Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (12): 2358-2369.DOI: 10.3969/j.issn.1004-1524.2021.12.16
• Environmental Science • Previous Articles Next Articles
GUO Han1,2,3(), XU Minxian3, XU Feifei2, LUO Ming2, LU Zhou2,*(
), ZHANG Xu1,*(
)
Received:
2021-03-07
Online:
2021-12-25
Published:
2022-01-10
Contact:
LU Zhou,ZHANG Xu
CLC Number:
GUO Han, XU Minxian, XU Feifei, LUO Ming, LU Zhou, ZHANG Xu. Field-scale estimation of humic acid content based on airborne hyperspectral data[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2358-2369.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.12.16
样本集 Data set | 样本数量 Sample size | 最小值 Minimum/ (g·kg-1) | 最大值 Maximum/ (g·kg-1) | 平均值 Mean/(g· kg-1) | 标准差 Standard deviation/(g·kg-1) | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|---|
总集Whole set | 45 | 1.444 | 9.778 | 4.299 | 2.036 | 47.370 |
建模集Modeling set | 32 | 2.111 | 9.778 | 4.447 | 1.880 | 42.280 |
验证集Validation set | 13 | 1.444 | 7.889 | 3.720 | 3.720 | 68.350 |
Table 1 Statistical characteristics of soil humic acid content
样本集 Data set | 样本数量 Sample size | 最小值 Minimum/ (g·kg-1) | 最大值 Maximum/ (g·kg-1) | 平均值 Mean/(g· kg-1) | 标准差 Standard deviation/(g·kg-1) | 变异系数 Coefficient of variation/% |
---|---|---|---|---|---|---|
总集Whole set | 45 | 1.444 | 9.778 | 4.299 | 2.036 | 47.370 |
建模集Modeling set | 32 | 2.111 | 9.778 | 4.447 | 1.880 | 42.280 |
验证集Validation set | 13 | 1.444 | 7.889 | 3.720 | 3.720 | 68.350 |
Fig. 2 Distribution of normalized difference spectral index(NDSI) of raw spectra and spectra with different transformations in whole band NDSI,Normalized difference spectral index. A, Raw spectra; B, Continuum removal(CR); C,Inversion recovery(IR); D,Logistic regression(LR); E,First derivative reflectance(FDR); F,Second derivative reflectance(SDR); G,Inversion first derivative reflectance(IFDR); H,Logarithm first derivative reflectance(LFDR); I,Inversion logarithm regression(ILR). The same as below.
Fig.3 Distribution of correlation coefficient between normalized difference spectral index(NDSI) of raw spectra and spectra with different transformations and humic acid content in whole band
Fig. 4 Maxmium correlation coefficient between normalized difference spectral index(NDSI) of raw spectra and spectra with different transformations and humic acid content RAW, Raw spectra. The same as below.
Fig. 6 Modeling effect based on normalized difference spectral index(NDSI) of raw spectra and spectra with different transformations A, Multiple linear regression (MLR) model; B, Partial least squares regression (PLSR) model; C, Back propagation neural network (BPNN) model; D, Support vector machine (SVM) model. R T 2, Coefficient of determination on the modeling set; R V 2, Coefficient of determination on the validation set;RPD, Ratio of performance-to-deviation.
建模方法 Modeling method | 光谱变换方法 Spectral transformation | R2 | RMSE | RPD | ||
---|---|---|---|---|---|---|
建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | |||
MLR | RAW | 0.571 | 0.153 | 1.462 | 1.675 | 1.446 |
CR | 0.332 | 0.230 | 1.711 | 1.469 | 1.649 | |
