Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (10): 2332-2345.DOI: 10.3969/j.issn.1004-1524.20221404
• Horticultural Science • Previous Articles Next Articles
HE Rong1(), ZHAO Kai1, HE Yujiao1, ALATENG Suhe2, WANG Aijun3, NING Jing3, HAN Ruoshuang4, SUN Guirong2, ZHANG Guosheng1,*(
)
Received:
2022-09-27
Online:
2023-10-25
Published:
2023-10-31
CLC Number:
HE Rong, ZHAO Kai, HE Yujiao, ALATENG Suhe, WANG Aijun, NING Jing, HAN Ruoshuang, SUN Guirong, ZHANG Guosheng. Preliminary screening of Northern Salix (Salix psammophila) architecture related genes based on RNA-Seq analysis and quantitative PCR technique[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2332-2345.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221404
组别 Group | 无性系号 Asexual line number | 冠高比 Ratio of crown and height | 组别 Group | 无性系号 Asexual line number | 冠高比 Ratio of crown and height | 组别 Group | 无性系号 Asexual line number | 冠高比 Ratio of crown and height |
---|---|---|---|---|---|---|---|---|
第一组 | 17-13 | 0.26 | 第二组 | 17-17 | 0.66 | 第三组 | 11-44 | 0.81 |
Group 1 | 10-15 | 0.45 | Group 2 | 8-38 | 0.66 | Group 3 | 2-15 | 0.81 |
14-32 | 0.46 | 11-32 | 0.66 | 4-30 | 0.81 | |||
8-36 | 0.46 | 12-34 | 0.67 | 14-26 | 0.82 | |||
11-30 | 0.51 | 5-36 | 0.67 | 8-14 | 0.82 | |||
7-6 | 0.51 | 8-15 | 0.67 | 5-18 | 0.83 | |||
6-34 | 0.52 | 5-4 | 0.68 | 14-44 | 0.85 | |||
16-29 | 0.56 | 6-46 | 0.68 | 10-16 | 0.86 | |||
5-30 | 0.60 | 5-16 | 0.69 | 11-42 | 0.87 | |||
4-28 | 0.61 | 3-17 | 0.71 | 12-14 | 0.88 | |||
11-16 | 0.62 | 20-13 | 0.72 | 7-22 | 0.88 | |||
7-18 | 0.62 | 5-17 | 0.72 | 5-18 | 0.88 | |||
5-2 | 0.64 | 3-36 | 0.73 | 8-16 | 0.89 | |||
9-21 | 0.65 | 4-6 | 0.74 | 19-25 | 0.92 | |||
4-24 | 0.75 | 4-16 | 0.92 | |||||
3-6 | 0.76 | 11-36 | 0.93 | |||||
8-22 | 0.78 | 5-42 | 0.93 | |||||
8-14 | 0.79 | 14-50 | 0.94 | |||||
第四组 | 4-26 | 0.97 | 第五组 | 13-30 | 1.10 | 第六组 | 2-50 | 1.24 |
Group 4 | 15-28 | 0.97 | Group 5 | 10-24 | 1.11 | Group 6 | 4-40 | 1.27 |
19-23 | 0.97 | 19-13 | 1.13 | 1-19 | 1.29 | |||
6-4 | 0.97 | 8-18 | 1.14 | 1-2 | 1.30 | |||
6-2 | 0.98 | 2-4 | 1.14 | 6-24 | 1.32 | |||
10-8 | 0.98 | 1-28 | 1.15 | 7-50 | 1.33 | |||
11-18 | 0.98 | 4-22 | 1.15 | 15-16 | 1.33 | |||
12-2 | 0.99 | 11-21 | 1.15 | 7-21 | 1.35 | |||
15-40 | 0.99 | 10-50 | 1.16 | 11-19 | 1.37 | |||
3-20 | 1.00 | 6-12 | 1.19 | 2-24 | 1.37 | |||
12-22 | 1.01 | 13-15 | 1.20 | 6-42 | 1.37 | |||
11-20 | 1.01 | 6-30 | 1.21 | 6-8 | 1.45 | |||
7-42 | 1.05 | 6-40 | 1.22 | 1-44 | 1.46 | |||
21-13 | 1.05 | 7-38 | 1.23 | 8-40 | 1.51 | |||
4-14 | 1.07 | 7-2 | 1.53 | |||||
21-17 | 1.08 | 9-14 | 1.54 | |||||
11-22 | 1.65 |
Table 1 Division of Salix psammophila architecture groups
