Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (12): 2767-2777.DOI: 10.3969/j.issn.1004-1524.2022.12.20
• Biosystems Engineering • Previous Articles Next Articles
ZHOU Xinxing1(), ZHAO Lin1,*(
), ZHANG Wenjie1, TAN Changwei2, LI Gangbo1, SHI Mengyun1, ZHANG Ting1, YANG Feng1
Received:
2021-10-18
Online:
2022-12-25
Published:
2022-12-26
Contact:
ZHAO Lin
CLC Number:
ZHOU Xinxing, ZHAO Lin, ZHANG Wenjie, TAN Changwei, LI Gangbo, SHI Mengyun, ZHANG Ting, YANG Feng. Remote sensing extraction of fruit tree planting area based on Sentinel-2 multi-temporal images[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2767-2777.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.12.20
Fig.6 Hyperparametric learning curve with different features as variable A, B, C and D show the learning curves drawn with the selected features, the unselected features, the vegetation indices in March and July, and the vegetation indices in April and August as variables, respectively.
[1] | 史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2): 247-260. |
SHI Z, LIANG Z Z, YANG Y Y, et al. Status and prospect of agricultural remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 247-260. (in Chinese with English abstract) | |
[2] | 杨邦杰, 裴志远, 周清波, 等. 我国农情遥感监测关键技术研究进展[J]. 农业工程学报, 2002, 18(3): 191-194. |
YANG B J, PEI Z Y, ZHOU Q B, et al. Key technologies of crop monitoring using remote sensing at a national scale: progress and problems[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(3): 191-194. (in Chinese with English abstract) | |
[3] |
ATZBERGER C. Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs[J]. Remote Sensing, 2013, 5(2): 949-981.
DOI URL |
[4] | 罗卫, 况润元. 利用环境卫星影像的东江源地区果园信息提取[J]. 测绘科学, 2014, 39(8): 135-139. |
LUO W, KUANG R Y. Orchard information extraction of Dongjiang Source region with HJ satellite data[J]. Science of Surveying and Mapping, 2014, 39(8): 135-139. (in Chinese with English abstract) | |
[5] | 蒋怡, 李宗南, 任国业, 等. 基于GF-1PMS影像的柠檬种植面积估算[J]. 中国农业资源与区划, 2016, 37(11): 50-55. |
JIANG Y, LI Z N, REN G Y, et al. Estimation of lemon planted area based on GF-1PMS image[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(11): 50-55. (in Chinese with English abstract) | |
[6] | 董芳, 赵庚星, 王凌, 等. 基于实测光谱混合像元分解的苹果园地遥感提取技术[J]. 应用生态学报, 2012, 23(12): 3361-3368. |
DONG F, ZHAO G X, WANG L, et al. Remote sensing techniques of apple orchard information extraction based on linear spectral unmixing with measured data[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3361-3368. (in Chinese with English abstract) | |
[7] | 邢东兴, 焦俏, 王明军, 等. 石榴树遥感辨识的最佳时相与方法[J]. 果树学报, 2020, 37(3): 431-440. |
XING D X, JIAO Q, WANG M J, et al. The best phase and optimal identification method for identifying pomegranate trees[J]. Journal of Fruit Science, 2020, 37(3): 431-440. (in Chinese with English abstract) | |
[8] | 岳俊, 王振锡, 冯振峰, 等. 基于光谱与纹理特征的南疆盆地果树树种遥感识别研究[J]. 新疆农业大学学报, 2015, 38(4): 326-333. |
YUE J, WANG Z X, FENG Z F, et al. Studies on remote sensing recognition on fruit trees species based on spectrum and texture features in southern Xinjiang Basin[J]. Journal of Xinjiang Agricultural University, 2015, 38(4): 326-333. (in Chinese with English abstract) | |
[9] | 姚新华, 金佳, 徐飞飞, 等. 太湖流域果树提取的光谱和纹理特征选择研究[J]. 中国生态农业学报(中英文), 2019, 27(10): 1596-1606. |
YAO X H, JIN J, XU F F, et al. Research on spectral and texture feature selection for fruit tree extraction in the Taihu Lake Basin[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1596-1606. (in Chinese with English abstract) | |
[10] |
SIMONNEAUX V, DUCHEMIN B, HELSON D, et al. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco[J]. International Journal of Remote Sensing, 2008, 29(1): 95-116.
DOI URL |
[11] |
ZHANG T X, SU J Y, LIU C J, et al. Potential bands of sentinel-2A satellite for classification problems in precision agriculture[J]. International Journal of Automation and Computing, 2019, 16(1): 16-26.
