Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (11): 2395-2403.DOI: 10.3969/j.issn.1004-1524.2022.11.09
• Animal Science • Previous Articles Next Articles
CAO Lianfei1(), SHI Jinhu2, XU Yalan3, SU Xiaoling4, HU Fuliang3, ZHENG Huoqing3,*(
)
Received:
2022-02-15
Online:
2022-11-25
Published:
2022-11-29
Contact:
ZHENG Huoqing
CLC Number:
CAO Lianfei, SHI Jinhu, XU Yalan, SU Xiaoling, HU Fuliang, ZHENG Huoqing. Genetic diversity of Apis cerana in Zhejiang, China based on mitochondrial DNA tRNAleu-COⅡ sequence[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2395-2403.
地级市 Prefecture- level city | 县级行政区 County | 样本数 Number of samples | 地级市 Prefecture- level city | 县级行政区 County | 样本数 Number of samples | 地级市 Prefecture- level city | 县级行政区 County | 样本数 Number of samples |
---|---|---|---|---|---|---|---|---|
杭州Hangzhou | 临安Lin’an | 19 | 丽水Lishui | 缙云Jinyun | 11 | 温州Wenzhou | 文成Wencheng | 30 |
桐庐Tonglu | 15 | 莲都Liandu | 16 | 泰顺Taishun | 21 | |||
淳安Chun’an | 17 | 松阳Songyang | 15 | 苍南Cangnan | 5 | |||
金华Jinhua | 婺城Wucheng | 9 | 云和Yunhe | 5 | 乐清Yueqing | 5 | ||
金东Jindong | 9 | 遂昌Suichang | 6 | 宁波Ningbo | 北仑Beilun | 15 | ||
兰溪Lanxi | 9 | 龙泉Longquan | 15 | 象山Xiangshan | 17 | |||
义乌Yiwu | 9 | 青田Qingtian | 10 | 慈溪Cixi | 5 | |||
东阳Dongyang | 9 | 景宁Jingning | 6 | 奉化Fenghua | 5 | |||
永康Yongkang | 9 | 庆元Qingyuan | 10 | 绍兴Shaoxing | 新昌Xinchang | 15 | ||
武义Wuyi | 9 | 衢州Quzhou | 开化Kaihua | 15 | 嵊州Shengzhou | 4 | ||
浦江Pujiang | 9 | 龙游Longyou | 15 | 柯桥Keqiao | 5 | |||
磐安Pan’an | 9 | 衢江Qujiang | 10 | 上虞Shangyu | 5 | |||
台州Taizhou | 天台Tiantai | 15 | 江山Jiangshan | 6 | 舟山Zhoushan | 定海Dinghai | 4 | |
三门Sanmen | 10 | 湖州Huzhou | 长兴Changxing | 5 | ||||
黄岩Huangyan | 5 | 安吉Anji | 5 |
Table 1 Sample information of Apis cerana in Zhejiang Province
地级市 Prefecture- level city | 县级行政区 County | 样本数 Number of samples | 地级市 Prefecture- level city | 县级行政区 County | 样本数 Number of samples | 地级市 Prefecture- level city | 县级行政区 County | 样本数 Number of samples |
---|---|---|---|---|---|---|---|---|
杭州Hangzhou | 临安Lin’an | 19 | 丽水Lishui | 缙云Jinyun | 11 | 温州Wenzhou | 文成Wencheng | 30 |
桐庐Tonglu | 15 | 莲都Liandu | 16 | 泰顺Taishun | 21 | |||
淳安Chun’an | 17 | 松阳Songyang | 15 | 苍南Cangnan | 5 | |||
金华Jinhua | 婺城Wucheng | 9 | 云和Yunhe | 5 | 乐清Yueqing | 5 | ||
金东Jindong | 9 | 遂昌Suichang | 6 | 宁波Ningbo | 北仑Beilun | 15 | ||
兰溪Lanxi | 9 | 龙泉Longquan | 15 | 象山Xiangshan | 17 | |||
义乌Yiwu | 9 | 青田Qingtian | 10 | 慈溪Cixi | 5 | |||
东阳Dongyang | 9 | 景宁Jingning | 6 | 奉化Fenghua | 5 | |||