组别 Group | 无性系号 Asexual line number | 冠高比 Ratio of crown and height | 组别 Group | 无性系号 Asexual line number | 冠高比 Ratio of crown and height | 组别 Group | 无性系号 Asexual line number | 冠高比 Ratio of crown and height |
---|---|---|---|---|---|---|---|---|
第一组 | 17-13 | 0.26 | 第二组 | 17-17 | 0.66 | 第三组 | 11-44 | 0.81 |
Group 1 | 10-15 | 0.45 | Group 2 | 8-38 | 0.66 | Group 3 | 2-15 | 0.81 |
14-32 | 0.46 | 11-32 | 0.66 | 4-30 | 0.81 | |||
8-36 | 0.46 | 12-34 | 0.67 | 14-26 | 0.82 | |||
11-30 | 0.51 | 5-36 | 0.67 | 8-14 | 0.82 | |||
7-6 | 0.51 | 8-15 | 0.67 | 5-18 | 0.83 | |||
6-34 | 0.52 | 5-4 | 0.68 | 14-44 | 0.85 | |||
16-29 | 0.56 | 6-46 | 0.68 | 10-16 | 0.86 | |||
5-30 | 0.60 | 5-16 | 0.69 | 11-42 | 0.87 | |||
4-28 | 0.61 | 3-17 | 0.71 | 12-14 | 0.88 | |||
11-16 | 0.62 | 20-13 | 0.72 | 7-22 | 0.88 | |||
7-18 | 0.62 | 5-17 | 0.72 | 5-18 | 0.88 | |||
5-2 | 0.64 | 3-36 | 0.73 | 8-16 | 0.89 | |||
9-21 | 0.65 | 4-6 | 0.74 | 19-25 | 0.92 | |||
4-24 | 0.75 | 4-16 | 0.92 | |||||
3-6 | 0.76 | 11-36 | 0.93 | |||||
8-22 | 0.78 | 5-42 | 0.93 | |||||
8-14 | 0.79 | 14-50 | 0.94 | |||||
第四组 | 4-26 | 0.97 | 第五组 | 13-30 | 1.10 | 第六组 | 2-50 | 1.24 |
Group 4 | 15-28 | 0.97 | Group 5 | 10-24 | 1.11 | Group 6 | 4-40 | 1.27 |
19-23 | 0.97 | 19-13 | 1.13 | 1-19 | 1.29 | |||
6-4 | 0.97 | 8-18 | 1.14 | 1-2 | 1.30 | |||
6-2 | 0.98 | 2-4 | 1.14 | 6-24 | 1.32 | |||
10-8 | 0.98 | 1-28 | 1.15 | 7-50 | 1.33 | |||
11-18 | 0.98 | 4-22 | 1.15 | 15-16 | 1.33 | |||
12-2 | 0.99 | 11-21 | 1.15 | 7-21 | 1.35 | |||
15-40 | 0.99 | 10-50 | 1.16 | 11-19 | 1.37 | |||
3-20 | 1.00 | 6-12 | 1.19 | 2-24 | 1.37 | |||
12-22 | 1.01 | 13-15 | 1.20 | 6-42 | 1.37 | |||
11-20 | 1.01 | 6-30 | 1.21 | 6-8 | 1.45 | |||
7-42 | 1.05 | 6-40 | 1.22 | 1-44 | 1.46 | |||
21-13 | 1.05 | 7-38 | 1.23 | 8-40 | 1.51 | |||
4-14 | 1.07 | 7-2 | 1.53 | |||||
21-17 | 1.08 | 9-14 | 1.54 | |||||
11-22 | 1.65 |
极强相关Highly related | 中相关Moderate related | 极弱相关Low related | |||
---|---|---|---|---|---|
基因序列号 Gene identifier | 相关系数 Correlation coefficient | 基因序列号 Gene identifier | 相关系数 Correlation coefficient | 基因序列号 Gene identifier | 相关系数 Correlation coefficient |
SapurV1A.0256s0170 | 0.907 8 | SapurV1A.1836s0090 | 0.500 0 | SapurV1A.1426s0040 | 0.001 1 |
SapurV1A.0223s0180 | 0.903 3 | SapurV1A.0577s0020 | 0.499 9 | SapurV1A.0163s0360 | 0.001 1 |
SapurV1A.0210s0130 | 0.903 2 | SapurV1A.1223s0010 | 0.499 8 | SapurV1A.1086s0060 | 0.001 1 |
SapurV1A.0374s0080 | 0.899 7 | SapurV1A.3131s0030 | 0.499 4 | SapurV1A.0621s0040 | 0.001 1 |
SapurV1A.1401s0040 | 0.894 3 | SapurV1A.1712s0040 | 0.499 2 | SapurV1A.0038s0420 | 0.001 1 |
SapurV1A.0744s0030 | 0.893 8 | SapurV1A.1352s0010 | 0.498 9 | SapurV1A.1001s0080 | 0.001 1 |
SapurV1A.0878s0060 | 0.892 7 | MSTRG.2962 | 0.498 7 | SapurV1A.2098s0020 | 0.001 1 |
