Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 41-49.DOI: 10.3969/j.issn.1004-1524.2023.01.05
• Animal Science • Previous Articles Next Articles
SONG Tianhao1(), PANG Lianfeng1, CHEN Lingshuang2, DENG Huidan1, XU Zhiwen1, ZHU Ling1, REN Zhihua1, DENG Junliang1,*(
)
Received:
2022-01-05
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
SONG Tianhao, PANG Lianfeng, CHEN Lingshuang, DENG Huidan, XU Zhiwen, ZHU Ling, REN Zhihua, DENG Junliang. Evaluation of thymol activity against pseudorabies virus in vitro and its action mode[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 41-49.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.01.05
稀释倍数的常用对数值 Common logarithm of dilution multiple | 重复数 Repetition number | CPE数 CPE number | 累计CPE数 Accumulative CPE number | 无CPE数 No-CPE number | 累计无CPE数 Accumulative no-CPE number | 累计总数 Total number | 比例 Proportion/% |
---|---|---|---|---|---|---|---|
-1 | 6 | 6 | 43 | 0 | 0 | 43 | 100 |
-2 | 6 | 6 | 37 | 0 | 0 | 37 | 100 |
-3 | 6 | 6 | 31 | 0 | 0 | 31 | 100 |
-4 | 6 | 6 | 25 | 0 | 0 | 25 | 100 |
-5 | 6 | 6 | 19 | 0 | 0 | 19 | 100 |
-6 | 6 | 6 | 13 | 0 | 0 | 13 | 100 |
-7 | 6 | 5 | 7 | 1 | 1 | 8 | 87.5 |
-8 | 6 | 2 | 2 | 4 | 5 | 7 | 28.6 |
-9 | 6 | 0 | 0 | 6 | 11 | 11 | 0 |
-10 | 6 | 0 | 0 | 6 | 17 | 17 | 0 |
Table 1 Test results of TCID50 for PRV
稀释倍数的常用对数值 Common logarithm of dilution multiple | 重复数 Repetition number | CPE数 CPE number | 累计CPE数 Accumulative CPE number | 无CPE数 No-CPE number | 累计无CPE数 Accumulative no-CPE number | 累计总数 Total number | 比例 Proportion/% |
---|---|---|---|---|---|---|---|
-1 | 6 | 6 | 43 | 0 | 0 | 43 | 100 |
-2 | 6 | 6 | 37 | 0 | 0 | 37 | 100 |
-3 | 6 | 6 | 31 | 0 | 0 | 31 | 100 |
-4 | 6 | 6 | 25 | 0 | 0 | 25 | 100 |
-5 | 6 | 6 | 19 | 0 | 0 | 19 | 100 |
-6 | 6 | 6 | 13 | 0 | 0 | 13 | 100 |
-7 | 6 | 5 | 7 | 1 | 1 | 8 | 87.5 |
-8 | 6 | 2 | 2 | 4 | 5 | 7 | 28.6 |
-9 | 6 | 0 | 0 | 6 | 11 | 11 | 0 |
-10 | 6 | 0 | 0 | 6 | 17 | 17 | 0 |
无水乙醇体积分数 Volume fraction of ethanol/% | D450 |
---|---|
10 | 0.089±0.008 e |
8 | 0.456±0.017 d |
6 | 0.957±0.003 c |
4 | 1.033±0.005 b |
2 | 1.074±0.011 a |
0 | 1.068±0.005 a |
Table 2 Inhibition effect of different volume fractions of ethanol on BHK-21 cells
无水乙醇体积分数 Volume fraction of ethanol/% | D450 |
---|---|
10 | 0.089±0.008 e |
8 | 0.456±0.017 d |
6 | 0.957±0.003 c |
4 | 1.033±0.005 b |
2 | 1.074±0.011 a |
0 | 1.068±0.005 a |
无水乙醇体积分数 Volume fraction of ethanol/% | D450 |
---|---|
4 | 0.717±0.007 b |
3 | 0.523±0.011 c |
2 | 0.514±0.005 c |
1 | 0.517±0.013 c |
0(CK-1E) | 1.205±0.007 a |
0(CK-2E) | 0.524±0.006 c |
Table 3 Inhibition effect of different volume fractions of ethanol on cytopathic effect in BHK-21 cells caused by PRV
无水乙醇体积分数 Volume fraction of ethanol/% | D450 |
---|---|
4 | 0.717±0.007 b |
3 | 0.523±0.011 c |
2 | 0.514±0.005 c |
1 | 0.517±0.013 c |
0(CK-1E) | 1.205±0.007 a |
0(CK-2E) | 0.524±0.006 c |
百里香酚质量浓度 Mass concentration of thymol/(μg·mL-1) | 相对存活率 Relative survival rate/% |
---|---|
256 | 41.934±0.507* |
128 | 72.165±0.548* |
64 | 92.200±0.683* |
32 | 94.447±0.584* |
16 | 96.667±0.639 |
8 | 98.499±0.219 |
0 | 100 |
