Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (7): 1626-1637.DOI: 10.3969/j.issn.1004-1524.20220927
• Horticultural Science • Previous Articles Next Articles
CHEN Guohu1(), LI Guang1, WEN Hongwei1, YIN Qian1, WU Siwen1, WANG Ying1, LIU Xueqing1, ZHAO Longlong1, KHAN Afrasyab1, GUI Shangzhi1, TANG Xiaoyan1, WANG Chenggang1,2,*(
)
Received:
2022-06-22
Online:
2023-07-25
Published:
2023-08-17
Contact:
WANG Chenggang
CLC Number:
CHEN Guohu, LI Guang, WEN Hongwei, YIN Qian, WU Siwen, WANG Ying, LIU Xueqing, ZHAO Longlong, KHAN Afrasyab, GUI Shangzhi, TANG Xiaoyan, WANG Chenggang. Genome-wide identification and expression analysis of key genes response to vernalization in radish (Raphanus sativus)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1626-1637.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20220927
基因名称 Gene name | 引物序列 Primer sequences (5'→3') | 退火温度 Annealing temperature/℃ |
---|---|---|
RsGI | F:GCATCTGGTGTAAGGATAGAAGTT R:AGGGATCAATCCATAGGCAG | 57.0 |
RsGA3ox2 | F:ATGGTGAGTGGACAGTGGTCTTA R:CTTTACTCTTGCTTGCCTCTGC | 58.0 |
RsKS | F:GGCTATGATGTGACTTACGATC R:TGCTTAGTCCACAGACACTGC | 58.0 |
RsPRR5 | F:GCCTCTGCTTTCACACGGT R:GCACTTTGAGGTGGTTCAGATA | 58.5 |
RsGID1B | F:ATGCAAGATCATTTCCCCGT R:AGGAGGTTGGTGGAGGTGTG | 59.0 |
RsFLC3 | F:GCCTTGCAGGATCTTCAGTCA R:AACGAGGGTGTCCACGCTTA | 55.0 |
RsTEM1 | F:ACGACCAACGCTAAAC R:TGGAACATCCTAACGCAAAC | 58.0 |
RsGA2ox1 | F:GAGTTGAGCCACTAGGGAAG R:TTCACTACTCTGTCTTTTTTCGG | 58.1 |
RsTOC1 | F:GAAGCACTAATCCAGCG R:CAGAGGACTCTCCAATCTTCAAC | 59.0 |
RsFLC2 | F:CGGCGATAACTTGGTCAAGA R:AGGGCAGTCTCAAGGTGGTC | 59.5 |
RsPRR9 | F:TGTAAGTGGTGCTCAGGCTAAC R:GATTCCACCGATCAAGTCCA | 56.0 |
RsCHE | F:GAGACGGATTCGTATGCCAA R:TAGAAGGCTCGGCTTGACG | 60.5 |
RsCDF1 | F:GATGAATTATCCGCAGAGC R:CTTCGTTTCCATACTGTTGC | 59.0 |
RsPHYA | F:CATTGAAGGGTGCTTGGATC R:CTGACCTCCAGATGGTGTAAAGT | 57.0 |
RsPHYB | F:GAGAGGGGACGAGGACAAGA R:GACTATGGACGATTGCTCTGTAGT | 56.5 |
RsGA2ox6 | F:TCCCTTCAAGTTCAGTTCGG R:GATTGAGTCGCTACGGACG | 55.0 |
actin | F:TACCGCAAAGAGCAGTTCGTCAGTG R:GAGCGATGGCTGGAACAGTACTTCAG | 57.5 |
Table 1 Primer sequences used for qRT-PCR
基因名称 Gene name | 引物序列 Primer sequences (5'→3') | 退火温度 Annealing temperature/℃ |
---|---|---|
RsGI | F:GCATCTGGTGTAAGGATAGAAGTT R:AGGGATCAATCCATAGGCAG | 57.0 |
RsGA3ox2 | F:ATGGTGAGTGGACAGTGGTCTTA R:CTTTACTCTTGCTTGCCTCTGC | 58.0 |
RsKS | F:GGCTATGATGTGACTTACGATC R:TGCTTAGTCCACAGACACTGC | 58.0 |
RsPRR5 | F:GCCTCTGCTTTCACACGGT R:GCACTTTGAGGTGGTTCAGATA | 58.5 |
RsGID1B | F:ATGCAAGATCATTTCCCCGT R:AGGAGGTTGGTGGAGGTGTG | 59.0 |
RsFLC3 | F:GCCTTGCAGGATCTTCAGTCA R:AACGAGGGTGTCCACGCTTA | 55.0 |
