Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (12): 2767-2777.DOI: 10.3969/j.issn.1004-1524.2022.12.20
• Biosystems Engineering • Previous Articles Next Articles
ZHOU Xinxing1(
), ZHAO Lin1,*(
), ZHANG Wenjie1, TAN Changwei2, LI Gangbo1, SHI Mengyun1, ZHANG Ting1, YANG Feng1
Received:2021-10-18
Online:2022-12-25
Published:2022-12-26
Contact:
ZHAO Lin
CLC Number:
ZHOU Xinxing, ZHAO Lin, ZHANG Wenjie, TAN Changwei, LI Gangbo, SHI Mengyun, ZHANG Ting, YANG Feng. Remote sensing extraction of fruit tree planting area based on Sentinel-2 multi-temporal images[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2767-2777.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.12.20
Fig.6 Hyperparametric learning curve with different features as variable A, B, C and D show the learning curves drawn with the selected features, the unselected features, the vegetation indices in March and July, and the vegetation indices in April and August as variables, respectively.
| [1] | 史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2): 247-260. |
| SHI Z, LIANG Z Z, YANG Y Y, et al. Status and prospect of agricultural remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 247-260. (in Chinese with English abstract) | |
| [2] | 杨邦杰, 裴志远, 周清波, 等. 我国农情遥感监测关键技术研究进展[J]. 农业工程学报, 2002, 18(3): 191-194. |
| YANG B J, PEI Z Y, ZHOU Q B, et al. Key technologies of crop monitoring using remote sensing at a national scale: progress and problems[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(3): 191-194. (in Chinese with English abstract) | |
| [3] |
ATZBERGER C. Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs[J]. Remote Sensing, 2013, 5(2): 949-981.
DOI URL |
| [4] | 罗卫, 况润元. 利用环境卫星影像的东江源地区果园信息提取[J]. 测绘科学, 2014, 39(8): 135-139. |
| LUO W, KUANG R Y. Orchard information extraction of Dongjiang Source region with HJ satellite data[J]. Science of Surveying and Mapping, 2014, 39(8): 135-139. (in Chinese with English abstract) | |
| [5] | 蒋怡, 李宗南, 任国业, 等. 基于GF-1PMS影像的柠檬种植面积估算[J]. 中国农业资源与区划, 2016, 37(11): 50-55. |
| JIANG Y, LI Z N, REN G Y, et al. Estimation of lemon planted area based on GF-1PMS image[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(11): 50-55. (in Chinese with English abstract) | |
| [6] | 董芳, 赵庚星, 王凌, 等. 基于实测光谱混合像元分解的苹果园地遥感提取技术[J]. 应用生态学报, 2012, 23(12): 3361-3368. |
| DONG F, ZHAO G X, WANG L, et al. Remote sensing techniques of apple orchard information extraction based on linear spectral unmixing with measured data[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3361-3368. (in Chinese with English abstract) | |
| [7] | 邢东兴, 焦俏, 王明军, 等. 石榴树遥感辨识的最佳时相与方法[J]. 果树学报, 2020, 37(3): 431-440. |
| XING D X, JIAO Q, WANG M J, et al. The best phase and optimal identification method for identifying pomegranate trees[J]. Journal of Fruit Science, 2020, 37(3): 431-440. (in Chinese with English abstract) | |
| [8] | 岳俊, 王振锡, 冯振峰, 等. 基于光谱与纹理特征的南疆盆地果树树种遥感识别研究[J]. 新疆农业大学学报, 2015, 38(4): 326-333. |
| YUE J, WANG Z X, FENG Z F, et al. Studies on remote sensing recognition on fruit trees species based on spectrum and texture features in southern Xinjiang Basin[J]. Journal of Xinjiang Agricultural University, 2015, 38(4): 326-333. (in Chinese with English abstract) | |
| [9] | 姚新华, 金佳, 徐飞飞, 等. 太湖流域果树提取的光谱和纹理特征选择研究[J]. 中国生态农业学报(中英文), 2019, 27(10): 1596-1606. |
| YAO X H, JIN J, XU F F, et al. Research on spectral and texture feature selection for fruit tree extraction in the Taihu Lake Basin[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1596-1606. (in Chinese with English abstract) | |
| [10] |
SIMONNEAUX V, DUCHEMIN B, HELSON D, et al. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco[J]. International Journal of Remote Sensing, 2008, 29(1): 95-116.
DOI URL |
| [11] |
ZHANG T X, SU J Y, LIU C J, et al. Potential bands of sentinel-2A satellite for classification problems in precision agriculture[J]. International Journal of Automation and Computing, 2019, 16(1): 16-26.
DOI URL |
| [12] | 于婉婉, 徐凯健, 赵萍, 等. Sentinel-2影像红边谱段对不同生长期区域优势树种识别的影响[J]. 地理与地理信息科学, 2021, 37(3): 42-49. |
| YU W W, XU K J, ZHAO P, et al. Influence of red-edge spectrum of Sentinel-2 image on identification of dominant tree species in different growing periods[J]. Geography and Geo-Information Science, 2021, 37(3): 42-49. (in Chinese with English abstract) | |
| [13] |
ZHU Y H, YANG G J, YANG H, et al. Identification of apple orchard planting year based on spatiotemporally fused satellite images and clustering analysis of foliage phenophase[J]. Remote Sensing, 2020, 12(7): 1199.
