Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1834-1843.DOI: 10.3969/j.issn.1004-1524.20221267
• Plant Protection • Previous Articles Next Articles
XU Yuea(), WU Xiaomengb, WANG Guoqingb, ZOU Yundingb, BI Shoudona,*(
)
Received:
2022-08-31
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
XU Yue, WU Xiaomeng, WANG Guoqing, ZOU Yunding, BI Shoudon. Analysis of relationship between number of Ricanidae in tea plantations and biochemical substances in tea leaves[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1834-1843.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221267
日期 Date | 不同茶园中广翅蜡蝉种群数量Population number of Ricanidae in different tea plantations | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | |
2021-05-23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2021-06-20 | 3 | 7 | 18 | 0 | 4 | 11 | 104 | 48 | 10 |
2021-07-08 | 69 | 147 | 106 | 110 | 252 | 110 | 58 | 153 | 88 |
Table 1 Population dynamics of Ricanidae
日期 Date | 不同茶园中广翅蜡蝉种群数量Population number of Ricanidae in different tea plantations | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | |
2021-05-23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2021-06-20 | 3 | 7 | 18 | 0 | 4 | 11 | 104 | 48 | 10 |
2021-07-08 | 69 | 147 | 106 | 110 | 252 | 110 | 58 | 153 | 88 |
生化物质 Biochemicals | 茶树品种Tea varieties | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | |
T1 | 3.959 1 | 5.946 0 | 2.963 6 | 4.787 9 | 2.902 5 | 3.576 4 | 2.583 8 | 2.327 7 | 5.370 7 |
T2 | 2.732 0 | 3.132 2 | 2.275 3 | 2.537 2 | 2.660 5 | 2.672 2 | 2.899 2 | 2.517 4 | 3.696 6 |
T3 | 3.431 3 | 5.383 2 | 4.480 0 | 3.875 9 | 3.591 5 | 1.430 6 | 6.147 8 | 3.109 1 | 5.246 3 |
T4 | 3.921 7 | 4.062 7 | 5.225 1 | 3.831 0 | 4.844 5 | 3.419 3 | 6.255 1 | 3.657 2 | 5.105 7 |
S1 | 0.772 9 | 0.107 0 | 0.680 4 | 0.887 8 | 0.258 6 | 0.222 5 | 1.095 3 | 0.248 2 | 0.500 3 |
S2 | 0.235 3 | 0.020 8 | 0.104 5 | 0.160 3 | 0.149 9 | 0.063 4 | 0.158 4 | 0.126 5 | 0.116 7 |
S3 | 0.606 1 | 0.062 4 | 0.467 1 | 0.426 5 | 0.286 4 | 0.235 8 | 0.814 4 | 0.297 1 | 0.360 2 |
S4 | 2.126 9 | 0.173 6 | 1.429 4 | 1.441 7 | 0.975 3 | 0.715 0 | 2.097 0 | 0.977 4 | 1.198 0 |
S5 | 0.151 9 | 0.018 1 | 0.321 4 | 0.169 6 | 0.138 8 | 0.170 0 | 0.204 0 | 0.169 4 | 0.175 8 |
S6 | 0.051 8 | 0.004 3 | 0.049 1 | 0.052 3 | 0.030 8 | 0.030 3 | 0.057 7 | 0.042 1 | 0.037 7 |
S7 | 0.140 2 | 0.014 7 | 0.158 3 | 0.176 9 | 0.135 0 | 0.121 3 | 0.201 1 | 0.120 2 | 0.136 5 |
S8 | 0.104 8 | 0.008 9 | 0.096 3 | 0.089 2 | 0.037 7 | 0.084 0 | 0.083 5 | 0.055 0 | 0.082 6 |
S9 | 0.029 2 | 0.003 3 | 0.023 2 | 0.028 5 | 0.018 8 | 0.023 6 | 0.038 2 | 0.026 3 | 0.022 4 |
S10 | 0.040 0 | 0.003 9 | 0.044 2 | 0.043 5 | 0.052 8 | 0.047 5 | 0.044 6 | 0.038 6 | 0.035 3 |
S11 | 0.386 6 | 0.041 9 | 0.316 3 | 0.405 4 | 0.269 8 | 0.270 1 | 0.504 3 | 0.402 4 | 0.284 2 |
S12 | 0.024 7 | 0.001 8 | 0.018 0 | 0.019 4 | 0.016 3 | — | 0.014 4 | 0.019 5 | 0.004 2 |
S13 | 0.011 2 | 0.001 4 | 0.014 2 | 0.014 5 | 0.020 5 | 0.017 2 | 0.017 5 | 0.013 1 | 0.012 3 |
S14 | 0.019 6 | 0.002 1 | 0.025 5 | 0.024 1 | 0.033 3 | 0.029 9 | 0.022 4 | 0.021 0 | 0.019 8 |
S15 | 0.024 6 | 0.002 8 | 0.070 0 | 0.052 4 | 0.125 0 | 0.108 1 | 0.027 2 | 0.069 7 | 0.060 9 |
S16 | 0.078 2 | 0.004 1 | 0.088 5 | 0.105 9 | 0.127 1 | 0.204 2 | 0.048 3 | 0.114 0 | 0.085 3 |
S17 | — | — | 0.014 8 | 0.047 0 | 0.013 1 | 0.011 9 | 0.007 1 | 0.008 2 | 0.039 8 |
S18 | 0.009 9 | 0.001 3 | 0.032 9 | 0.012 1 | 0.010 2 | 0.008 0 | 0.012 7 | 0.010 6 | 0.010 3 |
S19 | 0.073 7 | 0.007 2 | 0.221 4 | 0.116 7 | 0.528 3 | 0.076 7 | 0.162 6 | 0.283 8 | 0.242 9 |
S20 | 0.331 3 | 0.026 2 | 0.420 8 | 0.230 1 | 0.305 4 | 0.274 4 | 0.241 3 | 0.321 9 | 0.242 0 |