永康Yongkang | 9 | 庆元Qingyuan | 10 | 绍兴Shaoxing | 新昌Xinchang | 15 | ||
武义Wuyi | 9 | 衢州Quzhou | 开化Kaihua | 15 | 嵊州Shengzhou | 4 | ||
浦江Pujiang | 9 | 龙游Longyou | 15 | 柯桥Keqiao | 5 | |||
磐安Pan’an | 9 | 衢江Qujiang | 10 | 上虞Shangyu | 5 | |||
台州Taizhou | 天台Tiantai | 15 | 江山Jiangshan | 6 | 舟山Zhoushan | 定海Dinghai | 4 | |
三门Sanmen | 10 | 湖州Huzhou | 长兴Changxing | 5 | ||||
黄岩Huangyan | 5 | 安吉Anji | 5 |
地理群体 Population | 群体代码 Population code | 样本数 Number of samples | 单倍型数 Number of haplotypes | 特有单倍型数 Number of unique haplotypes | 单倍型多样度 Haplotype diversity (Hd) | 核苷酸多样度 Nucleotide diversity (Pi) | 核苷酸平均 差异数 Average number of nucleotide differences(K) | Tajima’s D 中性检验 Tajima’s D neutrality test | Fu’s Fs 中性检验 Fu’s Fs neutrality test |
---|---|---|---|---|---|---|---|---|---|
杭州Hangzhou | HZ | 51 | 8 | 4 | 0.625 9 | 0.002 24 | 0.924 | -1.500 73* | -3.129 81* |
金华Jinhua | JH | 81 | 14 | 5 | 0.610 2 | 0.001 62 | 0.671 | -2.066 40** | -11.378 70** |
丽水Lishui | LS | 94 | 20 | 9 | 0.772 0 | 0.003 52 | 1.452 | -1.528 29* | -13.140 55** |
衢州Quzhou | QZ | 46 | 5 | 0 | 0.632 9 | 0.002 14 | 0.888 | -0.541 53 | -0.516 34 |
温州Wenzhou | WZ | 61 | 8 | 2 | 0.510 9 | 0.003 85 | 1.595 | -1.940 05** | -0.938 06 |
台州Taizhou | TZ | 30 | 8 | 2 | 0.650 6 | 0.001 77 | 0.731 | -1.732 20* | -4.653 73** |
宁波Ningbo | NB | 42 | 10 | 2 | 0.629 5 | 0.001 73 | 0.718 | -1.733 64* | -7.152 31** |
绍兴Shaoxing | SX | 29 | 9 | 3 | 0.482 8 | 0.001 81 | 0.751 | -2.105 19** | -5.313 74** |
湖州Huzhou | HUZ | 10 | 7 | 2 | 0.866 7 | 0.002 42 | 1.000 | -0.541 53 | -0.516 34 |
舟山Zhoushan | ZS | 4 | 4 | 0 | 1.000 0 | 0.003 62 | 1.500 | -0.754 45 | -2.367 12* |
全部All | ALL | 448 | 46 | 29 | 0.665 7 | 0.002 61 | 1.076 | -2.306 99** | -28.041 79** |
Table 2 Genetic diversity index of Apis cerana in Zhejiang Province
地理群体 Population | 群体代码 Population code | 样本数 Number of samples | 单倍型数 Number of haplotypes | 特有单倍型数 Number of unique haplotypes | 单倍型多样度 Haplotype diversity (Hd) | 核苷酸多样度 Nucleotide diversity (Pi) | 核苷酸平均 差异数 Average number of nucleotide differences(K) | Tajima’s D 中性检验 Tajima’s D neutrality test | Fu’s Fs 中性检验 Fu’s Fs neutrality test |
---|---|---|---|---|---|---|---|---|---|
杭州Hangzhou | HZ | 51 | 8 | 4 | 0.625 9 | 0.002 24 | 0.924 | -1.500 73* | -3.129 81* |
金华Jinhua | JH | 81 | 14 | 5 | 0.610 2 | 0.001 62 | 0.671 | -2.066 40** | -11.378 70** |
丽水Lishui | LS | 94 | 20 | 9 | 0.772 0 | 0.003 52 | 1.452 | -1.528 29* | -13.140 55** |
衢州Quzhou | QZ | 46 | 5 | 0 | 0.632 9 | 0.002 14 | 0.888 | -0.541 53 | -0.516 34 |