SapurV1A.0222s0270 | 0.889 9 | SapurV1A.0470s0220 | 0.498 5 | SapurV1A.0052s0830 | 0.001 1 |
MSTRG.12920 | 0.878 7 | SapurV1A.0307s0230 | 0.498 1 | SapurV1A.1878s0050 | 0.001 1 |
SapurV1A.5044s0020 | 0.870 8 | SapurV1A.0006s1570 | 0.498 1 | MSTRG.22590 | 0.001 1 |
Table 2 Partial correlation coefficients of varying degrees
极强相关Highly related | 中相关Moderate related | 极弱相关Low related | |||
---|---|---|---|---|---|
基因序列号 Gene identifier | 相关系数 Correlation coefficient | 基因序列号 Gene identifier | 相关系数 Correlation coefficient | 基因序列号 Gene identifier | 相关系数 Correlation coefficient |
SapurV1A.0256s0170 | 0.907 8 | SapurV1A.1836s0090 | 0.500 0 | SapurV1A.1426s0040 | 0.001 1 |
SapurV1A.0223s0180 | 0.903 3 | SapurV1A.0577s0020 | 0.499 9 | SapurV1A.0163s0360 | 0.001 1 |
SapurV1A.0210s0130 | 0.903 2 | SapurV1A.1223s0010 | 0.499 8 | SapurV1A.1086s0060 | 0.001 1 |
SapurV1A.0374s0080 | 0.899 7 | SapurV1A.3131s0030 | 0.499 4 | SapurV1A.0621s0040 | 0.001 1 |
SapurV1A.1401s0040 | 0.894 3 | SapurV1A.1712s0040 | 0.499 2 | SapurV1A.0038s0420 | 0.001 1 |
SapurV1A.0744s0030 | 0.893 8 | SapurV1A.1352s0010 | 0.498 9 | SapurV1A.1001s0080 | 0.001 1 |
SapurV1A.0878s0060 | 0.892 7 | MSTRG.2962 | 0.498 7 | SapurV1A.2098s0020 | 0.001 1 |
SapurV1A.0222s0270 | 0.889 9 | SapurV1A.0470s0220 | 0.498 5 | SapurV1A.0052s0830 | 0.001 1 |
MSTRG.12920 | 0.878 7 | SapurV1A.0307s0230 | 0.498 1 | SapurV1A.1878s0050 | 0.001 1 |
SapurV1A.5044s0020 | 0.870 8 | SapurV1A.0006s1570 | 0.498 1 | MSTRG.22590 | 0.001 1 |
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|---|---|
ZFP4-F | AACCTGCATCACGTACCACA | SPA2-F | CTTAGCCATTGTTGGTACATCG |
ZFP4-R | AATGAGGATCCATGCAGAGG | SPA2-R | AAGGTATGACTACGGGAAATCC |
TB1-F | AAGCAAGCAAAACTATCGAGTG | FHY1-F | TGGGGATTTTTATGGTGAGGAA |
TB1-R | GAAGAAACACTCTTGCTGTCAG | FHY1-R | AAGTTTATGGATGCTTGCAGTG |
TAC2-F | AAAGATGGGCTCGCTGGAAA | RFK1-F | AAGGACAGACCAGCATCCAG |
TAC2-R | GTGAATCCTCTACAGCGCGA | RFK1-R | GGAAGACGTGGAGGTGGATA |
LAZY1b-F | CACTGAAGGATTTTGCTATCGG | ABF2-F | CAAGAACTTCTCAAATGACCCG |
LAZY1b-R | CAGAAAACCATGGAATAGCTCG | ABF2-R | TGAAGCTCGTCAAAAGTTAACG |
ATX1-F | AAGCAAGCAAAACTATCGAGTG | PYL1-F | GCAGGTCACGGGGTTTAGTA |
ATX1-R | GAAGAAACACTCTTGCTGTCAG | PYL1-R | CCGTGTGTCTTCCTCGGTAT |
UBQ-F | AAGCCCAAGAAGATCAAGCA | ||
UBQ-R | ACCACCAGCCTTCTGGTAAA |
Table 3 Primer sequence
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|---|---|
ZFP4-F | AACCTGCATCACGTACCACA | SPA2-F | CTTAGCCATTGTTGGTACATCG |
ZFP4-R | AATGAGGATCCATGCAGAGG | SPA2-R | AAGGTATGACTACGGGAAATCC |
TB1-F | AAGCAAGCAAAACTATCGAGTG | FHY1-F | TGGGGATTTTTATGGTGAGGAA |
TB1-R | GAAGAAACACTCTTGCTGTCAG | FHY1-R | AAGTTTATGGATGCTTGCAGTG |
TAC2-F | AAAGATGGGCTCGCTGGAAA | RFK1-F | AAGGACAGACCAGCATCCAG |
TAC2-R | GTGAATCCTCTACAGCGCGA | RFK1-R | GGAAGACGTGGAGGTGGATA |
