. Study on nutritional value of rice bran meal in different areas[J]. Cereal & Feed Industry, 2022(3): 50-53. (in Chinese with English abstract) | |
[30] | 刘毅, 张群英, 拜彬强, 等. 饲粮粗脂肪水平对舍饲牦牛有害气体排放动态变化的影响[J]. 动物营养学报, 2021, 33(11): 6584-6592. |
LIU Y, ZHANG Q Y, BAI B Q, et al. Effects of dietary ether extract level on dynamic changes of harmful gas emissions of house-feeding yaks[J]. Chinese Journal of Animal Nutrition, 2021, 33(11): 6584-6592. (in Chinese with English abstract) | |
[31] | 楚天舒, 杨增玲, 韩鲁佳. 中国农作物秸秆饲料化利用满足度和优势度分析[J]. 农业工程学报, 2016, 32(22): 1-9. |
CHU T S, YANG Z L, HAN L J. Analysis on satisfied degree and advantage degree of agricultural crop straw feed utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 1-9. (in Chinese with English abstract) | |
[32] | 姚逸安, 孙仁修, 胡情情, 等. 微生态制剂及在绵羊养殖中的应用研究进展[J]. 中国饲料, 2023(5): 16-23. |
YAO Y A, SUN R X, HU Q Q, et al. Research progress of microecological preparation and its application in sheep breeding[J]. China Feed, 2023(5): 16-23. (in Chinese with English abstract) | |
[33] | 袁玖, 万欣杰, 孙烈涛, 等. 不同降温方法对饲料中粗灰分测定的影响[J]. 中国饲料, 2014(18): 35-37. |
YUAN J, WAN X J, SUN L T, et al. Effects of different cooling methods on measuring crude ash of feeds[J]. China Feed, 2014(18): 35-37. (in Chinese with English abstract) | |
[34] | 李晓燕, 谢丽霞, 严秉莲, 等. 日粮中添加藜麦秸秆对湖羊生长性能和屠宰性能的影响[J]. 中国草食动物科学, 2022, 42(1): 79-81. |
LI X Y, XIE L X, YAN B L, et al. Effects of quinoa straw supplementation on growth performance and slaughter performance of Hu sheep[J]. China Herbivore Science, 2022, 42(1): 79-81. (in Chinese with English abstract) |
[1] | 吕敬, 吴治勇, 郭晓农, 冯玉兰, 卢建雄, 柴薇薇. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876. |
[2] | 潘旭婕, 刘瑞玲, 邓尚贵, 吴伟杰, 陈杭君, 郜海燕. 乳酸菌发酵杨梅果酱工艺优化及其风味成分分析[J]. 浙江农业学报, 2022, 34(7): 1502-1512. |
[3] | 江宇航, 辛维岗, 张棋麟, 邓先余, 王峰, 林连兵. 霉变饲用玉米真菌的分离、鉴定与乳酸菌素对其的防霉抑菌效果[J]. 浙江农业学报, 2021, 33(7): 1283-1291. |
[4] | 忻晓庭, 刘大群, 张程程, 吴敏, 陈登高, 章检明. 我国特色发酵蔬菜降解亚硝酸盐菌株的筛选鉴定及应用[J]. 浙江农业学报, 2021, 33(2): 335-345. |
[5] | 周强, 韩延超, 吴伟杰, 丁玉庭, 邵平, 童川, 郜海燕. 山核桃油脂凝胶制备工艺优化[J]. 浙江农业学报, 2021, 33(12): 2390-2396. |
[6] | 高竞, 方伟, 顾佳悦, 严淑娴, 邵帅, 梁辰飞, 秦华, 陈俊辉, 徐秋芳. 荧光标记解淀粉芽孢杆菌WK1在山核桃树体和土壤中的定殖规律[J]. 浙江农业学报, 2021, 33(1): 77-86. |
[7] | 桂雪儿, 王志, 李思婷, 贺濛初, 朱杰, 冯士彬, 吴金节. 鸡源复合益生菌对青年白羽肉杂鸡免疫球蛋白和Toll样受体通路的影响[J]. 浙江农业学报, 2020, 32(9): 1609-1614. |
[8] | 王明哲, 杨颖, 唐伟敏, 刘哲, 孙培龙, 陆胜民. 戊糖乳杆菌YY112产胞外多糖的发酵工艺条件优化[J]. 浙江农业学报, 2020, 32(2): 327-336. |
[9] | 范铭, 向露, 刘哲, 陆胜民. 基于体外降糖活性的桑葚渣水提物的超声辅助工艺优化[J]. 浙江农业学报, 2019, 31(3): 480-486. |
[10] | 马露, 孔维洲, 王丽萍, 张喜康, 王聪, 李佩佩, 刘敦华. 响应面法优化发酵鹿肉干工艺及其货架期预测[J]. 浙江农业学报, 2019, 31(12): 2109-2119. |
[11] | 王恒煦, 徐伟慧, 杨友财, 王志刚, 刘泽平, 王可昕. 一株Fusarium oxysporum f. sp. niveum拮抗菌的筛选、鉴定及其抑菌特性[J]. 浙江农业学报, 2019, 31(10): 1671-1680. |
[12] | 张文平, 王清, 黄诗宸, 吴佩佳, 程新. 乳酸菌胞外多糖对水稻生长及土壤理化性质的影响[J]. 浙江农业学报, 2019, 31(1): 130-138. |
[13] | 郑雅燕, 杨颖, 陆胜民, 曹亚裙. 白萝卜发酵饮料菌株筛选、鉴定及品质分析[J]. 浙江农业学报, 2017, 29(3): 506-514. |
[14] | 钱仲仓,杨泉灿*. 添加乳酸菌对茭白叶青贮品质的影响[J]. 浙江农业学报, 2015, 27(9): 1541-. |
[15] | 邹盈1,葛杭丽2,柳华贵2,孟祥河2,*. 产叶酸菌株的鉴定及其膨化糙米汁发酵工艺条件的优化[J]. 浙江农业学报, 2015, 27(4): 665-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||