S21 | 0.109 7 | 0.006 2 | 0.089 2 | 0.034 3 | 0.022 3 | 0.036 6 | 0.123 2 | 0.039 2 | 0.073 1 |
S22 | 0.149 4 | 0.015 0 | — | 0.184 8 | 0.044 8 | — | 0.147 7 | 0.050 7 | 0.003 6 |
S23 | 0.029 0 | — | 0.030 3 | 0.022 9 | 0.032 2 | — | 0.032 0 | 0.035 5 | 0.017 4 |
S24 | 0.250 3 | — | 0.401 1 | — | — | — | 0.409 2 | — | — |
S25 | 0.043 3 | 0.006 0 | 0.052 7 | 0.066 0 | 0.059 4 | 0.035 1 | 0.057 2 | 0.052 8 | 0.056 2 |
E1 | 15.642 0 | 16.000 0 | 18.739 0 | 15.102 0 | 16.165 0 | 15.057 0 | 14.962 0 | 17.658 0 | 14.976 0 |
E2 | 43.401 0 | 38.990 0 | 37.186 0 | 37.194 0 | 44.135 0 | 38.654 0 | 39.829 0 | 43.936 0 | 35.740 0 |
E3 | 18.366 0 | 23.412 0 | 25.148 0 | 24.278 0 | 21.386 0 | 17.106 0 | 22.570 0 | 25.049 0 | 20.228 0 |
E4 | 14.055 0 | 12.892 0 | 13.335 0 | 10.843 0 | 14.563 0 | 13.959 0 | 12.258 0 | 13.432 0 | 14.829 0 |
E5 | 7.541 0 | 11.020 | 12.121 0 | 8.695 0 | 9.912 0 | 5.742 0 | 7.862 0 | 10.613 0 | 7.515 0 |
E6 | 2.634 0 | 1.423 0 | 2.153 0 | 1.102 0 | 3.665 0 | 1.490 0 | 1.519 0 | 2.822 0 | 1.959 0 |
E7 | 2.502 0 | 2.758 0 | 2.954 0 | 2.161 0 | 2.548 0 | 1.482 0 | 1.857 0 | 2.628 0 | 1.581 0 |
H1 | 3.203 0 | 4.467 0 | 3.563 0 | 3.848 0 | 3.873 0 | 1.930 0 | 2.240 0 | 3.750 0 | 2.485 0 |
H2 | 0.679 0 | 0.830 0 | 0.685 0 | 0.824 0 | 0.791 0 | 0.339 0 | 0.489 0 | 0.625 0 | 0.544 0 |
H3 | 0.329 0 | 0.375 0 | 0.355 0 | 0.280 0 | 0.253 0 | 0.211 0 | 0.218 0 | 0.303 0 | 0.196 0 |
H4 | 0.056 0 | 0.057 0 | 0.053 0 | 0.045 0 | 0.046 0 | 0.029 0 | 0.032 0 | 0.044 0 | 0.040 0 |
F1 | 0.235 0 | 0.268 0 | 0.060 0 | 0.217 0 | 0.272 0 | 0.069 0 | 0.118 0 | 0.252 0 | 0.125 0 |
F2 | 0.036 0 | 0.025 0 | 0.126 0 | 0.043 0 | 0.109 0 | 0.021 0 | 0.021 0 | 0.116 0 | 0.027 0 |
F3 | 0.019 0 | 0.035 0 | 0.028 0 | 0.027 0 | 0.032 0 | 0.013 0 | 0.020 0 | 0.031 0 | 0.017 0 |
G1 | 0.108 0 | 0.119 0 | 0.064 0 | 0.086 0 | 0.172 0 | 0.148 0 | 0.073 0 | 0.165 0 | 0.081 0 |
G2 | 1.005 0 | 2.239 0 | 2.031 0 | 1.884 0 | 0.588 0 | 0.871 0 | 1.321 0 | 1.716 0 | 1.908 0 |
G3 | 0.186 0 | 0.196 0 | 0.111 0 | 0.048 0 | 0.141 0 | 0.119 0 | 0.115 0 | 0.066 0 | 0.108 0 |
G4 | 0.320 0 | 0.719 0 | 0.903 0 | 0.344 0 | 0.527 0 | 0.489 0 | 0.329 0 | 0.426 0 | 0.432 0 |
Table 2 Content of biochemical substances in tea leaves
生化物质 Biochemicals | 茶树品种Tea varieties | ||||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | |
T1 | 3.959 1 | 5.946 0 | 2.963 6 | 4.787 9 | 2.902 5 | 3.576 4 | 2.583 8 | 2.327 7 | 5.370 7 |
T2 | 2.732 0 | 3.132 2 | 2.275 3 | 2.537 2 | 2.660 5 | 2.672 2 | 2.899 2 | 2.517 4 | 3.696 6 |
T3 | 3.431 3 | 5.383 2 | 4.480 0 | 3.875 9 | 3.591 5 | 1.430 6 | 6.147 8 | 3.109 1 | 5.246 3 |
T4 | 3.921 7 | 4.062 7 | 5.225 1 | 3.831 0 | 4.844 5 | 3.419 3 | 6.255 1 | 3.657 2 | 5.105 7 |
S1 | 0.772 9 | 0.107 0 | 0.680 4 | 0.887 8 | 0.258 6 | 0.222 5 | 1.095 3 | 0.248 2 | 0.500 3 |
S2 | 0.235 3 | 0.020 8 | 0.104 5 | 0.160 3 | 0.149 9 | 0.063 4 | 0.158 4 | 0.126 5 | 0.116 7 |
S3 | 0.606 1 | 0.062 4 | 0.467 1 | 0.426 5 | 0.286 4 | 0.235 8 | 0.814 4 | 0.297 1 | 0.360 2 |
S4 | 2.126 9 | 0.173 6 | 1.429 4 | 1.441 7 | 0.975 3 | 0.715 0 | 2.097 0 | 0.977 4 | 1.198 0 |
S5 | 0.151 9 | 0.018 1 | 0.321 4 | 0.169 6 | 0.138 8 | 0.170 0 | 0.204 0 | 0.169 4 | 0.175 8 |
S6 | 0.051 8 | 0.004 3 | 0.049 1 | 0.052 3 | 0.030 8 | 0.030 3 | 0.057 7 | 0.042 1 | 0.037 7 |
S7 | 0.140 2 | 0.014 7 | 0.158 3 | 0.176 9 | 0.135 0 | 0.121 3 | 0.201 1 | 0.120 2 | 0.136 5 |
S8 | 0.104 8 | 0.008 9 | 0.096 3 | 0.089 2 | 0.037 7 | 0.084 0 | 0.083 5 | 0.055 0 | 0.082 6 |
S9 | 0.029 2 | 0.003 3 | 0.023 2 | 0.028 5 | 0.018 8 | 0.023 6 | 0.038 2 | 0.026 3 | 0.022 4 |