Table 4 Effect of different mass concentrations of thymol on relative survival rate of BHK-21 cells
百里香酚质量浓度 Mass concentration of thymol/(μg·mL-1) | 相对存活率 Relative survival rate/% |
---|---|
256 | 41.934±0.507* |
128 | 72.165±0.548* |
64 | 92.200±0.683* |
32 | 94.447±0.584* |
16 | 96.667±0.639 |
8 | 98.499±0.219 |
0 | 100 |
百里香酚质量浓度 Mass concentration of thymol/(μg·mL-1) | 相对抑制率 Relative inhibition rate/% |
---|---|
64 | 78.881±1.162* |
32 | 51.986±0.567* |
16 | 18.497±0.964* |
8 | 8.482±1.133* |
4 | 5.094±0.644 |
2 | 2.365±0.300 |
0(CK-2) | 100* |
0(CK-1) | 0 |
Table 5 Inhibition effect of different mass concentrations of thymol on CPE in BHK-21 caused by PRV
百里香酚质量浓度 Mass concentration of thymol/(μg·mL-1) | 相对抑制率 Relative inhibition rate/% |
---|---|
64 | 78.881±1.162* |
32 | 51.986±0.567* |
16 | 18.497±0.964* |
8 | 8.482±1.133* |
4 | 5.094±0.644 |
2 | 2.365±0.300 |
0(CK-2) | 100* |
0(CK-1) | 0 |
百里香酚质量浓度 Mass concentration of thymol /(μg·mL-1) | -lg(TCID50)/mL-1 |
---|---|
64 | 4.775±0.121 e |
32 | 5.326±0.066 d |
16 | 5.744±0.105 c |
8 | 6.225±0.120 b |
4 | 6.500±0.136 a |
2 | 6.409±0.079 a |
0(CK-1) | 6.545±0.079 a |
Table 6 Negative common logarithm value of TCID50 [-lg(TCID50)] of PRV attained from BHK-21 influenced by different mass concentrations of thymol
百里香酚质量浓度 Mass concentration of thymol /(μg·mL-1) | -lg(TCID50)/mL-1 |
---|---|
64 | 4.775±0.121 e |
32 | 5.326±0.066 d |
16 | 5.744±0.105 c |
8 | 6.225±0.120 b |
4 | 6.500±0.136 a |
2 | 6.409±0.079 a |
0(CK-1) | 6.545±0.079 a |
Fig.3 Inhibition effect of thymol against PRV in BHK-21 cells at different stages of infection A, Intracellular inhibition; B, Virus inactivaction; C, Effect on virus entry; D, Pre-teatment effect. “*” showed significant (P<0.05) difference compared with CK-V.
[1] | METTENLEITER T C. Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis: state of the art, June 1999[J]. Veterinary Research, 2000, 31(1): 99-115. |
[2] | 张雪云. 猪伪狂犬病诊断方法研究进展[J]. 哈尔滨师范大学自然科学学报, 2014, 30(1): 71-75. |
ZHANG X Y. Progress on the diagnostic method of porcine pseudorabies[J]. Natural Science Journal of Harbin Normal University, 2014, 30(1): 71-75. (in Chinese with English abstract) | |
[3] | 马博, 卜三平. 猪伪狂犬病的净化和防治措施[J]. 中国猪业, 2018, 13(12): 48-51. |
MA B, BU S P. Purification and control measures for porcine pseudorabies[J]. China Swine Industry, 2018, 13(12): 48-51. (in Chinese) | |
[4] |
AN T Q, PENG J M, TIAN Z J, et al. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012[J]. Emerging Infectious Diseases, 2013, 19(11): 1749-1755.
DOI URL |
[5] | 李博萍, 胡文春. 香芹酚的生物学活性概述[J]. 陇东学院学报, 2017, 28(1): 48-52. |
LI B P, HU W C. Review on the bioactivity of carvacrol[J]. Journal of Longdong University, 2017, 28(1): 48-52. (in Chinese with English abstract) | |
[6] | 苗玉荣, 张鹏. 香芹酚的医学应用综述[J]. 宜春学院学报, 2019, 41(3): 17-20. |
MIAO Y R, ZHANG P. A review of medical application of carvacrol[J]. Journal of Yichun University, 2019, 41(3): 17-20. (in Chinese with English abstract) | |
[7] |
SÖKMEN M, SERKEDJIEVA J, DAFERERA D, et al. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens[J]. Journal of Agricultural and Food Chemistry, 2004, 52(11): 3309-3312.