RsTEM1 | F:ACGACCAACGCTAAAC R:TGGAACATCCTAACGCAAAC | 58.0 |
RsGA2ox1 | F:GAGTTGAGCCACTAGGGAAG R:TTCACTACTCTGTCTTTTTTCGG | 58.1 |
RsTOC1 | F:GAAGCACTAATCCAGCG R:CAGAGGACTCTCCAATCTTCAAC | 59.0 |
RsFLC2 | F:CGGCGATAACTTGGTCAAGA R:AGGGCAGTCTCAAGGTGGTC | 59.5 |
RsPRR9 | F:TGTAAGTGGTGCTCAGGCTAAC R:GATTCCACCGATCAAGTCCA | 56.0 |
RsCHE | F:GAGACGGATTCGTATGCCAA R:TAGAAGGCTCGGCTTGACG | 60.5 |
RsCDF1 | F:GATGAATTATCCGCAGAGC R:CTTCGTTTCCATACTGTTGC | 59.0 |
RsPHYA | F:CATTGAAGGGTGCTTGGATC R:CTGACCTCCAGATGGTGTAAAGT | 57.0 |
RsPHYB | F:GAGAGGGGACGAGGACAAGA R:GACTATGGACGATTGCTCTGTAGT | 56.5 |
RsGA2ox6 | F:TCCCTTCAAGTTCAGTTCGG R:GATTGAGTCGCTACGGACG | 55.0 |
actin | F:TACCGCAAAGAGCAGTTCGTCAGTG R:GAGCGATGGCTGGAACAGTACTTCAG | 57.5 |
Fig.2 Tissue expression pattern of flowering related genes based on transcriptomes of radish The color scale bar of the figure represents log2 transformed FPKM values.
Fig.4 Identification and expression analysis of vernalization responded genes in radish A, Differentially expressed genes (DEG) analysis by RNA-Seq data. B, Ween of DEGs between differential materials. C, VRG, Vernalization responded genes; FRG, Flowering related genes; T-DEG, DEGs between differential materials. D, Expression trend of vernalization related gene (VRG); RT, Room temperature treatment; VE, Early vernalization treatment; VL, Late vernalization treatment.
Fig.5 META analysis and identification of vernalization key genes A, Venn diagram of META analysis; RT, Room temperature treatment; VE, Early vernalization treatment; VL, Late vernalization treatment. B, Venn diagram of key genes responded vernalization; FRG, Flowering related genes; VRG, Vernalization related genes found by transcriptome analysis; M-DEG, Differentially expressed genes obtained by META-analysis.
Fig.6 Functional enrichment analyses of key genes responded vernalization A, GO enrichment; B, KEGG enrichment; C, The pathway of gibberellin biosynthesis. In A and B, the first circle represents the enriched GO entries and KO numbers, the second circle represents the background genes enriched in this pathway, the third circle represents the number of down-regulated genes enriched in this pathway, and the fourth circle represents the enrichment factor.
Fig.7 PPI networks of key genes responded vernalization (A), vernalization pathway (B) and gibberellin pathway (C) Red represents up-regulated protein/gene and green represents down-regulated protein/gene. The size of the circle represents the degree of connection, and the larger the circle, the more connection it is.