LAZY1b-F | CACTGAAGGATTTTGCTATCGG | ABF2-F | CAAGAACTTCTCAAATGACCCG |
LAZY1b-R | CAGAAAACCATGGAATAGCTCG | ABF2-R | TGAAGCTCGTCAAAAGTTAACG |
ATX1-F | AAGCAAGCAAAACTATCGAGTG | PYL1-F | GCAGGTCACGGGGTTTAGTA |
ATX1-R | GAAGAAACACTCTTGCTGTCAG | PYL1-R | CCGTGTGTCTTCCTCGGTAT |
UBQ-F | AAGCCCAAGAAGATCAAGCA | ||
UBQ-R | ACCACCAGCCTTCTGGTAAA |
Fig.2 Expression trends of target genes in the shoot tips in the hydroponic and training populations A, The hydroponic prediction population; B, The field training population.
Fig.3 Expression trends of target genes in the axillary buds in the hydroponic and training populations A, The hydroponic prediction population; B, The field training population.
基因名称 Gene name | 采样部位 Sampling position | 平均值 Mean | 标准偏差 Standard deviation | P值 P value | 最小值 Minimum | 最大值 Maximum |
---|---|---|---|---|---|---|
ATX1 | 茎尖Shoot tip | 0.654 | 0.315 | 0.012 | 0.140 | 1.420 |
腋芽Axillary bud | 0.726 | 0.309 | 0.000 | 0.130 | 1.410 | |
LAZY1b | 茎尖Shoot tip | 1.224 | 1.283 | 0.054 | 0.030 | 5.960 |
腋芽Axillary bud | 0.302 | 0.182 | 0.061 | 0.040 | 1.160 | |
TAC2 | 茎尖Shoot tip | 0.381 | 0.291 | 0.002 | 0.010 | 1.260 |
腋芽Axillary bud | 2.345 | 1.847 | 0.207 | 0.340 | 8.810 | |
TB1 | 茎尖Shoot tip | 3.192 | 1.949 | 0.326 | 0.600 | 9.900 |
腋芽Axillary bud | 0.730 | 0.579 | 0.000 | 0.200 | 5.190 | |
ZFP4 | 茎尖Shoot tip | 8.771 | 5.257 | 0.001 | 0.120 | 28.980 |
腋芽Axillary bud | 19.732 | 23.706 | 0.099 | 0.110 | 109.230 | |
ABF2 | 茎尖Shoot tip | 2.107 | 2.094 | 0.233 | 0.210 | 16.700 |
腋芽Axillary bud | 1.315 | 0.765 | 0.044 | 0.240 | 4.730 | |
FHY1 | 茎尖Shoot tip | 10.564 | 9.017 | 0.121 | 1.000 | 61.210 |
腋芽Axillary bud | 2.631 | 1.596 | <0.001 | 0.170 | 8.090 | |
RFK1 | 茎尖Shoot tip | 2.129 | 1.262 | 0.483 | 0.030 | 6.640 |
腋芽Axillary bud | 0.657 | 0.505 | <0.001 | 0.020 | 2.790 | |
SPA2 | 茎尖Shoot tip | 0.420 | 0.398 | 0.002 | 0.030 | 1.930 |
腋芽Axillary bud | 0.794 | 0.760 | 0.078 | 0.070 | 4.520 | |
PYL1 | 茎尖Shoot tip | 0.963 | 0.876 | 0.073 | 0.050 | 4.980 |
腋芽Axillary bud | 1.684 | 1.407 | 0.038 | 0.060 | 7.630 |
Table 4 Rank sum analysis of target genes
基因名称 Gene name | 采样部位 Sampling position | 平均值 Mean | 标准偏差 Standard deviation | P值 P value | 最小值 Minimum | 最大值 Maximum |
---|---|---|---|---|---|---|
ATX1 | 茎尖Shoot tip | 0.654 | 0.315 | 0.012 | 0.140 | 1.420 |
腋芽Axillary bud | 0.726 | 0.309 | 0.000 | 0.130 | 1.410 | |
LAZY1b | 茎尖Shoot tip | 1.224 | 1.283 | 0.054 | 0.030 | 5.960 |
腋芽Axillary bud | 0.302 | 0.182 | 0.061 | 0.040 | 1.160 | |
TAC2 | 茎尖Shoot tip | 0.381 | 0.291 | 0.002 | 0.010 | 1.260 |
腋芽Axillary bud | 2.345 | 1.847 | 0.207 | 0.340 | 8.810 | |
TB1 | 茎尖Shoot tip | 3.192 | 1.949 | 0.326 | 0.600 | 9.900 |
腋芽Axillary bud | 0.730 | 0.579 | 0.000 | 0.200 | 5.190 | |