DOI URL |
[8] |
PILAU M R, ALVES S H, WEIBLEN R, et al. Antiviral activity of the Lippia graveolens(Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses[J]. Brazilian Journal of Microbiology, 2011, 42(4): 1616-1624.
DOI URL |
[9] | 徐娇. 抗鸭瘟病毒活性物质的筛选及白藜芦醇抗鸭瘟病毒活性与作用机制研究[D]. 雅安: 四川农业大学, 2014. |
XU J. Screening of active materials against duck plague virus and the research of resveratrol’s anti-duck plague virus activity and mechanism[D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese with English abstract) | |
[10] |
CHEN M Z, XIE H G, YANG L W, et al. In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis[J]. Virologica Sinica, 2010, 25(5): 341-351.
DOI URL |
[11] | SÁNCHEZ G, AZNAR R. Evaluation of natural compounds of plant origin for inactivation of enteric viruses[J]. Food and Environmental Virology, 20157: 183-187. |
[12] |
GILLING D H, KITAJIMA M, TORREY J R, et al. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine Norovirus[J]. Journal of Applied Microbiology, 2014, 116(5): 1149-1163.
DOI URL |
[13] |
BEKUT M, BRKIĆ S, KLADAR N, et al. Potential of selected Lamiaceae plants in anti(retro)viral therapy[J]. Pharmacological Research, 2018, 133: 301-314.
DOI PMID |
[14] | MEDIOUNI S, JABLONSKI J A, TSUDA S, et al. Oregano oil and its principal component, carvacrol, inhibit HIV-1 fusion into target cells[J]. Journal of Virology, 2020, 94(15): e00147-e00120. |
[15] | 姚子璇. 猪伪狂犬病毒变异株的分离鉴定[D]. 雅安: 四川农业大学, 2019. |
YAO Z X. Isolate and identification of porcine pseudorabies virus variation[D]. Ya’an: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
[16] | 方超, 张智明, 李建华, 等. 一株新分离的猪伪狂犬病毒的评估[J]. 饲料博览, 2021(1): 11-14. |
FANG C, ZHANG Z M, LI J H, et al. Evaluation of a newly porcine pseudorabies virus[J]. Feed Review, 2021(1): 11-14. (in Chinese with English abstract) | |
[17] |
MA L, YAO L. Antiviral effects of plant-derived essential oils and their components: an updated review[J]. Molecules (Basel, Switzerland), 2020, 25(11): 2627.
DOI URL |
[18] |
ZHANG X L, GUO Y S, WANG C H, et al. Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities[J]. Food Chemistry, 2014, 152: 300-306.
DOI URL |
[19] |
WANG L, WANG D, WU X G, et al. Antiviral mechanism of carvacrol on HSV-2 infectivity through inhibition of RIP3-mediated programmed cell necrosis pathway and ubiquitin-proteasome system in BSC-1 cells[J]. BMC Infectious Diseases, 2020, 20(1): 832.
DOI PMID |
[20] | SHARIFI-RAD J, SALEHI B, SCHNITZLER P, et al. Susceptibility of Herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn[J]. Cellular and Molecular Biology (Noisy-Le-Grand, France), 2017, 63(8): 42-47. |
[1] | WU Yuru, LIANG Tianyu, LIANG Chao, TAN Yuanyuan, LIU Yuan, PAN Xingyu, HUANG Xiaoli, CHEN Defang, GENG Yi, OUYANG Ping. Antibacterial effect of thymol against fish-derived drug-resistant Aeromonas veronii in vitro and its mechanism [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1412-1422. |
[2] | NI Minshu, CHEN Li, BAO Xi, XU Yue, ZHUANG Tenghan, FENG Lei. Regulation of endoplasmic reticulum molecular chaperone GRP94 on Pseudorabies virus replication [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2386-2394. |
[3] | YUAN Xianyu, YANG Longbin, HE Zanzan, MAO Tianjiao, HE Changsheng, ZHAN Songhe, SUN Pei, WEI Jianzhong, LI Yu. Isolation and identification of pseudorabies virus and molecular characterization of its main virulence genes in Anhui [J]. , 2020, 32(1): 43-56. |
[4] | YI Keke, YIN Wenqi, ZHOU Yuancheng, JIANG Jinzhen, ZHANG Baiyu, LI Zhongyin, YAN Qigui. Isolation and identification of 4 strains of porcine pseudorabies virus and analysis of main virulence genes [J]. , 2019, 31(9): 1429-1436. |
[5] | FAN Yi, LI Bi, GUO Wanzhu, LI Ping, HUANG Jianbo, YANG Fan, JIANG Ziyi, ZHAO Jun, XU Siyao, DENG Yichao, YIN Yue, MAO Xiyu, LYU Wenting, XU Zhiwen, ZHU Ling. Constructing gE, gI and US9 gene deletion strain of pseudorabies virus [J]. , 2017, 29(4): 542-547. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||