温州Wenzhou | WZ | 61 | 8 | 2 | 0.510 9 | 0.003 85 | 1.595 | -1.940 05** | -0.938 06 |
台州Taizhou | TZ | 30 | 8 | 2 | 0.650 6 | 0.001 77 | 0.731 | -1.732 20* | -4.653 73** |
宁波Ningbo | NB | 42 | 10 | 2 | 0.629 5 | 0.001 73 | 0.718 | -1.733 64* | -7.152 31** |
绍兴Shaoxing | SX | 29 | 9 | 3 | 0.482 8 | 0.001 81 | 0.751 | -2.105 19** | -5.313 74** |
湖州Huzhou | HUZ | 10 | 7 | 2 | 0.866 7 | 0.002 42 | 1.000 | -0.541 53 | -0.516 34 |
舟山Zhoushan | ZS | 4 | 4 | 0 | 1.000 0 | 0.003 62 | 1.500 | -0.754 45 | -2.367 12* |
全部All | ALL | 448 | 46 | 29 | 0.665 7 | 0.002 61 | 1.076 | -2.306 99** | -28.041 79** |
群体代码 Population code | HZ | JH | LS | QZ | WZ | TZ | NB | SX | HUZ | ZS |
---|---|---|---|---|---|---|---|---|---|---|
HZ | 0.002 10 | 0.003 13 | 0.002 45 | 0.003 27 | 0.001 99 | 0.002 08 | 0.002 14 | 0.002 34 | 0.003 05 | |
JH | 0.076 98** | 0.002 75 | 0.002 03 | 0.002 87 | 0.001 79 | 0.001 73 | 0.001 75 | 0.001 99 | 0.002 55 | |
LS | 0.037 66** | 0.032 03** | 0.002 89 | 0.003 82 | 0.002 85 | 0.002 73 | 0.002 79 | 0.003 14 | 0.003 56 | |
QZ | 0.072 10** | 0.058 28** | 0.033 49* | 0.003 11 | 0.002 15 | 0.002 00 | 0.002 07 | 0.002 42 | 0.002 63 | |
WZ | 0.042 00* | 0.022 06* | -0.004 78 | 0.032 42* | 0.002 97 | 0.002 85 | 0.002 91 | 0.003 26 | 0.003 67 | |
TZ | 0.034 45 | 0.036 80 | 0.040 09 | 0.046 85 | -0.003 95 | 0.001 79 | 0.001 84 | 0.002 08 | 0.002 75 | |
NB | 0.099 91** | 0.071 92** | 0.025 31* | 0.022 09* | 0.034 51* | 0.081 59* | 0.001 77 | 0.002 09 | 0.002 54 | |
SX | -0.009 72 | 0.038 63** | 0.019 11 | 0.052 52** | 0.018 33 | 0.026 05 | 0.083 23** | 0.002 12 | 0.002 65 | |
HUZ | 0.051 17** | 0.036 38** | 0.000 74 | 0.027 11** | 0.003 98 | 0.024 64 | 0.018 62 | 0.029 28 | 0.003 03 | |
ZS | 0.100 38 | 0.057 78 | 0.020 72 | -0.007 38 | 0.019 93 | -0.014 33 | -0.040 08 | 0.090 60 | -0.040 97 |
Table 3 Pairwise genetic distances (above diagonal) and FST (below diagonal) among populations of Apis cerana in Zhejiang Province
群体代码 Population code | HZ | JH | LS | QZ | WZ | TZ | NB | SX | HUZ | ZS |
---|---|---|---|---|---|---|---|---|---|---|
HZ | 0.002 10 | 0.003 13 | 0.002 45 | 0.003 27 | 0.001 99 | 0.002 08 | 0.002 14 | 0.002 34 | 0.003 05 | |
JH | 0.076 98** | 0.002 75 | 0.002 03 | 0.002 87 | 0.001 79 | 0.001 73 | 0.001 75 | 0.001 99 | 0.002 55 | |
LS | 0.037 66** | 0.032 03** | 0.002 89 | 0.003 82 | 0.002 85 | 0.002 73 | 0.002 79 | 0.003 14 | 0.003 56 | |
QZ | 0.072 10** | 0.058 28** | 0.033 49* | 0.003 11 | 0.002 15 | 0.002 00 | 0.002 07 | 0.002 42 | 0.002 63 | |