S10 | 0.040 0 | 0.003 9 | 0.044 2 | 0.043 5 | 0.052 8 | 0.047 5 | 0.044 6 | 0.038 6 | 0.035 3 |
S11 | 0.386 6 | 0.041 9 | 0.316 3 | 0.405 4 | 0.269 8 | 0.270 1 | 0.504 3 | 0.402 4 | 0.284 2 |
S12 | 0.024 7 | 0.001 8 | 0.018 0 | 0.019 4 | 0.016 3 | — | 0.014 4 | 0.019 5 | 0.004 2 |
S13 | 0.011 2 | 0.001 4 | 0.014 2 | 0.014 5 | 0.020 5 | 0.017 2 | 0.017 5 | 0.013 1 | 0.012 3 |
S14 | 0.019 6 | 0.002 1 | 0.025 5 | 0.024 1 | 0.033 3 | 0.029 9 | 0.022 4 | 0.021 0 | 0.019 8 |
S15 | 0.024 6 | 0.002 8 | 0.070 0 | 0.052 4 | 0.125 0 | 0.108 1 | 0.027 2 | 0.069 7 | 0.060 9 |
S16 | 0.078 2 | 0.004 1 | 0.088 5 | 0.105 9 | 0.127 1 | 0.204 2 | 0.048 3 | 0.114 0 | 0.085 3 |
S17 | — | — | 0.014 8 | 0.047 0 | 0.013 1 | 0.011 9 | 0.007 1 | 0.008 2 | 0.039 8 |
S18 | 0.009 9 | 0.001 3 | 0.032 9 | 0.012 1 | 0.010 2 | 0.008 0 | 0.012 7 | 0.010 6 | 0.010 3 |
S19 | 0.073 7 | 0.007 2 | 0.221 4 | 0.116 7 | 0.528 3 | 0.076 7 | 0.162 6 | 0.283 8 | 0.242 9 |
S20 | 0.331 3 | 0.026 2 | 0.420 8 | 0.230 1 | 0.305 4 | 0.274 4 | 0.241 3 | 0.321 9 | 0.242 0 |
S21 | 0.109 7 | 0.006 2 | 0.089 2 | 0.034 3 | 0.022 3 | 0.036 6 | 0.123 2 | 0.039 2 | 0.073 1 |
S22 | 0.149 4 | 0.015 0 | — | 0.184 8 | 0.044 8 | — | 0.147 7 | 0.050 7 | 0.003 6 |
S23 | 0.029 0 | — | 0.030 3 | 0.022 9 | 0.032 2 | — | 0.032 0 | 0.035 5 | 0.017 4 |
S24 | 0.250 3 | — | 0.401 1 | — | — | — | 0.409 2 | — | — |
S25 | 0.043 3 | 0.006 0 | 0.052 7 | 0.066 0 | 0.059 4 | 0.035 1 | 0.057 2 | 0.052 8 | 0.056 2 |
E1 | 15.642 0 | 16.000 0 | 18.739 0 | 15.102 0 | 16.165 0 | 15.057 0 | 14.962 0 | 17.658 0 | 14.976 0 |
E2 | 43.401 0 | 38.990 0 | 37.186 0 | 37.194 0 | 44.135 0 | 38.654 0 | 39.829 0 | 43.936 0 | 35.740 0 |
E3 | 18.366 0 | 23.412 0 | 25.148 0 | 24.278 0 | 21.386 0 | 17.106 0 | 22.570 0 | 25.049 0 | 20.228 0 |
E4 | 14.055 0 | 12.892 0 | 13.335 0 | 10.843 0 | 14.563 0 | 13.959 0 | 12.258 0 | 13.432 0 | 14.829 0 |
E5 | 7.541 0 | 11.020 | 12.121 0 | 8.695 0 | 9.912 0 | 5.742 0 | 7.862 0 | 10.613 0 | 7.515 0 |
E6 | 2.634 0 | 1.423 0 | 2.153 0 | 1.102 0 | 3.665 0 | 1.490 0 | 1.519 0 | 2.822 0 | 1.959 0 |
E7 | 2.502 0 | 2.758 0 | 2.954 0 | 2.161 0 | 2.548 0 | 1.482 0 | 1.857 0 | 2.628 0 | 1.581 0 |
H1 | 3.203 0 | 4.467 0 | 3.563 0 | 3.848 0 | 3.873 0 | 1.930 0 | 2.240 0 | 3.750 0 | 2.485 0 |
H2 | 0.679 0 | 0.830 0 | 0.685 0 | 0.824 0 | 0.791 0 | 0.339 0 | 0.489 0 | 0.625 0 | 0.544 0 |
H3 | 0.329 0 | 0.375 0 | 0.355 0 | 0.280 0 | 0.253 0 | 0.211 0 | 0.218 0 | 0.303 0 | 0.196 0 |
H4 | 0.056 0 | 0.057 0 | 0.053 0 | 0.045 0 | 0.046 0 | 0.029 0 | 0.032 0 | 0.044 0 | 0.040 0 |
F1 | 0.235 0 | 0.268 0 | 0.060 0 | 0.217 0 | 0.272 0 | 0.069 0 | 0.118 0 | 0.252 0 | 0.125 0 |
F2 | 0.036 0 | 0.025 0 | 0.126 0 | 0.043 0 | 0.109 0 | 0.021 0 | 0.021 0 | 0.116 0 | 0.027 0 |
F3 | 0.019 0 | 0.035 0 | 0.028 0 | 0.027 0 | 0.032 0 | 0.013 0 | 0.020 0 | 0.031 0 | 0.017 0 |
G1 | 0.108 0 | 0.119 0 | 0.064 0 | 0.086 0 | 0.172 0 | 0.148 0 | 0.073 0 | 0.165 0 | 0.081 0 |
G2 | 1.005 0 | 2.239 0 | 2.031 0 | 1.884 0 | 0.588 0 | 0.871 0 | 1.321 0 | 1.716 0 | 1.908 0 |
G3 | 0.186 0 | 0.196 0 | 0.111 0 | 0.048 0 | 0.141 0 | 0.119 0 | 0.115 0 | 0.066 0 | 0.108 0 |
G4 | 0.320 0 | 0.719 0 | 0.903 0 | 0.344 0 | 0.527 0 | 0.489 0 | 0.329 0 | 0.426 0 | 0.432 0 |
氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient |
---|---|---|---|---|---|---|---|---|---|
S1 | -0.656 3 | S6 | -0.509 0 | S11 | -0.418 2 | S16 | 0.209 0 | S21 | -0.728 3 |
S2 | -0.222 5 | S7 | -0.361 7 | S12 | -0.014 5 | S17 | -0.092 5 | S22 | -0.337 7 |
S3 | -0.606 3 | S8 | -0.697 9 | S13 | 0.172 7 | S18 | -0.178 6 | S23 | 0.072 5 |
S4 | -0.577 8 | S9 | -0.521 3 | S14 | 0.230 6 | S19 | 0.694 1 | S24 | -0.533 5 |