IR | 0.568 | 0.110 | 1.502 | 1.545 | 1.568 | |
LR | 0.639 | 0.023 | 1.373 | 1.712 | 1.415 | |
IFDR | 0.580 | 0.003 | 1.495 | 1.482 | 1.635 | |
ILR | 0.544 | 0.111 | 1.542 | 1.636 | 1.480 | |
PLSR | IFDR | 0.734 | 0.212 | 0.983 | 1.495 | 1.620 |
BPNN | FDR | 0.706 | 0.518 | 1.058 | 1.491 | 1.624 |
IFDR | 0.979 | 0.607 | 1.734 | 1.570 | 1.543 | |
LFDR | 0.916 | 0.805 | 0.799 | 1.107 | 2.189 | |
SVM | FDR | 0.974 | 0.279 | 0.049 | 1.316 | 1.840 |
IFDR | 0.891 | 0.161 | 0.588 | 1.651 | 1.467 | |
LFDR | 0.872 | 0.392 | 0.323 | 1.471 | 1.646 |
Table 2 Parameters of models with RPD greater than 1.4
建模方法 Modeling method | 光谱变换方法 Spectral transformation | R2 | RMSE | RPD | ||
---|---|---|---|---|---|---|
建模集 Modeling set | 验证集 Validation set | 建模集 Modeling set | 验证集 Validation set | |||
MLR | RAW | 0.571 | 0.153 | 1.462 | 1.675 | 1.446 |
CR | 0.332 | 0.230 | 1.711 | 1.469 | 1.649 | |
IR | 0.568 | 0.110 | 1.502 | 1.545 | 1.568 | |
LR | 0.639 | 0.023 | 1.373 | 1.712 | 1.415 | |
IFDR | 0.580 | 0.003 | 1.495 | 1.482 | 1.635 | |
ILR | 0.544 | 0.111 | 1.542 | 1.636 | 1.480 | |
PLSR | IFDR | 0.734 | 0.212 | 0.983 | 1.495 | 1.620 |
BPNN | FDR | 0.706 | 0.518 | 1.058 | 1.491 | 1.624 |
IFDR | 0.979 | 0.607 | 1.734 | 1.570 | 1.543 | |
LFDR | 0.916 | 0.805 | 0.799 | 1.107 | 2.189 | |
SVM | FDR | 0.974 | 0.279 | 0.049 | 1.316 | 1.840 |
IFDR | 0.891 | 0.161 | 0.588 | 1.651 | 1.467 | |
LFDR | 0.872 | 0.392 | 0.323 | 1.471 | 1.646 |
[1] |
TAHMASBIAN I, XU Z H, BOYD S, et al. Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions[J]. Geoderma, 2018, 330: 254-263.
DOI URL |
[2] | MENG X T, BAO Y L, LIU J G, et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102111. http://dx.doi.org/10.1016/j.jag.2020.102111. |
[3] | 马驰. 基于GF-1与Landsat 8遥感数据的耕地表层土壤有机质含量反演精度对比研究[J]. 浙江农业学报, 2017, 29(1): 137-143. |
MA C. Comparison on inversion accuracy of soil organic matter in surface layer based on GF-1 and Landsat 8 remote sensing data[J]. Acta Agriculturae Zhejiangensis, 2017, 29(1): 137-143.(in Chinese with English abstract) | |
[4] | 齐雁冰, 王茵茵, 陈洋, 等. 基于遥感与随机森林算法的陕西省土壤有机质空间预测[J]. 自然资源学报, 2017, 32(6): 1074-1086. |
QI Y B, WANG Y Y, CHEN Y, et al. Soil organic matter prediction based on remote sensing data and random forest model in Shaanxi Province[J]. Journal of Natural Resources, 2017, 32(6): 1074-1086.(in Chinese with English abstract) | |
[5] | 刘明国. 现代农业模式的分类与比较: 基于政治经济学的视角[J]. 农业经济, 2011(9): 12-13. |
LIU M G. Classification and comparison of modern agricultural models: based on perspective of political economy[J]. The Agricultural Economy, 2011 (9): 12-13. (in Chinese) | |
[6] | 李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报·信息科学版, 2014, 39(5): 505-513. |
LI D R, LI M. Research advance and application prospect of unmanned aerial vehicle remote sensing system[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513. (in Chinese with English abstract) | |
[7] |
PEÓN J, RECONDO C, FERNÁNDEZ S, et al. Prediction of topsoil organic carbon using airborne and satellite hyperspectral imagery[J]. Remote Sensing, 2017, 9(12): 1211.