WZ | 0.042 00* | 0.022 06* | -0.004 78 | 0.032 42* | 0.002 97 | 0.002 85 | 0.002 91 | 0.003 26 | 0.003 67 | |
TZ | 0.034 45 | 0.036 80 | 0.040 09 | 0.046 85 | -0.003 95 | 0.001 79 | 0.001 84 | 0.002 08 | 0.002 75 | |
NB | 0.099 91** | 0.071 92** | 0.025 31* | 0.022 09* | 0.034 51* | 0.081 59* | 0.001 77 | 0.002 09 | 0.002 54 | |
SX | -0.009 72 | 0.038 63** | 0.019 11 | 0.052 52** | 0.018 33 | 0.026 05 | 0.083 23** | 0.002 12 | 0.002 65 | |
HUZ | 0.051 17** | 0.036 38** | 0.000 74 | 0.027 11** | 0.003 98 | 0.024 64 | 0.018 62 | 0.029 28 | 0.003 03 | |
ZS | 0.100 38 | 0.057 78 | 0.020 72 | -0.007 38 | 0.019 93 | -0.014 33 | -0.040 08 | 0.090 60 | -0.040 97 |
群体分组 Group | 组间变异 Variation among groups/% | 组内群体间变异 Variation among populations within group/% | 群体内变异 Variation within population/% | Fct | Fsc | Fst |
---|---|---|---|---|---|---|
10个地级市 | 1.25 | 11.16 | 87.59 | 0.012 48 | 0.113 02** | 0.124 09** |
Ten prefecture-level cities | ||||||
5个自然地理区 | 1.02 | 11.45 | 87.53 | 0.010 22* | 0.115 70** | 0.124 74** |
Five geographic regions |
Table 4 Spatial analysis of molecular variance among population of Apis cerana in Zhejiang Province
群体分组 Group | 组间变异 Variation among groups/% | 组内群体间变异 Variation among populations within group/% | 群体内变异 Variation within population/% | Fct | Fsc | Fst |
---|---|---|---|---|---|---|
10个地级市 | 1.25 | 11.16 | 87.59 | 0.012 48 | 0.113 02** | 0.124 09** |
Ten prefecture-level cities | ||||||
5个自然地理区 | 1.02 | 11.45 | 87.53 | 0.010 22* | 0.115 70** | 0.124 74** |
Five geographic regions |
[1] | 国家畜禽遗传资源委员会. 中国畜禽遗传资源志-蜜蜂志[M]. 北京: 中国农业出版社, 2011:7-8. |
[2] | 杨冠煌. 引入西方蜜蜂对中蜂的危害及生态影响[J]. 昆虫学报, 2005, 48(3): 401-406. |
YANG G H. Harm of introducing the western honeybee Apis mellifera L. to the Chinese honeybee Apis cerana F. and its ecological impact[J]. Acta Entomologica Sinica, 2005, 48(3): 401-406. (in Chinese with English abstract) | |
[3] | 姜玉锁, 赵慧婷, 姜俊兵, 等. 中国境内不同地理型东方蜜蜂线粒体DNA tRNAleu-COⅡ基因多态性研究[J]. 中国农业科学, 2007, 40(7): 1535-1542. |
JIANG Y S, ZHAO H T, JIANG J B, et al. Studies on mtDNA tRNAleu-COⅡ gene polymorphisms of Apis cerana distributed in different geographic areas in China[J]. Scientia Agricultura Sinica, 2007, 40(7): 1535-1542. (in Chinese with English abstract) | |
[4] |
GONG X Y, ZHAO W Z, ZHOU D Y, et al. Genetic variation and population structure of Apis ceranain northern, central and southern mainland China, based on COXI gene sequences[J]. Journal of Apicultural Research, 2018, 57(3): 364-373.