S5 | -0.323 2 | S10 | 0.057 8 | S15 | 0.579 6 | S20 | -0.046 9 | S25 | -0.021 0 |
Table 3 Correlation coefficients between the content of each amino acid and the number of Ricanidae
氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient | 氨基酸 Amino acid | 相关系数 Correlation coefficient |
---|---|---|---|---|---|---|---|---|---|
S1 | -0.656 3 | S6 | -0.509 0 | S11 | -0.418 2 | S16 | 0.209 0 | S21 | -0.728 3 |
S2 | -0.222 5 | S7 | -0.361 7 | S12 | -0.014 5 | S17 | -0.092 5 | S22 | -0.337 7 |
S3 | -0.606 3 | S8 | -0.697 9 | S13 | 0.172 7 | S18 | -0.178 6 | S23 | 0.072 5 |
S4 | -0.577 8 | S9 | -0.521 3 | S14 | 0.230 6 | S19 | 0.694 1 | S24 | -0.533 5 |
S5 | -0.323 2 | S10 | 0.057 8 | S15 | 0.579 6 | S20 | -0.046 9 | S25 | -0.021 0 |
糖类 Sugars | 相关系数 Correlation coefficient | 低聚原花青素类 Oligomeric proanthocyanidins | 相关系数 Correlation coefficient | 黄酮醇苷类 Flavonol glycosides | 相关系数 Correlation coefficient |
---|---|---|---|---|---|
T1 | -0.147 3 | H1 | 0.558 6 | G1 | 0.741 4 |
T2 | -0.200 0 | H2 | 0.460 8 | G2 | -0.278 0 |
T3 | -0.258 2 | H3 | 0.113 2 | G3 | 0.053 5 |
T4 | -0.196 6 | H4 | 0.196 6 | G4 | 0.274 4 |
Table 4 Correlation coefficients of each content of sugars, oligomeric proanthocyanidins and flavonol glycosides with the number of Ricanidae
糖类 Sugars | 相关系数 Correlation coefficient | 低聚原花青素类 Oligomeric proanthocyanidins | 相关系数 Correlation coefficient | 黄酮醇苷类 Flavonol glycosides | 相关系数 Correlation coefficient |
---|---|---|---|---|---|
T1 | -0.147 3 | H1 | 0.558 6 | G1 | 0.741 4 |
T2 | -0.200 0 | H2 | 0.460 8 | G2 | -0.278 0 |
T3 | -0.258 2 | H3 | 0.113 2 | G3 | 0.053 5 |
T4 | -0.196 6 | H4 | 0.196 6 | G4 | 0.274 4 |
酚酸类 Phenolic acids | 相关系数 Correlation coefficient | 儿茶素类 Catechins | 相关系数 Correlation coefficient |
---|---|---|---|
E1 | 0.276 4 | F1 | 0.551 6 |
E2 | 0.475 8 | F2 | 0.561 8 |
E3 | 0.183 0 | F3 | 0.654 8 |
E4 | 0.267 7 | ||
E5 | 0.432 5 | ||
E6 | 0.627 7 | ||
E7 | 0.392 9 |
Table 5 Correlation coefficients between each content of phenolic acids, catechins and the number of Ricanidae
酚酸类 Phenolic acids | 相关系数 Correlation coefficient | 儿茶素类 Catechins | 相关系数 Correlation coefficient |
---|---|---|---|
E1 | 0.276 4 | F1 | 0.551 6 |
E2 | 0.475 8 | F2 | 0.561 8 |
E3 | 0.183 0 | F3 | 0.654 8 |
E4 | 0.267 7 | ||
E5 | 0.432 5 | ||
E6 | 0.627 7 | ||
E7 | 0.392 9 |
生化物质 Biochemicals | 通径系数 Path coefficient | 排序 Order | 间接通径系数Indirect path coefficient | |||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | |||
X1 | -0.681 | 2 | -0.002 5 | 0.076 9 | -0.036 3 | -0.165 1 | 0.316 6 | |
X2 | 0.138 | 6 | 0.012 3 | 0.060 3 | -0.157 3 | 0.031 2 | -0.365 7 | |
X3 | -0.312 | 5 | 0.167 9 | -0.026 7 | 0.531 0 | 0.385 2 | -0.028 2 | |
X4 | 0.672 | 3 | 0.036 8 | -0.032 3 | -0.246 5 | 0.314 4 | -0.177 8 | |
X5 | 0.467 | 4 | 0.240 7 | 0.009 2 | -0.257 4 | 0.452 4 | -0.386 0 | |
X6 | -0.805 | 1 | 0.267 9 | 0.062 7 | -0.010 9 | 0.148 5 | 0.223 9 |
Table 6 Path coefficients of the number of Ricanidae and the 6 major classes of tea tree inclusions
生化物质 Biochemicals | 通径系数 Path coefficient | 排序 Order | 间接通径系数Indirect path coefficient | |||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | |||
X1 | -0.681 | 2 | -0.002 5 | 0.076 9 | -0.036 3 | -0.165 1 | 0.316 6 | |
X2 | 0.138 | 6 | 0.012 3 | 0.060 3 | -0.157 3 | 0.031 2 | -0.365 7 | |
X3 | -0.312 | 5 | 0.167 9 | -0.026 7 | 0.531 0 | 0.385 2 | -0.028 2 | |
X4 | 0.672 | 3 | 0.036 8 | -0.032 3 | -0.246 5 | 0.314 4 | -0.177 8 | |
X5 | 0.467 | 4 | 0.240 7 | 0.009 2 | -0.257 4 | 0.452 4 | -0.386 0 | |
X6 | -0.805 | 1 | 0.267 9 | 0.062 7 | -0.010 9 | 0.148 5 | 0.223 9 |
氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient |
---|---|---|---|---|---|---|---|---|---|
S1 | -0.223 0 | S6 | 0.101 0 | S11 | 0.120 0 | S16 | 0.064 0 | S21 | -0.728 3 |
S2 | 0.331 0 | S7 | 0.202 0 | S12 | 0.338 0 | S17 | -0.182 0 | S22 | -0.080 0 |
S3 | 0.340 0 | S8 | -0.354 0 | S13 | 0.370 0 | S18 | 0.201 0 | S23 | 0.556 0 |
S4 | 0.337 0 | S9 | 0.026 0 | S14 | 0.340 0 | S19 | 0.614 0 | S24 | 0.302 0 |
S5 | 0.166 0 | S10 | 0.345 0 | S15 | 0.390 0 | S20 | 0.389 0 | S25 | 0.283 0 |
Table 7 Path coefficient between the number of Ricanidae and 25 amino acids
氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient | 氨基酸 Amino acids | 通径系数 Path coefficient |
---|---|---|---|---|---|---|---|---|---|
S1 | -0.223 0 | S6 | 0.101 0 | S11 | 0.120 0 | S16 | 0.064 0 | S21 | -0.728 3 |
S2 | 0.331 0 | S7 | 0.202 0 | S12 | 0.338 0 | S17 | -0.182 0 | S22 | -0.080 0 |
S3 | 0.340 0 | S8 | -0.354 0 | S13 | 0.370 0 | S18 | 0.201 0 | S23 | 0.556 0 |
S4 | 0.337 0 | S9 | 0.026 0 | S14 | 0.340 0 | S19 | 0.614 0 | S24 | 0.302 0 |
S5 | 0.166 0 | S10 | 0.345 0 | S15 | 0.390 0 | S20 | 0.389 0 | S25 | 0.283 0 |
黄酮醇粮苷 Lavone glycosides | 通径系数 Path coefficient | 排序 Order | 间接通径系数Indirect path coefficient | |||
---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | |||
G1 | 0.761 | 1 | 0.039 3 | -0.012 8 | -0.045 9 | |
G2 | -0.074 | 4 | -0.403 0 | 0.025 9 | 0.173 2 | |
G3 | -0.135 | 3 | 0.071 8 | 0.014 2 | 0.102 8 | |
G4 | 0.421 | 2 | -0.082 9 | -0.030 5 | -0.033 0 |
Table 8 Path coefficient between the number of Ricanidae and 4 flavone glycosides
黄酮醇粮苷 Lavone glycosides | 通径系数 Path coefficient | 排序 Order | 间接通径系数Indirect path coefficient | |||
---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | |||
G1 | 0.761 | 1 | 0.039 3 | -0.012 8 | -0.045 9 | |
G2 | -0.074 | 4 | -0.403 0 | 0.025 9 | 0.173 2 | |
G3 | -0.135 | 3 | 0.071 8 | 0.014 2 | 0.102 8 | |
G4 | 0.421 | 2 | -0.082 9 | -0.030 5 | -0.033 0 |
常量/变量 Constant/ Variable | 回归系数 Regression coefficient | 标准误差 Standard error | 显著性 Significance |
---|---|---|---|
常量Constant | -70.446 | 43.877 | 0.159 |
G1 | 875.808 | 285.518 | 0.022 |
F3 | 3 771.138 | 1 521.024 | 0.048 |
Table 9 Output regression analysis
常量/变量 Constant/ Variable | 回归系数 Regression coefficient | 标准误差 Standard error | 显著性 Significance |
---|---|---|---|
常量Constant | -70.446 | 43.877 | 0.159 |
G1 | 875.808 | 285.518 | 0.022 |
F3 | 3 771.138 | 1 521.024 | 0.048 |
[1] | HINOJOSA-NOGUEIRA D, PÉREZ-BURILLO S, PASTORIZA DE LA CUEVA S, et al. Green and white teas as health-promoting foods[J]. Food & Function, 2021, 12(9): 3799-3819. |
[2] | HAYAKAWA S, OHISHI T, MIYOSHI N, et al. Anti-cancer effects of green tea epigallocatchin-3-gallate and coffee chlorogenic acid[J]. Molecules, 2020, 25(19): 4553. |
[3] | XIN Z J, CAI X M, CHEN S L, et al. A disease resistance elicitor laminarin enhances tea defense against a piercing herbivore Empoasca(Matsumurasca) onukii matsuda[J]. Scientific Reports, 2019, 9: 814. |
[4] | DA SILVA T B V, CASTILHO P A, DE SÁ-NAKANISHI A B, et al. The inhibitory action of purple tea on in vivo starch digestion compared to other Camellia sinensis teas[J]. Food Research International, 2021, 150: 110781. |
[5] | QIAN Y M, ZHANG S X, YAO S B, et al. Effects of vitro sucrose on quality components of tea plants (Camellia sinensis) based on transcriptomic and metabolic analysis[J]. BMC Plant Biology, 2018, 18(1): 121. |
[6] | SCHARBERT S, HOLZMANN N, HOFMANN T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse[J]. Journal of Agricultural and Food Chemistry, 2004, 52(11): 3498-3508. |
[7] | 李飞, 杨丹, 郑姣莉, 等. 中国茶园主要害虫生物防治研究进展[J]. 湖北农业科学, 2020, 59(10): 5-9. |