ZFP4 | 茎尖Shoot tip | 8.771 | 5.257 | 0.001 | 0.120 | 28.980 |
腋芽Axillary bud | 19.732 | 23.706 | 0.099 | 0.110 | 109.230 | |
ABF2 | 茎尖Shoot tip | 2.107 | 2.094 | 0.233 | 0.210 | 16.700 |
腋芽Axillary bud | 1.315 | 0.765 | 0.044 | 0.240 | 4.730 | |
FHY1 | 茎尖Shoot tip | 10.564 | 9.017 | 0.121 | 1.000 | 61.210 |
腋芽Axillary bud | 2.631 | 1.596 | <0.001 | 0.170 | 8.090 | |
RFK1 | 茎尖Shoot tip | 2.129 | 1.262 | 0.483 | 0.030 | 6.640 |
腋芽Axillary bud | 0.657 | 0.505 | <0.001 | 0.020 | 2.790 | |
SPA2 | 茎尖Shoot tip | 0.420 | 0.398 | 0.002 | 0.030 | 1.930 |
腋芽Axillary bud | 0.794 | 0.760 | 0.078 | 0.070 | 4.520 | |
PYL1 | 茎尖Shoot tip | 0.963 | 0.876 | 0.073 | 0.050 | 4.980 |
腋芽Axillary bud | 1.684 | 1.407 | 0.038 | 0.060 | 7.630 |
[1] | 李忠南, 王越人, 李光发, 等. 玉米分蘖率的遗传研究[J]. 玉米科学, 2016, 24(2): 15-21. |
LI Z N, WANG Y R, LI G F, et al. Genetic study of tillering rate in maize[J]. Journal of Maize Sciences, 2016, 24(2): 15-21. (in Chinese with English abstract) | |
[2] | 蒋锋, 闫艳, 黄正刚, 等. 糯玉米种子活力性状的主基因+多基因混合遗传分析[J]. 西北农林科技大学学报(自然科学版), 2023, 51(2): 22-29, 42. |
JIANG F, YAN Y, HUANG Z G, et al. Mixed major genes and polygenes inheritance analyses for seed vigor traits in waxy corn[J]. Journal of Northwest A & F University(Natural Science Edition), 2023, 51(2): 22-29, 42. (in Chinese with English abstract) | |
[3] | LEI R H, LI X L, MA Z B, et al. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function[J]. The Plant Journal, 2017, 91(6): 962-976. |
[4] | PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors: molecular regulation and stress responses in plants[J]. Frontiers in Plant Science, 2016, 7: 760. |
[5] | LU Z F, YU H, XIONG G S, et al. Genome-wide binding analysis of the transcription activator IDEAL PLANT ARCHITECTURE1 reveals a complex network regulating rice plant architecture[J]. The Plant Cell, 2013, 25(10): 3743-3759. |
[6] | WANG B, SMITH S M, LI J Y. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. |
[7] | 郝蕾. 北沙柳种质资源评价、鉴定及核心库构建[D]. 呼和浩特: 内蒙古农业大学, 2018. |
HAO L. Evaluation, identification and core bank construction of Salix psammophila germplasm resources[D]. Hohhot: Inner Mongolia Agricultural University, 2018. (in Chinese with English abstract) | |
[8] | 张磊, 叶志玮, 赵晨曦, 等. 沙柳SpsLAZY1a和SpsLAZY1b基因克隆及生物信息学分析[J]. 西北林学院学报, 2017, 32(1): 98-105. |
ZHANG L, YE Z W, ZHAO C X, et al. Cloning and bioinformatics analysis of SpsLAZY1a and SpsLAZY1b genes in Salix psammophila[J]. Journal of Northwest Forestry University, 2017, 32(1): 98-105. (in Chinese with English abstract) | |
[9] | 袁梦如, 杨杨, 张磊, 等. 沙柳SpsTAC2基因克隆、生物信息学及组织特异表达分析[J]. 分子植物育种, 2019, 17(7): 2144-2151. |