DOI URL |
[12] | 于婉婉, 徐凯健, 赵萍, 等. Sentinel-2影像红边谱段对不同生长期区域优势树种识别的影响[J]. 地理与地理信息科学, 2021, 37(3): 42-49. |
YU W W, XU K J, ZHAO P, et al. Influence of red-edge spectrum of Sentinel-2 image on identification of dominant tree species in different growing periods[J]. Geography and Geo-Information Science, 2021, 37(3): 42-49. (in Chinese with English abstract) | |
[13] |
ZHU Y H, YANG G J, YANG H, et al. Identification of apple orchard planting year based on spatiotemporally fused satellite images and clustering analysis of foliage phenophase[J]. Remote Sensing, 2020, 12(7): 1199.
DOI URL |
[14] | 苏腾飞, 刘全明, 苏秀川. 基于多种植被指数时间序列与机器学习的作物遥感分类研究[J]. 江苏农业科学, 2017, 45(16): 219-224. |
SU T F, LIU Q M, SU X C. Research on crop remote sensing classification based on multiple vegetation index time series and machine learning[J]. Jiangsu Agricultural Sciences, 2017, 45(16): 219-224. (in Chinese) | |
[15] | 李颖, 陈怀亮. 机器学习技术在现代农业气象中的应用[J]. 应用气象学报, 2020, 31(3): 257-266. |
LI Y, CHEN H L. Review of machine learning approaches for modern agrometeorology[J]. Journal of Applied Meteorological Science, 2020, 31(3): 257-266. (in Chinese with English abstract) | |
[16] | 黄双燕, 杨辽, 陈曦, 等. 机器学习法的干旱区典型农作物分类[J]. 光谱学与光谱分析, 2018, 38(10): 3169-3176. |
HUANG S Y, YANG L, CHEN X, et al. Study of typical arid crops classification based on machine learning[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3169-3176. (in Chinese with English abstract) | |
[17] | GUYON I M, ELISSEEFF A. An introduction to variable and feature selection[J]. The Journal of Machine Learning Research, 2003, 3: 1157-1182. |
[18] |
DRUSCH M, BELLO U D, CARLIER S, et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120: 25-36.
DOI URL |
[19] | 黄健熙, 贾世灵, 武洪峰, 等. 基于GF-1 WFV影像的作物面积提取方法研究[J]. 农业机械学报, 2015, 46(S1): 253-259. |
HUANG J X, JIA S L, WU H F, et al. Extraction method of crop planted area based on GF-1 WFV image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 253-259. (in Chinese with English abstract) | |
[20] |
VUOLO F, NEUWIRTH M, IMMITZER M, et al. How much does multi-temporal Sentinel-2 data improve crop type classification?[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 72: 122-130.
DOI URL |
[21] | 王蓉, 冯美臣, 杨武德, 等. 基于Sentinel-2A影像的县域冬小麦种植面积遥感监测[J]. 山西农业科学, 2019, 47(5): 854-860. |
WANG R, FENG M C, YANG W D, et al. Remote sensing monitoring of winter wheat planting area in County based on Sentinel-2A imagery[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(5): 854-860. (in Chinese with English abstract) | |
[22] | NASRALLAH A, BAGHDADI N, MHAWEJ M, et al. A novel approach for mapping wheat areas using high resolution Sentinel-2 images[J]. Sensors (Basel), 2018, 18(7): E2089. |
[23] | SANNER M F. Python: a programming language for software integration and development[J]. Journal of Molecular Graphics & Modelling, 1999, 17(1): 57-61. |
[24] | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2012, 12:2825-2830. |
[25] | 屠星月, 赵冬玲. 多时相遥感影像农作物识别方法的分析[J]. 测绘通报, 2012(S1): 380-383. |
TU X Y, ZHAO D L. Analysis of crop identification methods in multi-temporal remote sensing images[J]. Bulletin of Surveying and Mapping, 2012(S1): 380-383. (in Chinese) | |
[26] |
冯齐心, 杨辽, 王伟胜, 等. 基于时序光谱重构的卷积神经网络遥感农作物分类[J]. 中国科学院大学学报, 2020, 37(5): 619-628.
DOI |
FENG Q X, YANG L, WANG W S, et al. CNN remote sensing crop classification based on time series spectral reconstruction[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(5): 619-628. (in Chinese with English abstract)
DOI |
|
[27] |
FRIEDL M A, BRODLEY C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61(3): 399-409.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||