序号 | 萝卜基因ID Rs gene ID | 拟南芥基因ID At gene ID | 基因名称 Gene name | 注释 Annotation | GO | KEGG |
---|---|---|---|---|---|---|
1 | Rsa10019598 | AT5G62430 | RsCDF1 | CYCLING DOF FACTOR 1 | GO:0050789 | K16222 |
2 | Rsa10024990 | AT5G10140 | RsFLC1 | FLOWERING LOCUS C-like | GO:0010219 | |
3 | Rsa10036313 | AT5G10140 | RsFLC2 | FLOWERING LOCUS C-like | GO:0010219 | |
4 | Rsa10009519 | AT4G02780 | RsGA1 | ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 | GO:0009739 | K04120 |
5 | Rsa10027754 | AT3G63010 | RsGID1B | GA INSENSITIVE DWARF1B | GO:0007165 | K14493 |
6 | Rsa10036693 | AT4G25420 | RsGA20ox1 | GIBBERELLIN 20-OXIDASE 1 | GO:0009937 | K05282 |
7 | Rsa10012570 | AT1G02400 | RsGA2ox6 | GIBBERELLIN 2-OXIDASE 6 | GO:0009685 | K04125 |
8 | Rsa10003234 | AT1G80340 | RsGA3ox2 | GIBBERELLIN 3-OXIDASE 2 | GO:0009685 | K04124 |
9 | Rsa10001141 | AT1G22770 | RsGI | GIGANTEA | GO:0009648 | K12124 |
10 | Rsa10014915 | AT1G79460 | RsKS | GA REQUIRING 2/ENT-KAURENE SYNTHASE | GO:0010476 | K04121 |
11 | Rsa10018279 | AT5G24470 | RsPRR5 | PSEUDO-RESPONSE REGULATOR 5 | GO:0048571 | K12130 |
12 | Rsa10009861 | AT2G46790 | RsPRR9 | PSEUDO-RESPONSE REGULATOR 9 | GO:0048511 | K12128 |
13 | Rsa10040564 | AT1G25560 | RsTEM1 | TEMPRANILLO 1 | GO:0009908 | |
14 | Rsa10017933 | AT5G61380 | RsTOC1 | PRR1/TOC1 | GO:0009648 | K12127 |
15 | Rsa10028588 | AT1G09570 | RsPHYA | PHYTOCHROME A | GO:0009416 | K12120 |
16 | Rsa10042572 | AT2G18790 | RsPHYB | PHYTOCHROME B | K12121 | |
17 | Rsa10036371 | AT5G08330 | RsCHE | CHE | GO:0050789 | K16221 |
Table 2 Vernalization response key genes in photoperiod, vernalization, gibberellin biosynthesis and signal transduction pathway
序号 | 萝卜基因ID Rs gene ID | 拟南芥基因ID At gene ID | 基因名称 Gene name | 注释 Annotation | GO | KEGG |
---|---|---|---|---|---|---|
1 | Rsa10019598 | AT5G62430 | RsCDF1 | CYCLING DOF FACTOR 1 | GO:0050789 | K16222 |
2 | Rsa10024990 | AT5G10140 | RsFLC1 | FLOWERING LOCUS C-like | GO:0010219 | |
3 | Rsa10036313 | AT5G10140 | RsFLC2 | FLOWERING LOCUS C-like | GO:0010219 | |
4 | Rsa10009519 | AT4G02780 | RsGA1 | ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 | GO:0009739 | K04120 |
5 | Rsa10027754 | AT3G63010 | RsGID1B | GA INSENSITIVE DWARF1B | GO:0007165 | K14493 |
6 | Rsa10036693 | AT4G25420 | RsGA20ox1 | GIBBERELLIN 20-OXIDASE 1 | GO:0009937 | K05282 |
7 | Rsa10012570 | AT1G02400 | RsGA2ox6 | GIBBERELLIN 2-OXIDASE 6 | GO:0009685 | K04125 |
8 | Rsa10003234 | AT1G80340 | RsGA3ox2 | GIBBERELLIN 3-OXIDASE 2 | GO:0009685 | K04124 |
9 | Rsa10001141 | AT1G22770 | RsGI | GIGANTEA | GO:0009648 | K12124 |
10 | Rsa10014915 | AT1G79460 | RsKS | GA REQUIRING 2/ENT-KAURENE SYNTHASE | GO:0010476 | K04121 |
11 | Rsa10018279 | AT5G24470 | RsPRR5 | PSEUDO-RESPONSE REGULATOR 5 | GO:0048571 | K12130 |
12 | Rsa10009861 | AT2G46790 | RsPRR9 | PSEUDO-RESPONSE REGULATOR 9 | GO:0048511 | K12128 |
13 | Rsa10040564 | AT1G25560 | RsTEM1 | TEMPRANILLO 1 | GO:0009908 | |
14 | Rsa10017933 | AT5G61380 | RsTOC1 | PRR1/TOC1 | GO:0009648 | K12127 |
15 | Rsa10028588 | AT1G09570 | RsPHYA | PHYTOCHROME A | GO:0009416 | K12120 |
16 | Rsa10042572 | AT2G18790 | RsPHYB | PHYTOCHROME B | K12121 | |
17 | Rsa10036371 | AT5G08330 | RsCHE | CHE | GO:0050789 | K16221 |
Fig.8 Relative expression levels of vernalization key genes enriched in photoperiod, vernalization, gibberellin biosynthesis and signal transduction pathways Different lowercase letters indicate significant difference (P<0.05).