LI F, YANG D, ZHENG J L, et al. Research advances in biological control of tea pests in China[J]. Hubei Agricultural Sciences, 2020, 59(10): 5-9. (in Chinese with English abstract) | |
[8] | 潘鹏亮, 洪枫, 陈俊华, 等. 三种广翅蜡蝉前翅形态数值特征提取与分析[J]. 应用昆虫学报, 2020, 57(4): 980-987. |
PAN P L, HONG F, CHEN J H, et al. Extraction and analysis of numerical characteristics from forewings of three plant hopper species(Homoptera: Ricaniidae)[J]. Chinese Journal of Applied Entomology, 2020, 57(4): 980-987. (in Chinese with English abstract) | |
[9] | 赵丰华, 吕立哲, 任红楼. 信阳茶树新害虫: 蜡蝉[J]. 中国茶叶, 2010, 32(10): 16-17. |
ZHAO F H, LYU L Z, REN H L. Wax cicada, a new pest of Xinyang tea plant[J]. China Tea, 2010, 32(10): 16-17. (in Chinese) | |
[10] | 金银利, 马全朝, 张绍杰, 等. 圆纹广翅蜡蝉产卵规律及温度对越冬卵发育的影响[J]. 茶叶科学, 2020, 40(6): 807-816. |
JIN Y L, MA Q C, ZHANG S J, et al. Oviposition behavior and effect of temperature on the overwintering egg development of Pochazia guttifera[J]. Journal of Tea Science, 2020, 40(6): 807-816. (in Chinese with English abstract) | |
[11] | CAI X M, BIAN L, XU X X, et al. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles[J]. Scientific Reports, 2017, 7: 41818. |
[12] | XU X X, CAI X M, BIAN L, et al. Electrophysiological and behavioral responses of Chrysopa phyllochroma(Neuroptera: Chrysopidae) to plant volatiles[J]. Environmental Entomology, 2015, 44(5): 1425-1433. |
[13] | CHEN S L, ZHANG L P, CAI X M, et al. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants[J]. Horticulture Research, 2020, 7: 52. |
[14] | 马新华, 邹武, 毛迎新, 等. 福建茶树害螨发生动态及其与茶树品种理化特性的相关性分析[J]. 华东昆虫学报, 2007, 16(3): 196-201. |
MA X H, ZOU W, MAO Y X, et al. The fluctuations of the index of pest mite situation and their correlations with the physical and chemical characteristics on 5 tea varieties in Fujian[J]. Entomological Journal of East China, 2007, 16(3): 196-201. (in Chinese with English abstract) | |
[15] | 葛超美, 张家侠, 孙钦玉, 等. 灰茶尺蠖对不同茶树品种取食选择与适应性及与茶树叶片营养成分的关系[J]. 昆虫学报, 2018, 61(11): 1300-1309. |
GE C M, ZHANG J X, SUN Q Y, et al. Feeding preference and adaptation of Ectropis grisescens(Lepidoptera: Geometridae) to different tea cultivars and their relationship with nutritional components in leaves of tea plants[J]. Acta Entomologica Sinica, 2018, 61(11): 1300-1309. (in Chinese with English abstract) | |
[16] | 毛迎新, 邹武, 马新华, 等. 福建主要茶树品种间假眼小绿叶蝉种群动态及其抗虫性比较[J]. 华中农业大学学报, 2009, 28(1): 16-19. |
MAO Y X, ZOU W, MA X H, et al. Comparison of the population dynamics of Empoasca vitis(G the) on six tea varieties and their resistance to pests[J]. Journal of Huazhong Agricultural University, 2009, 28(1): 16-19. (in Chinese with English abstract) | |
[17] | 邹武, 林乃铨, 王庆森. 福建主要茶树品种理化特性与假眼小绿叶蝉种群数量的相关性分析[J]. 华东昆虫学报, 2006, 15(2): 129-134. |
ZOU W, LIN N Q, WANG Q S. Correlationships between physical and biochemical leaf characteristics of 4 tea varieties and the population of Empoasca vitis[J]. Entomological Journal of East China, 2006, 15(2): 129-134. (in Chinese with English abstract) | |
[18] | 曾莉, 王平盛, 许玫. 茶树对假眼小绿叶蝉的抗性研究[J]. 茶叶科学, 2001, 21(2): 90-93. |
ZENG L, WANG P S, XU M. Studies on the resistance of tea plant to leafhopper (Empoasca vitis Go the)[J]. Journal of Tea Science, 2001, 21(2): 90-93. (in Chinese with English abstract) | |
[19] | 黄贝. 花青素还原酶(ANR1/ANR2)在茶和油茶儿茶素代谢中的功能[D]. 合肥: 安徽农业大学, 2018. |
HUANG B. Function of anthocyanin reductase (ANR1/ANR2) in catechins metabolism of tea and Camellia oleifera[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese with English abstract) | |
[20] | 葛菁, 庞磊, 李叶云, 等. 茶树可溶性糖含量的HPLC-ELSD检测及其与茶树抗寒性的相关分析[J]. 安徽农业大学学报, 2013, 40(3): 470-473. |