DOI URL |
[5] | 张爽, 周俊, 胡冲, 等. 基于微卫星标记的中华蜜蜂5个自然群体遗传多样性分析[J]. 重庆师范大学学报(自然科学版), 2019, 36(3): 44-50. |
ZHANG S, ZHOU J, HU C, et al. The analysis of genetic diversity on five wild populations of Apis cerana with simple sequence repeat markers[J]. Journal of Chongqing Normal University (Natural Science), 2019, 36(3): 44-50. (in Chinese with English abstract) | |
[6] |
LI Y C, CHAO T L, FAN Y H, et al. Population genomics and morphological features underlying the adaptive evolution of the eastern honey bee (Apis cerana)[J]. BMC Genomics, 2019, 20(1): 869.
DOI PMID |
[7] |
JI Y K, LI X G, JI T, et al. Gene reuse facilitates rapid radiation and independent adaptation to diverse habitats in the Asian honeybee[J]. Science Advances, 2020, 6(51): eabd3590.
DOI URL |
[8] | 施金虎, 杨金勇, 李奎, 等. 浙江省蜂产业发展情况分析与建议[J]. 中国蜂业, 2019, 70(12): 54-56. |
SHI J H, YANG J Y, LI K, et al. Analysis and suggestions on apicultural development in Zhejiang Province[J]. Apiculture of China, 2019, 70(12): 54-56. (in Chinese) | |
[9] | 赵东绪, 苏晓玲, 曹联飞, 等. 浙江省中华蜜蜂形态特征研究[J]. 中国蜂业, 2013, 64(S2): 4-9. |
ZHAO D X, SU X L, CAO L F, et al. Morphometric characters of Apis cerana cerana in Zhejiang Province[J]. Apiculture of China, 2013, 64(S2): 4-9. (in Chinese with English abstract) | |
[10] | 曹联飞, 苏晓玲, 赵东绪, 等. 浙江中华蜜蜂微卫星遗传多样性分析[J]. 中国蜂业, 2013, 64(S2): 10-11. |
CAO L F, SU X L, ZHAO D X, et al. Genetic diversity of microsatellite DNA for Apis cerana cerana in Zhejiang[J]. Apiculture of China, 2013, 64(S2): 10-11. (in Chinese with English abstract) | |
[11] | 曹联飞, 顾佩佩, 林宇清. 浙江丽水中华蜜蜂线粒体遗传多样性分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 425-430. |
CAO L F, GU P P, LIN Y Q. Genetic diversity of Apis cerana cerana based on mitochondrial DNA in Lishui, Zhejiang, China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 425-430. (in Chinese with English abstract) | |
[12] | 曹联飞, 苏晓玲, 陈道印, 等. 浙江省金华市中华蜜蜂线粒体DNA遗传多样性研究[J]. 环境昆虫学报, 2021, 43(4): 986-991. |
CAO L F, SU X L, CHEN D Y, et al. Genetic diversity of Apis cerana cerana based on mitochondrial DNA in Jinhua, Zhejiang, China[J]. Journal of Environmental Entomology, 2021, 43(4): 986-991. (in Chinese with English abstract) | |
[13] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
DOI PMID |
[14] |
KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
DOI PMID |
[15] |
ROZAS J, FERRER-MATA A, SÁNCHEZ-DELBARRIO J C, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets[J]. Molecular Biology and Evolution, 2017, 34(12): 3299-3302.