DOI URL |
| [14] | 苏腾飞, 刘全明, 苏秀川. 基于多种植被指数时间序列与机器学习的作物遥感分类研究[J]. 江苏农业科学, 2017, 45(16): 219-224. |
| SU T F, LIU Q M, SU X C. Research on crop remote sensing classification based on multiple vegetation index time series and machine learning[J]. Jiangsu Agricultural Sciences, 2017, 45(16): 219-224. (in Chinese) | |
| [15] | 李颖, 陈怀亮. 机器学习技术在现代农业气象中的应用[J]. 应用气象学报, 2020, 31(3): 257-266. |
| LI Y, CHEN H L. Review of machine learning approaches for modern agrometeorology[J]. Journal of Applied Meteorological Science, 2020, 31(3): 257-266. (in Chinese with English abstract) | |
| [16] | 黄双燕, 杨辽, 陈曦, 等. 机器学习法的干旱区典型农作物分类[J]. 光谱学与光谱分析, 2018, 38(10): 3169-3176. |
| HUANG S Y, YANG L, CHEN X, et al. Study of typical arid crops classification based on machine learning[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3169-3176. (in Chinese with English abstract) | |
| [17] | GUYON I M, ELISSEEFF A. An introduction to variable and feature selection[J]. The Journal of Machine Learning Research, 2003, 3: 1157-1182. |
| [18] |
DRUSCH M, BELLO U D, CARLIER S, et al. Sentinel-2: ESA's optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120: 25-36.
DOI URL |
| [19] | 黄健熙, 贾世灵, 武洪峰, 等. 基于GF-1 WFV影像的作物面积提取方法研究[J]. 农业机械学报, 2015, 46(S1): 253-259. |
| HUANG J X, JIA S L, WU H F, et al. Extraction method of crop planted area based on GF-1 WFV image[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 253-259. (in Chinese with English abstract) | |
| [20] |
VUOLO F, NEUWIRTH M, IMMITZER M, et al. How much does multi-temporal Sentinel-2 data improve crop type classification?[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 72: 122-130.
DOI URL |
| [21] | 王蓉, 冯美臣, 杨武德, 等. 基于Sentinel-2A影像的县域冬小麦种植面积遥感监测[J]. 山西农业科学, 2019, 47(5): 854-860. |
| WANG R, FENG M C, YANG W D, et al. Remote sensing monitoring of winter wheat planting area in County based on Sentinel-2A imagery[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(5): 854-860. (in Chinese with English abstract) | |
| [22] | NASRALLAH A, BAGHDADI N, MHAWEJ M, et al. A novel approach for mapping wheat areas using high resolution Sentinel-2 images[J]. Sensors (Basel), 2018, 18(7): E2089. |
| [23] | SANNER M F. Python: a programming language for software integration and development[J]. Journal of Molecular Graphics & Modelling, 1999, 17(1): 57-61. |
| [24] | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2012, 12:2825-2830. |
| [25] | 屠星月, 赵冬玲. 多时相遥感影像农作物识别方法的分析[J]. 测绘通报, 2012(S1): 380-383. |
| TU X Y, ZHAO D L. Analysis of crop identification methods in multi-temporal remote sensing images[J]. Bulletin of Surveying and Mapping, 2012(S1): 380-383. (in Chinese) | |
| [26] |
冯齐心, 杨辽, 王伟胜, 等. 基于时序光谱重构的卷积神经网络遥感农作物分类[J]. 中国科学院大学学报, 2020, 37(5): 619-628.
DOI |
|
FENG Q X, YANG L, WANG W S, et al. CNN remote sensing crop classification based on time series spectral reconstruction[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(5): 619-628. (in Chinese with English abstract)
DOI |
|
| [27] |
FRIEDL M A, BRODLEY C E. Decision tree classification of land cover from remotely sensed data[J]. Remote Sensing of Environment, 1997, 61(3): 399-409.
DOI URL |
| [1] | CHENG Jiayu, CHEN Miaojin, LI Tong, SUN Qinan, ZHANG Xiaobin, ZHAO Yiying, ZHU Yihang, GU Qing. Detection of peach trees in unmanned aerial vehicle (UAV) images based on improved Faster-RCNN network [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1909-1919. |
| [2] | ZHANG Yongbin, LI Xiang, MAN Weidong, LIU Mingyue, FAN Jihao, HU Haoran, SONG Lijie, LIU Weijia. Research on yield estimation method of winter wheat based on Sentinel-1/2 data and machine learning algorithms [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2812-2822. |
| [3] | XU Chenyi, YANG Jiaxin, JIN Zhongyu, YU Fenghua. Research progress in polarization spectroscopy in the inversion of agronomic parameters of field crops [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2596-2604. |
| [4] | WANG Jun, LU Zhou, LUO Ming, XU Feifei, ZHANG Xu. Inversion of soil moisture content of winter wheat at turning green period based on multispectral remote sensing by unmanned aerial vehicle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1297-1305. |
| [5] | QIAN Jiawei, LIU Xiaoqing, ZHANG Jingjing, ZHOU Weihong, LI Jianlong. Constructions of hyperspectral remote sensing monitoring models for heavy metal contents in farmland soil in Zhangjiagang City [J]. , 2020, 32(8): 1437-1445. |
| [6] | WANG Meiling, JIAO Linlin, WANG Xiaohong, WU Bing, XIAO Xingxing. Differences in spectral characteristics of typical vegetation in Caofeidian wetland [J]. , 2019, 31(6): 963-969. |
| [7] | GUO Hongshan,ZHANG Huining. Agricultural remote sensing image enhancement based on firefly algorithm [J]. , 2016, 28(6): 1076-. |
| [8] | LIU Zhan-yu;*;ZHU Zeng-rong;ZHAO Min;WANG Xiu-zhen;HUANG Jing-feng. Hyperspectral discrimination of different health conditions in rice panicles based on principal component analysis and artificial neural network [J]. , 2011, 23(3): 0-616. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||