[1] | 张长生, 魏滔, 周玉萍, 等. FLC调控植物成花的分子机制研究新进展[J]. 植物学报, 2021, 56(6): 651-663. |
ZHANG C S, WEI T, ZHOU Y P, et al. Progress in flowering regulation mechanisms of FLC[J]. Chinese Bulletin of Botany, 2021, 56(6): 651-663. (in Chinese with English abstract) | |
[2] | 李昌满, 李朝闯, 王志敏, 等. 拟南芥和芥菜开花抑制因子AGL18花期调控机制研究进展[J]. 园艺学报, 2017, 44(9): 1717-1728. |
LI C M, LI Z C, WANG Z M, et al. Progress in mechanisms of floral inhibiting factor AGL18 in regulating flowering time of Arabidopsis and mustard[J]. Acta Horticulturae Sinica, 2017, 44(9): 1717-1728. (in Chinese with English abstract) | |
[3] | SASAKI E, FROMMLET F, NORDBORG M. The genetic architecture of the network underlying flowering time variation in Arabidopsis thaliana[J]. bioRxiv, 2017, DOI:10.1101/175430. |
[4] | FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: control of flowering in Arabidopsis[J]. Cell, 2010, 141(3): 550-550.e2. |
[5] | DONG X X, LI Y J, GUAN Y H, et al. Auxin-induced auxin response factor4 activates apetala1 and fruitfull to promote flowering in woodland strawberry[J]. Horticulture Research, 2021, 8: 115. |
[6] | ZHU P, LISTER C, DEAN C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression[J]. Nature, 2021, 599(7886): 657-661. |
[7] | FADINA O A, KHAVKIN E E. The vernalization gene FRIGIDA in cultivated Brassica species[J]. Russian Journal of Plant Physiology, 2014, 61(3): 309-317. |
[8] | ZENG X L, LV X C, LIU R, et al. Molecular basis of CONSTANS oligomerization in FLOWERING LOCUS T activation[J]. Journal of Integrative Plant Biology, 2022, 64(3): 731-740. |
[9] | QÜESTA J I, SONG J, GERALDO N, et al. Arabidopsis transcriptional repressor VAL1 triggers polycomb silencing at FLC during vernalization[J]. Science, 2016, 353(6298): 485-488. |
[10] | YUAN L B, SONG X, ZHANG L, et al. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide polycomb silencing in Arabidopsis[J]. Nucleic Acids Research, 2020, 49(1): 98-113. |
[11] | JUNG H, JO S H, JUNG W Y, et al. Gibberellin promotes bolting and flowering via the floral integrators RsFT and RsSOC1-1 under marginal vernalization in radish[J]. Plants (Basel, Switzerland), 2020, 9(5): 594. |
[12] | LIU C, WANG S F, XU W L, et al. Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization[J]. PLoS One, 2017, 12(5): e0177594. |
[13] | 甘彩霞, 崔磊, 庞文星, 等. 基于萝卜高密度遗传图谱的抽薹和开花性状的QTL定位[J]. 园艺学报, 2021(7): 1273-1281. |
GAN C X, CUI L, PANG W X, et al. QTL mapping of bolting and flowering traits based on high density genetic map of radish[J]. Acta Horticulturae Sinica, 2021(7): 1273-1281. (in Chinese with English abstract) | |
[14] | JUNG W Y, PARK H J, LEE A, et al. Identification of flowering-related genes responsible for differences in bolting time between two radish inbred lines[J]. Frontiers in Plant Science, 2016, 7: 1844. |
[15] | WANG J L, QIU Y, CHENG F, et al. Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.)[J]. BMC Genomics, 2017, 18(1): 981. |
[16] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
[17] | JOHNSON W E, LI C, RABINOVIC A. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics, 2006, 8(1): 118-127. |
[18] | HASIB F M Y. Esophageal squamous cell carcinoma: integrated bioinformatics analysis for differential gene expression with identification of hub genes and lncRNA[J]. Biochemistry and Biophysics Reports, 2022, 30: 101262. |
[19] | 马李广, 张贺龙, 庞小可, 等. 白菜bZIP转录因子基因家族应答春化反应关键基因表达分析[J]. 江苏农业学报, 2022, 38(3): 765-774. |