DOI URL |
[8] | 秦凯. 机载成像高光谱遥感及应用关键技术研究[D]. 北京: 中国地质大学(北京), 2018. |
QIN K. Research on key technologiesof airborne imaging hyperspectral remote sensing and its application[D]. Beijing: China University of Geosciences, Beijing, 2018. (in Chinese with English abstract) | |
[9] | 张东辉, 赵英俊, 秦凯. 一种新的光谱参量预测黑土养分含量模型[J]. 光谱学与光谱分析, 2018, 38(9): 2932-2936. |
ZHANG D H, ZHAO Y J, QIN K. A new model for predicting black soil nutrient content by spectral parameters[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2932-2936.(in Chinese with English abstract) | |
[10] | 王磊. 基于成像光谱技术的耕地土壤有机质遥感监测方法研究[D]. 焦作: 河南理工大学, 2016. |
WANG L. A research about remote sensing monitoring method of soil organic matter based on imaging spectrum technology[D]. Jiaozuo: Henan Polytechnic University, 2016. (in Chinese with English abstract) | |
[11] | 郑德明, 姜益娟, 吕双庆, 等. 干旱地区有机肥料腐解及腐殖化系数的研究[J]. 土壤肥料, 2004(2): 15-19. |
ZHENG D M, JIANG Y J, LYU S Q, et al. Study on decomposition and humification coefficient of organic fertilizer in arid region[J]. Soils and Fertilizers, 2004(2): 15-19.(in Chinese with English abstract) | |
[12] | 窦森, 陈恩凤, 须湘成, 等. 土壤有机培肥后胡敏酸结构特征变化规律的探讨Ⅰ:胡敏酸的化学性质和热性质[J]. 土壤学报, 1992, 29(2): 199-207. |
DOU S, CHEN E F, XU X C, et al. Effect of improving soil fertility by organic material application (isfoma) on structural characteristics of humic acids in soils Ⅰ: the chemical and thermal properties of HAs[J]. Acta Pedologica Sinica, 1992, 29(2): 199-207.(in Chinese with English abstract) | |
[13] | 龚伟, 颜晓元, 王景燕, 等. 长期施肥对小麦-玉米作物系统土壤腐殖质组分碳和氮的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1245-1252. |
GONG W, YAN X Y, WANG J Y, et al. Effects of long-term fertilization on soil humus carbon and nitrogen fractions in a wheat-maize cropping system[J]. Plant Nutrition and Fertilizer Science, 2009, 15(6): 1245-1252.(in Chinese with English abstract) | |
[14] | 王建华. 基于气候条件的江南传统民居应变研究[D]. 杭州: 浙江大学, 2008. |
WANG J H. Study on responsive measures of traditional dwellings basis on Jiangnan climate[D]. Hangzhou: Zhejiang University, 2008. (in Chinese with English abstract) | |
[15] | 张伟畅. 长沙地区典型水稻土发生特性及其在系统分类中的归属[D]. 长沙: 湖南农业大学, 2016. |
ZHANG W C. Genetic characteristics and classification in Chinese soil taxonomy of paddy soil in Changsha[D]. Changsha: Hunan Agricultural University, 2016. (in Chinese with English abstract) | |
[16] | 陆洲, 范泽孟, 张序, 等. 一种基于高光谱影像的区域有机质含量估算方法和装置: CN110687053A[P]. 2020-01-14. |
[17] |
ROSA A H, DE OLIVEIRA L C, BELLIN I C, et al. Influence of alkaline extraction on the characteristics of humic substances in Brazilian soils[J]. Thermochimica Acta, 2005, 433(1/2): 77-82.
DOI URL |
[18] | 李丽, 冉勇, 盛国英, 等. 泥,炭土连续碱抽提腐殖酸的分子结构特征[J]. 分析化学, 2002, 30(11): 1303-1307. |
LI L, RAN Y, SHENG G Y, et al. Molecular structure characterization of humic acids progressively extracted from a peat soil[J]. Chinese Journal of Analytieal Chemistry, 2002, 30(11): 1303-1307.(in Chinese with English abstract) | |
[19] | 张娟娟, 田永超, 姚霞, 等. 基于高光谱的土壤全氮含量估测[J]. 自然资源学报, 2011, 26(5): 881-890. |
ZHANG J J, TIAN Y C, YAO X, et al. Estimating soil total nitrogen content based on hyperspectral analysis technology[J]. Journal of Natural Resources, 2011, 26(5): 881-890.(in Chinese with English abstract) | |
[20] |
XU J L, ESQUERRE C, SUN D W. Methods for performing dimensionality reduction in hyperspectral image classification[J]. Journal of Near Infrared Spectroscopy, 2018, 26(1): 61-75.
DOI URL |
[21] | 王延仓, 张兰, 王欢, 等. 连续小波变换定量反演土壤有机质含量[J]. 光谱学与光谱分析, 2018, 38(11): 3521-3527. |
WANG Y C, ZHANG L, WANG H, et al. Quantitative inversion of soil organic matter content based on continuous wavelet transform[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3521-3527. (in Chinese with English abstract) | |
[22] | 周倩倩, 丁建丽, 唐梦迎, 等. 干旱区典型绿洲土壤有机质的反演及影响因素研究[J]. 土壤学报, 2018, 55(2): 313-324. |
ZHOU Q Q, DING J L, TANG M Y, et al. Inversion of soil organic matter content in oasis typical of arid area and its influencing factors[J]. Acta Pedologica Sinica, 2018, 55(2): 313-324.(in Chinese with English abstract) | |
[23] |
SONG Y Q, ZHAO X, SU H Y, et al. Predicting spatial variations in soil nutrients with hyperspectral remote sensing at regional scale[J]. Sensors, 2018, 18(9): 3086.