YUAN M R, YANG Y, ZHANG L, et al. Cloning, bioinformatics and tissue-specific expression analysis of SpsTAC2 gene in Salix psammophila[J]. Molecular Plant Breeding, 2019, 17(7): 2144-2151. (in Chinese with English abstract) | |
[10] | YIN M Z, WANG Y P, ZHANG L H, et al. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress[J]. Journal of Experimental Botany, 2017, 68(11): 2991-3005. |
[11] | FINLAYSON S A. Arabidopsis TEOSINTE BRANCHED1-LIKE 1 regulates axillary bud outgrowth and is homologous to monocot TEOSINTE BRANCHED1[J]. Plant and Cell Physiology, 2007, 48(5): 667-677. |
[12] | 丁超, 张树伟, 王新胜, 等. 植物光信号传导途径中重要调控基因概述[J]. 山西农业科学, 2015, 43(12): 1724-1726. |
DING C, ZHANG S W, WANG X S, et al. Review on key regulatory genes of light signal transduction pathway in plant[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(12): 1724-1726. (in Chinese with English abstract) | |
[13] | 林莹莹, 李晓云, 刘帅, 等. 过表达转录因子AhAREB1对拟南芥生长素分布的影响[J]. 华南师范大学学报(自然科学版), 2015, 47(1): 87-92. |
LIN Y Y, LI X Y, LIU S, et al. Auxin distribution in Arabidopsis plants over-expressing AhAREB1 encoding a transcription factor[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(1): 87-92. (in Chinese with English abstract) | |
[14] | LI W Q, WANG L, SHENG X L, et al. Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13[J]. Cell Research, 2013, 23(12): 1369-1379. |
[15] | ZHANG Y Y, CHEN K, ZHAO F J, et al. OsATX1 interacts with heavy metal P1B-type ATPases and affects copper transport and distribution[J]. Plant Physiology, 2018, 178(1): 329-344. |
[16] | 陈渝, 邓洁, 陈君愉, 等. 番茄FAR1/FHY3转录因子家族的全基因组鉴定及表达分析[J]. 植物生理学报, 2021, 57(10): 1983-1995. |
CHEN Y, DENG J, CHEN J Y, et al. Genome-wide identification and expression analysis of FAR1/FHY3 transcription factor family in tomato[J]. Plant Physiology Journal, 2021, 57(10): 1983-1995. (in Chinese with English abstract) | |
[17] | BOHRA A, JHA U C, ADHIMOOLAM P, et al. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops[J]. Plant Cell Reports, 2016, 35(5): 967-993. |
[18] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ method[J]. Methods, 2001, 25(4): 402-408. |
[19] | LI P J, WANG Y H, QIAN Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Research, 2007, 17(5): 402-410. |
[20] | DONG Z B, JIANG C, CHEN X Y, et al. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response[J]. Plant Physiology, 2013, 163(3): 1306-1322. |
[21] | WANG A H, HOU Q Q, SI L Z, et al. The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology, 2019, 180(4): 2077-2090. |
[22] | KU L X, WEI X M, ZHANG S F, et al. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.)[J]. PLoS One, 2011, 6(6): e20621. |
[23] | NI J, GAO C C, CHEN M S, et al. Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas[J]. Plant and Cell Physiology, 2015, 56(8): 1655-1666. |