GE J, PANG L, LI Y Y, et al. Determination of soluble sugar in tea plant by HPLC-ELSD and its relationship with freezing resistance[J]. Journal of Anhui Agricultural University, 2013, 40(3): 470-473. (in Chinese with English abstract) | |
[21] | 冯琳. 茶树黄化品种的品质化学及黄化机理的分析[D]. 合肥: 安徽农业大学, 2014. |
FENG L. Analysis of quality chemistry and yellowing mechanism of yellowing tea varieties[D]. Hefei: Anhui Agricultural University, 2014. (in Chinese with English abstract) | |
[22] | 黄明军, 杨新河, 覃彩芹, 等. HPLC-ELSD法测定黑茶中单糖和双糖的含量[J]. 食品工业, 2017, 38(1): 306-310. |
HUANG M J, YANG X H, QIN C Q, et al. Determination of monosaccharides and disaccharides in dark tea by HPLC-ELSD[J]. The Food Industry, 2017, 38(1): 306-310. (in Chinese with English abstract) | |
[23] | 徐克学. 生物数学[M]. 北京: 科学出版社, 1999: 278-286. |
[24] | 邓聚龙. 灰色系统理论教程[M]. 武汉: 华中理工大学出版社, 1990: 33-84. |
[25] | 敬艳辉, 邢留伟. 通径分析及其应用[J]. 统计教育, 2006(2): 24-26. |
JING Y H, XING L W. Path analysis and its application[J]. Statistical Education, 2006(2): 24-26. (in Chinese) | |
[26] | 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J]. 生物学通报, 2010, 45(2): 4-6. |
DU J J, CHEN Z W. The method of path analysis using SPSS linear regression[J]. Bulletin of Biology, 2010, 45(2): 4-6. (in Chinese) | |
[27] | ROY S, HANDIQUE G, MURALEEDHARAN N, et al. Use of plant extracts for tea pest management in India[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4831-4844. |
[28] | TIAN Y Y, ZHAO Y H, ZHANG L X, et al. Morphological, physiological, and biochemical responses of two tea cultivars to Empoasca onukii(Hemiptera: Cicadellidae) infestation[J]. Journal of Economic Entomology, 2018, 111(2): 899-908. |
[29] | LI H A, YU Y, LI Z Z, et al. Benzothiadiazole and B-aminobutyricacid induce resistance to Ectropis obliqua in tea plants [Camellia sinensis(L.) O. kuntz][J]. Molecules, 2018, 23(6): 1290. |
[30] | WANG W W, ZHENG C, HAO W J, et al. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis[J]. PLoS One, 2018, 13(8): e0201670. |
[31] | 王富花. HPLC分析测定不同茶叶中的游离氨基酸[J]. 食品研究与开发, 2018, 39(1): 141-146. |
WANG F H. Analysis and determination of free amino acids in different tea by HPLC[J]. Food Research and Development, 2018, 39(1): 141-146. (in Chinese with English abstract) | |
[32] | 刘丽芳. 茶树不同品种和次生代谢物质对叶蝉取食行为影响的DC-EPG研究[D]. 北京: 中国农业科学院, 2011. |
LIU L F. DC-EPG study on the effects of different tea varieties and secondary metabolites on the feeding behavior of leafhoppers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese with English abstract) | |
[33] | 郑高云. 不同茶树品种对茶尺蠖抗性机制的研究[D]. 合肥: 安徽农业大学, 2008. |
ZHENG G Y. Study on the resistance mechanism of different tea varieties to tea geometrid[D]. Hefei: Anhui Agricultural University, 2008. (in Chinese with English abstract) | |
[34] | 徐正浩, 崔绍荣, 何勇, 等. 植物次生代谢物质和害虫防治[J]. 植物保护, 2004, 30(4): 8-11. |
XU Z H, CUI S R, HE Y, et al. Plant secondary metabolites and their effects on insect management[J]. Plant Protection, 2004, 30(4): 8-11. (in Chinese with English abstract) | |
[35] | 陈巨莲, 倪汉祥, 孙京瑞. 主要次生物质对麦蚜的抗性阈值及交互作用[J]. 植物保护学报, 2002, 29(1): 7-12. |
CHEN J L, NI H X, SUN J R. The resistance threshold and interactions of several plant secondary metabolites to wheat aphids[J]. Journal of Plant Protection, 2002, 29(1): 7-12. (in Chinese with English abstract) | |
[36] | MATSUBARA Y, KUMAMOTO H, IIZUKA Y, et al. Structure and hypotensive effect of flavonoid glycosides in Citrus unshiu peelings[J]. Agricultural and Biological Chemistry, 1985, 49(4): 909-914. |
[37] | SCHARBERT S, HOFMANN T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments[J]. Journal of Agricultural and Food Chemistry, 2005, 53(13): 5377-5384. |