DOI URL |
[24] | 冯海宽. 基于环境卫星数据的冬小麦长势监测研究[D]. 阜新: 辽宁工程技术大学, 2011. |
FENG H K. The research of monitoring winter wheat growth based on HJ-1 data[D]. Fuxin: Liaoning Technical University, 2011. (in Chinese with English abstract) | |
[25] | 乔娟峰, 熊黑钢, 王小平, 等. 新疆阜康荒地土壤有机质高光谱特征及其反演模型研究[J]. 干旱地区农业研究, 2018, 36(5): 207-214. |
QIAO J F, XIONG H G, WANG X P, et al. Wasteland soil organic matter hyperspectral characteristics and inversion model research in Fukang, Xinjiang[J]. Agricultural Research in the Arid Areas, 2018, 36(5): 207-214.(in Chinese with English abstract) | |
[26] | 翁永玲, 戚浩平, 方洪宾, 等. 基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6): 1255-1263. |
WENG Y L, QI H P, FANG H B, et al. PLSR-based hyperspectral remote sensing retrieval of soil salinity of Chaka-Gonghe basin in Qinghai Province[J]. Acta Pedologica Sinica, 2010, 47(6): 1255-1263.(in Chinese with English abstract) | |
[27] | 陈颂超, 冯来磊, 李硕, 等. 基于局部加权回归的土壤全氮含量可见-近红外光谱反演[J]. 土壤学报, 2015, 52(2): 312-320. |
CHEN S C, FENG L L, LI S, et al. Vis-NIR spectral inversion for prediction of soil total nitrogen content in laboratory based on locally weighted regression[J]. Acta Pedologica Sinica, 2015, 52(2): 312-320.(in Chinese with English abstract) | |
[28] | 闻新, 张兴旺, 朱亚萍. 智能故障诊断技术: MATLAB应用[M]. 北京: 北京航空航天大学出版社, 2015. |
[29] | 赵月秋. 基于神经网络的城市网格化系统未知源定位[D]. 天津: 天津大学, 2017. |
ZHAO Y Q. Unknown source localization of urban grid system based on artificial neural network[D]. Tianjin: Tianjin University, 2017. (in Chinese with English abstract) | |
[30] | BUHMANN M D. Radial basis functions[M]. Cambridge: Cambridge University Press, 2003. |
[31] | 郭晗, 张序, 陆洲, 等. 基于机载高光谱影像的南方水稻土有机质含量估算[J]. 中国农业科技导报, 2020, 22(6): 60-71. |
GUO H, ZHANG X, LU Z, et al. Estimation of organic matter content in southern paddy soil based on airborne hyperspectral images[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 60-71.(in Chinese with English abstract) | |
[32] | 洪永胜, 朱亚星, 苏学平, 等. 高光谱技术联合归一化光谱指数估算土壤有机质含量[J]. 光谱学与光谱分析, 2017, 37(11): 3537-3542. |
HONG Y S, ZHU Y X, SU X P, et al. Estimation of soil organic matter content using hyperspectral techniques combined with normalized difference spectral index[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3537-3542.(in Chinese with English abstract) | |
[33] |
WANG X M, CHEN Y Y, GUO L, et al. Construction of the calibration set through multivariate analysis in visible and near-infrared prediction model for estimating soil organic matter[J]. Remote Sensing, 2017, 9(3): 201.
DOI URL |
[34] |
LIU Y L, GUO L, JIANG Q H, et al. Comparing geospatial techniques to predict SOC stocks[J]. Soil and Tillage Research, 2015, 148: 46-58.
DOI URL |
[35] |
SONG X D, BRUS D J, LIU F, et al. Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China[J]. Geoderma, 2016, 261: 11-22.
DOI URL |
[36] | 卢艳丽, 白由路, 杨俐苹, 等. 基于高光谱的土壤有机质含量预测模型的建立与评价[J]. 中国农业科学, 2007, 40(9): 1989-1995. |
LU Y L, BAI Y L, YANG L P, et al. Prediction and validation of soil organic matter content based on hyperspectrum[J]. Scientia Agricultura Sinica, 2007, 40(9): 1989-1995.(in Chinese with English abstract) | |
[37] |
HASITUYA, LI F, ELSAYED S, et al. Passive reflectance sensing using optimized two- and three-band spectral indices for quantifying the total nitrogen yield of maize[J]. Computers and Electronics in Agriculture, 2020, 173: 105403.
DOI URL |
[38] |
TIAN Y C, ZHANG J J, YAO X, et al. Laboratory assessment of three quantitative methods for estimating the organic matter content of soils in China based on visible/near-infrared reflectance spectra[J]. Geoderma, 2013, 202/203: 161-170.
DOI URL |
[39] |
QIU B B, LU Y, SUN L P, et al. Research on the damage prediction method of offshore wind turbine tower structure based on improved neural network[J]. Measurement, 2020, 151: 107141.
DOI URL |
[40] |
WERE K, BUI D T, DICK Ø B, et al. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape[J]. Ecological Indicators, 2015, 52: 394-403.
DOI URL |
[41] |
NAWAR S, BUDDENBAUM H, HILL J, et al. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy[J]. Soil and Tillage Research, 2016, 155: 510-522.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||