DOI PMID |
[16] |
BANDELT H J, FORSTER P, RÖHL A. Median-joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution, 1999, 16(1): 37-48.
PMID |
[17] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567.
DOI PMID |
[18] |
TAJIMA F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
DOI PMID |
[19] |
FU Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J]. Genetics, 1997, 147(2): 915-925.
DOI PMID |
[20] | 浙江省第一测绘院 中国分省系列地图册/浙江[M]. 北京: 中国地图出版社, 2016: 6-9. |
[21] | 周姝婧, 朱翔杰, 徐新建, 等. 福建东方蜜蜂线粒体DNA的遗传变异和遗传多样性[J]. 福建农林大学学报(自然科学版), 2016, 45(3): 310-315. |
ZHOU S J, ZHU X J, XU X J, et al. Genetic variation and genetic diversity of Apis cerana from Fujian Province based on mitochondrial DNA sequence analysis[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(3): 310-315. (in Chinese with English abstract) | |
[22] | 周姝婧, 朱翔杰, 徐新建, 等. 广西东方蜜蜂遗传多样性分析[J]. 应用昆虫学报, 2021, 58(3): 672-684. |
ZHOU S J, ZHU X J, XU X J, et al. Genetic diversity of Apis cerana in Guangxi, China[J]. Chinese Journal of Applied Entomology, 2021, 58(3): 672-684. (in Chinese with English abstract) | |
[23] | 王俊杰, 李婉玫, 邱立飞, 等. 陕西秦巴山区中华蜜蜂线粒体DNA的遗传多样性[J]. 陕西师范大学学报(自然科学版), 2018, 46(1): 84-90. |
WANG J J, LI W M, QIU L F, et al. The genetic diversity of Apis cerana from Qinling-Daba mountain areas in Shaanxi Province based on mitochondrial DNA sequence analysis[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2018, 46(1): 84-90. (in Chinese with English abstract) | |
[24] |
SLATKIN M, HUDSON R R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations[J]. Genetics, 1991, 129(2): 555-562.
DOI PMID |
[25] |
GRANT W S, BOWEN B W. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation[J]. Journal of Heredity, 1998, 89(5): 415-426.
DOI URL |
[26] |
AVISE J C, NEIGEL J E, ARNOLD J. Demographic influences on mitochondrial DNA lineage survivorship in animal populations[J]. Journal of Molecular Evolution, 1984, 20(2): 99-105.
PMID |
[27] |
LO N, GLOAG R S, ANDERSON D L, et al. A molecular phylogeny of the genus Apis suggests that the Giant Honey Bee of the Philippines, A. breviligula Maa, and the Plains Honey Bee of southern India, A. indica Fabricius, are valid species[J]. Systematic Entomology, 2010, 35(2): 226-233.