[1] | ZHANG Ning, TAO Ronghao, LIU Peishi, HU Hanxiu, GAO Linlin, GUO Long, ZHU Zunyou, MA Youhua. Effects of organic fertilizer coupled with chemical fertilizer on growth and quality of tea and soil fertility [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1844-1852. |
[2] | BAI Dingchen, ZHAO Zhifei, GONG Xue, LIU Yuan, NIU Suzhen, CHEN Zhengwu. Genome-wide association analysis of stomatal characters of cultivated local tea plants in Guizhou, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1550-1563. |
[3] | WU Xiaomeng, XU Yue, CHENG Honghao, CHEN Shiyan, ZHOU Xiazhi, ZOU Yunding, BI Shoudong. Spatial and quantitative relationships between Ectropis obliqua hypulina and their natural enemy of spiders in 6 tea gardens [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1349-1359. |
[4] | DENG Meihua, GAO Na, WU Lintu, XU Huozhong, HONG Haiqing, ZHU Youwei. Lead source identification and pollution risk assessment on tea production in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1123-1131. |
[5] | YU Qiaogang, JIANG Mingbei, SUN Wanchun, HUANG Zhengchen, WANG Feng, WANG Qiang, MA Junwei. Effects of straw mulching and green manure planting on nitrogen and phosphorus runoff loss in hilly tea garden [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 903-912. |
[6] | WANG Jinfeng, ZHOU Qi, LYU Yulong, CHEN Zhuomei. Effects of intercropping tea with landscape trees on ecosystem of tea garden and tea production [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 523-533. |
[7] | DING Yi, ZHENG Xuxia, HUANG Haitao, MAO Yuxiao, ZHAO Yun. Analysis of agronomic traits and genetic diversity of four major tea populations in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 364-372. |
[8] | LIN Dongpu, ZANG Yaoqiang, ZHANG Xiaopeng, ZHOU Xuzixin, MA Jun. Screening of upstream regulators of AbF3'5'H gene in Ananas comosus var. bracteatus [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 79-89. |
[9] | YANG Chun, MENG Zehong, LI Shuai, LIANG Sihui, QIAO Dahe, CHEN Zhengwu. Resistance of 12 tea cultivars to Dendrothrips minowai Priesner and Empoasca Onukii Matsuda and a preliminary identification of resistant components [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1713-1724. |
[10] | YANG Chun, QIAO Dahe, GUO Yan, LIANG Sihui, LIN Kaiqin, CHEN Zhengwu. Analysis into amino acids and theanine contents of 115 tea germplasms and special germplasm resource screening in Guizhou, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1351-1360. |
[11] | ZOU Zhenhao, SUN Yeliang, ZHAO Yubao, LI Xin, ZHANG Liping, ZHANG Lan, DONG Chunwang, FU Jianyu, HAN Wenyan, YAN Peng. Effects of picking flower buds on yield and quality of tea in spring [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1369-1376. |
[12] | PANG Yajun. Dilemma in transformation of homestead resources, assets and capital and corresponding solutions [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1338-1348. |
[13] | WU Xiaoqing, ZHOU Feifei, YE Ying, HUANG Yanmei, YANG Leiyu, HUANG Haitao, WU Yuanyuan. Analysis of aroma characteristics of Longjing tea made from different tea cultivars [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 437-446. |
[14] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[15] | ZHANG Peng, YANG Xueyan, HONG Jing, ZHANG Yali, TIAN Xiaojing, ZHANG Fumei, CAO Hong, CHEN Shi’en, MA Zhongren, DING Gongtao, SONG Li, LUO Li. Enrichment of trace elements in soil-tea system in Meitan tea area of Guizhou and origin traceability [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 378-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||