MA L G, ZHANG H L, PANG X K, et al. Genome-wide identification of bZIP transcription factor gene family in Brassica rapa and its association with vernalization[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 765-774. (in Chinese with English abstract) | |
[20] | MADRID E, CHANDLER J W, COUPLAND G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history[J]. Journal of Experimental Botany, 2020, 72(1): 4-14. |
[21] | XU S J, DONG Q, DENG M, et al. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat[J]. Molecular Plant, 2021, 14(9): 1525-1538. |
[22] | KANG H, NUGROHO A B D, PARK M, et al. Vernalization regulates flowering genes and modulates glucosinolates biosynthesis in Chinese cabbage[J]. Journal of Plant Biology, 2022, 65(2): 157-173. |
[23] | 陈曙, 赵秋芳, 陈宏良, 等. 玉米泛素结合酶基因家族分析及低氮胁迫下亚家族UBC2的表达分析[J]. 热带作物学报, 2020, 41(2): 305-314. |
CHEN S, ZHAO Q F, CHEN H L, et al. Bioinformatics analysis of ubiquitin-conjugating enzymes and expression analysis of UBC2 gene sub-family in response to low nitrogen stress in maize[J]. Chinese Journal of Tropical Crops, 2020, 41(2): 305-314. (in Chinese with English abstract) | |
[24] | WANG Q, WANG G L, SONG S Y, et al. ORANGE negatively regulates flowering time in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2022, 274: 153719. |
[25] | 刘永平, 杨静, 杨明峰. 植物开花调控途径[J]. 生物工程学报, 2015, 31(11): 1553-1566. |
LIU Y P, YANG J, YANG M F. Pathways of flowering regulation in plants[J]. Chinese Journal of Biotechnology, 2015, 31(11): 1553-1566. (in Chinese with English abstract) | |
[26] | HUNG F Y, SHIH Y H, LIN P Y, et al. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering[J]. Plant Physiology, 2022, 190(1): 532-547. |
[27] | YI G, PARK H, KIM J S, et al. Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.)[J]. Horticulture, Environment, and Biotechnology, 2014, 55(6): 548-556. |
[28] | KYUNG J, JEON M, JEONG G, et al. The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element[J]. The Plant Cell, 2021, 34(3): 1020-1037. |
[29] | FEDORENKO O M, TOPCHIEVA L V, ZARETSKAYA M V, et al. Changes in FLC and VIN3 expression during vernalization of Arabidopsis thaliana plants from northern natural populations[J]. Russian Journal of Genetics, 2019, 55(7): 865-871. |
[30] | WANG Y D, HUANG X, HUANG X M, et al. BcSOC1 promotes bolting and stem elongation in flowering Chinese cabbage[J]. International Journal of Molecular Sciences, 2022, 23(7): 3459. |
[31] | MOON J, SUH S S, LEE H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal, 2003, 35(5): 613-623. |
[32] | 张家硕, 魏华, 王雷. 生物钟调控植物生长发育的研究进展[J]. 植物生理学报, 2022, 58(1): 3-12. |
ZHANG J S, WEI H, WANG L. The molecular networks of circadian clock-regulated plant growth and development[J]. Plant Physiology Journal, 2022, 58(1): 3-12. (in Chinese with English abstract) | |
[33] | FOWLER S, LEE K, ONOUCHI H, et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains[J]. The EMBO Journal, 1999, 18(17): 4679-4688. |
[34] | 王玉博, 王悦, 刘雄, 等. 水稻光周期调控开花的研究进展[J]. 中国水稻科学, 2021, 35(3): 207-224. |
WANG Y B, WANG Y, LIU X, et al. Research progress of photoperiod regulation in rice flowering[J]. Chinese Journal of Rice Science, 2021, 35(3): 207-224. (in Chinese with English abstract) | |
[35] | JUNG W Y, LEE A, MOON J S, et al. Genome-wide identification of flowering time genes associated with vernalization and the regulatory flowering networks in Chinese cabbage[J]. Plant Biotechnology Reports, 2018, 12(5): 347-363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||