DOI URL |
[28] | GAIKWAD R, GAIKWAD S, SHOUCHE Y, et al. Phylogenetic variations found in Indian honeybee species, Apis cerana Fabr. of North Western Ghats of Maharashtra, India[J]. Indian journal of experimental biology, 2019, 57(1):55-58. |
[29] | 张以宏. 泉州中华蜜蜂遗传多样性分析[J]. 福建农林大学学报(自然科学版), 2020, 49(5): 671-677. |
ZHANG Y H. Genetic diversity of Apis cerana from Quanzhou City, Fujian Province[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(5): 671-677. (in Chinese with English abstract) |
[1] | GUO Dandan, LIU Feng, NIU Baolong, LOU Bao. Genetic diversity of wild and cultured populations of little yellow croaker (Larimichthys polyactis) based on mitochondrial Cytb gene and D-loop region [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1856-1865. |
[2] | FU Jiayi, TONG Lei, SU Fei, ZHENG Ke, LI Hailin, CAO Yirong, SU Na. Driving effect and influence path of “agricultural makers” in rural development of Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1796-1805. |
[3] | GUO Liangxi, HU Bao. Review on mechanism innovation and countermeasures of policy-oriented agricultural insurance in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1081-1090. |
[4] | LIU Yihan, MOU Qingshan, CHEN Shanyu, RUAN Guanhai, HU Jin, GUAN Yajing. Establishment of DNA fingerprint for sunflower by SSR-HRM technique [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 678-686. |
[5] | WANG Lijuan, CHEN Yangfen, XU Mengjie. Study on agricultural cross-regional investment location and its decision-making mechanism from perspective of rural revitalization: a case study of Zhejiang Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 841-850. |
[6] | PEI Yun, XU Xiuhong, LU Jinbiao, CHEN Amin, ZHANG Wanping. Genetic diversity analysis of 151 cherry tomato resources in Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 310-316. |
[7] | GU Xingguo, MIN Qingwen, WANG Ying, WANG Bin. Conservation and development of agricultural heritage systems in Zhejiang Province, China: progress, problems and countermeasures [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 397-408. |
[8] | WANG Baogen, DONG Junyang, WANG Ying, LI Sujuan, WANG Jian, LU Zhongfu, WU Xiaohua, LI Guojing, WU Xinyi. Evaluation and genetic diversity analysis of common bean germplasm in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2416-2427. |
[9] | LU Yanhui, GUO Jiawen, TIAN Junce, XUE Zhaohong, ZHENG Xusong, LYU Zhongxian. Population genetic structure of different resistance levels of Chilo suppressalis based on mitochondrial COⅠ and Cytb sequences in Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2462-2470. |
[10] | LIN Chai, YING Shanting, GU Xingguo. Inner logic and realization path of agricultural heritage systems protection and utilization to promote common prosperity: a case study of Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2310-2318. |
[11] | WANG Zhiqi, SUN Jian, LIANG Junchao, ZHAO Yunyan, YAN Tingxian, YAN Xiaowen, WEI Wenliang, LE Meiwang. Study on genetic diversity of sesame germplasm in Jiangxi Province based on molecular markers [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1565-1580. |
[12] | MA Jie, QU Wen, CHEN Chunyan, WANG Lei, MA Jun, LIU Zhenshan, MA Wei, ZHOU Ping, HE Yuankuan, SUN Bo. Development of SSR markers based on transcriptome sequencing and genetic diversity analysis of Nainaiqingcai leaf mustard [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1640-1649. |
[13] | FU Linlin, MAO Xiaohong, MAO Xiaobao, CAI Rixuan. Evaluation of comprehensive grain production capacity in Zhejiang Province in 2013-2018 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1748-1758. |
[14] | LIU Shili, BIAN Yuling, JIA Yongyi, CHI Meili, LI Fei, ZHENG Jianbo, CHENG Shun, GU Zhimin. Genetics analysis based on mitochondrial COⅠ sequences in five cultured populations of red-claw crayfish (Cherax quadricarinatus) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1385-1392. |
[15] | ZHANG Jingzhen, WANG Lianjun, LEI Jian, CHAI Shasha, YANG Xinsun, ZHANG Wenying. Genetic diversity analysis and construction of DNA fingerprint of yam (Dioscorea oppositeac Thunb.) germplasm by cpSSR marker [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1222-1233. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 632
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||