[24] | YANG J P, LIN R C, HOECKER U, et al. Repression of light signaling by Arabidopsis SPA1 involves post-translational regulation of HFR1 protein accumulation[J]. The Plant Journal, 2005, 43(1): 131-141. |
[25] | 秦琳琳, 张曦, 姜骋, 等. 白桦BpZFP4基因启动子克隆和逆境响应元件功能分析[J]. 植物研究, 2019, 39(6): 917-926. |
QIN L L, ZHANG X, JIANG C, et al. Cloning and functional analysis of BpZFP4 promoter from birch(Betula platyphylla)[J]. Bulletin of Botanical Research, 2019, 39(6): 917-926. (in Chinese with English abstract) | |
[26] | 陈乃钰, 张国香, 张力爽, 等. ABF转录因子在植物响应非生物胁迫中的作用[J]. 植物遗传资源学报, 2021, 22(4): 930-938. |
CHEN N Y, ZHANG G X, ZHANG L S, et al. The role of ABF transcription factors in response to abiotic stress in plant[J]. Journal of Plant Genetic Resources, 2021, 22(4): 930-938. (in Chinese with English abstract) | |
[27] | 吴锁伟. 拟南芥SPA1与光敏色素B互作的分子机理研究[D]. 北京: 中国农业科学院, 2009. |
WU S W. Molecular mechanism studies on interactions between SPA1and phytochrome B in Arabidopsis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese with English abstract) |
[1] | XU Yue, WU Xiaomeng, WANG Guoqing, ZOU Yunding, BI Shoudon. Analysis of relationship between number of Ricanidae in tea plantations and biochemical substances in tea leaves [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1834-1843. |
[2] | XU Xiuhong, LIU Jinliang, LI Dongcheng, LIU Renxiang. Analysis of nicotine content and related gene expression in different types of tobacco germplasm [J]. , 2020, 32(9): 1555-1563. |
[3] | XU Qilin, QI Guilan, MO Guilin, ZHU Jiang, LEI Chunlong, WU Yongsheng, XU Zhenying, LI Juan. Effects of earthworm extract on heat shock protein levels and immune function of silkworm, Bombyx mori [J]. , 2020, 32(4): 593-600. |
[4] | CHEN Honglin, QIN Gaochan, LOU Bao, QIAN Haojie, YAO Zhenhai. Analysis on phenotypic traits of red claw crayfish (Cherax quadricarinatus von Martens) in different growth stages [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2154-2161. |
[5] | LIU Yong-liang, CHEN Bo, LIU Ming-gang, XU Yu-qin, DAI Xi-xi, GU Xiao-xiao, PAN Kang-cheng. Effect of Lianmei dysentery Chinese herbal preparation on weaned piglet diarrhea by an Escherichia coli (K88) experimental infection [J]. , 2016, 28(9): 1493-1500. |
[6] | ZHANG Ying\|hu, CHEN He, CHEN Jian, TAO Hong, QIAO Hai\|long, ZANG Hui, LUAN Hai\|ye, SHEN Hui\|quan*. Analysis of yield and yield components of barley varieties (lines) in coastal area in Jiangsu during 2007 to 2014#br# [J]. , 2015, 27(9): 1510-. |
[7] | LI Fu-zhen;*;QIU Xin-mian;LIU Chuan-liang;*. Molecular cloning, characterization and expression of a novel DREB transcript factor GhDREB2B in cotton [J]. , 2010, 22(5): 564-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||